Chromatic Equivalence Class of the Join of Certain Tripartite Graphs

G.C. Lau & Y.H. Peng

1Faculty of I. T. and Quantitative Science
Universiti Teknologi MARA (Johor Branch)
Segamat, Johor, Malaysia

2Department of Mathematics, and
3Institute for Mathematical Research
Universiti Putra Malaysia 43400 UPM Serdang, Malaysia
E-mail: yhpeng@fsas.upm.edu.my

ABSTRACT

For a simple graph G, let $P(G;\lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent, denoted $G \sim H$ if $P(G;\lambda) = P(H;\lambda)$. A graph G is said to be chromatically unique, if $H \sim G$ implies that $H \cong G$. Chia [4] determined the chromatic equivalence class of the graph consisting of the join of p copies of the path each of length 3. In this paper, we determined the chromatic equivalence class of the graph consisting of the join of p copies of the complete tripartite graph $K_{1,2,3}$.

MSC: 05C15; 05C60

Keywords: Tripartite graphs; Chromatic polynomial; Chromatic equivalence class

INTRODUCTION

All graphs considered in this paper are finite, undirected, simple and loopless. For a graph G, we denote by $P(G;\lambda)$ (or $P(G)$), the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent, or χ-equivalent, denoted $G \sim H$ if $P(G) = P(H)$. It is clear that the relation \sim is an equivalence relation on the family of graphs. We denote by $[G]$ the equivalence class determined by G under \sim. A graph G is said to be chromatically unique, or χ-unique, if $[G] = \{G\}$, i.e., $H \sim G$ implies that $H \cong G$. Many families of χ-unique graphs are known (see [8, 9]), relatively fewer results concerning the chromatic equivalence class of graphs are known (see [2, 3, 4]). In this paper, our main purpose is to determine the chromatic equivalence class of the graph consisting of the join of p copies of the complete tripartite graph $K_{1,2,3}$.

In what follows, we let K_n denote the complete graph on n vertices, $K_{p_1,p_2,...,p_t}$ the complete t-partite graph having n_i vertices in the i-th partite set, P_n and C_n the path and cycle on n vertices, respectively and $\chi(G)$ the chromatic number of G. Let W_n denote the wheel of order n and \mathcal{U}_n the graph obtained from W_n by deleting a spoke of W_n. Also let $n(A,G)$ denote the number of subgraph A in G and $i(A,G)$ the number of induced subgraph A in G.
The join of two graphs G and H, denoted $G + H$, is the graph obtained from the union of G and H by joining every vertex of G to every vertex of H.

Let F be a graph and let $G = F + F + \ldots + F$ or pF denote the join of p (≥ 2) copies of F. We wish to determine $\left[G \right]$. Let $J_p(F)$ denote the set of all graphs H which are of the form $H = H_1 + H_2 + \ldots + H_p$, where $H_i \in [F]$, $i = 1, 2, \ldots, p$.

In [4], Chia posed the following problem

Problem: What are those graphs F for which $J_p(F) = \left[G \right]$?

and solve the problem for the case $F = P_4$. In this paper, by making very minor modification to the technique used in [4], we solve the above problem for the case $F = K_{1,2,3}$.

PRELIMINARY RESULTS AND NOTATIONS

A spanning subgraph is called a *clique cover* if its connected components are complete graphs. Let G be a graph on n vertices. Let $s_k(G)$ denote the number of clique cover of G with k connected components, $k = 1, 2, \ldots, n$. If the chromatic polynomial of G is

$$P(G, \lambda) = \sum_{k=1}^{n} s_k(G)(\lambda)$$

where $(\lambda) = \lambda(\lambda - 1) \cdots (\lambda - k + 1)$, then the polynomial

$$\sigma(G, k) = \sum_{k=1}^{n} s_k(G)x^k$$

is called the *σ*-polynomial of G (see Brenti(1992)). It is easy to see that $\sigma(G, x) = x^n$ if and only if $G = K_n$ since $s_k(G) = 0$ for $k < \chi(G) = n$. Also note that $s_1(G) = 1$ and $s_{\chi(G)}(G) = m$ if G has m edges. Clearly, $P(G, \lambda) = P(H, \lambda)$ if and only if $\sigma(G, x) = \sigma(H, x)$ and $s_k(G) = s_k(H)$ for $k = 1, 2, \ldots$. If $\sigma(G, x) = xf(x)$ for some irreducible polynomial $f(x)$ over the rational number field, then $\sigma(G, x)$ is said to be irreducible.

Lemma 2.1. (Farrell (1980)) Let G and H be two graphs such that $G \sim H$. Then G and H have the same number of vertices, edges and triangles. If both G and H has no K_4 as subgraph, then $i(C_4, G) = i(C_4, H)$. Moreover,

$$-i(C_5, G) + i(K_{2,3}, G) + 2i(U_5, G) + 3i(W_5, G) = -i(C_5, H) + i(K_{2,3}, H) + 2i(U_5, H) + 3i(W_5, H).$$

Lemma 2.2. (Brenti (1992)) Let G and H be two disjoint graphs. Then

$$\sigma(G + H, x) = \sigma(G, x)\sigma(H, x).$$

In particular,

$$\sigma(K_{n_1,n_2,\ldots,n_r}, x) = \prod_{i=1}^{r} \sigma(K_{n_i}, x).$$
Chromatic Equivalence Class of the Join of Certain Tripartite Graphs

Lemma 2.3. (Liu (1992)) Let G be a connected graph with n vertices and m edges. Assume that G is not the complete graph K_3. Then

$$s_{m-2}(G) \leq \binom{m-1}{2}$$

and equality holds if and only if G is the path P_{m+1}.

A CHROMATIC EQUIVALENCE CLASS

We first have the following lemma which follows readily from Lemma 2.1.

Lemma 3.1. $[K_{1,2,3}] = \{K_{1,3}, K_{2,2,2} \setminus \{e\}\}$ where e is an edge of $K_{2,2,2}$.

We now have our main theorem as follow.

Theorem 3.1. Let $G = K_{1,2,3} + K_{1,2,3} + \ldots + K_{1,2,3}$ be the join of p copies of $K_{1,2,3}$. Then $[G] = J_p(K_{1,2,3})$.

Proof. Let $H \sim G$, we will show that $H \in J_p(K_{1,2,3})$. Since $P(G) = P(H)$ implies that $\sigma(G) = \sigma(H)$, it is more convenient to look at $\sigma(G)$ and $\sigma(H)$. First note that $\sigma(K_{1,3}) = x(x^3 + 3x^2 + x) = \sigma(K_{2,2,2} - e)$ with $[K_{1,3}] = \{K_{1,3}, K_{2,2} \setminus \{e\}\}$, and $\sigma(K_{1,2,3}) = x(x^2 + x)(x^3 + 3x^2 + x) = P(K_{2,2,2} - e)$. So, $\sigma(G) = [x(x^2 + x)(x^3 + 3x^2 + x)]^p = [x^4 + x^2 + x^3 + 3x^2 + x]^p$, having p irreducible factors of $x, x^2 + x$ and $x^3 + 3x^2 + x$ respectively.

Let n and m denote the number of vertices and edges in H respectively. Then $n = 6p$ and $m = 36\binom{p}{2} + 11p = 18p^2 - 7p$ so that $\sigma(H) = \sigma(G) = \sum_{i=1}^{6p} s_i(G)x^i$. Moreover, H is uniquely $3p$-colorable as G is so.

Let V_1, V_2, \ldots, V_{3p} be the color classes of the unique $3p$-coloring of H. Let V_i denote the subgraph induced by $V_i \cup V_j, i \neq j$. Call V_i a 2-color subgraph of H.

Case (i): Every V_i has exactly two vertices.

In this case, V_i is either a path P_4 or else a cycle C_4 because, by Theorem 12.16 of [6], V_i is connected for $i \neq j$. Note that the number of 2-color subgraphs in H is $\binom{3p}{2} = \frac{1}{2}(9p^2 - 5p) + p$. By looking at the number of edges in H, we see that exactly p
of the 2-color subgraphs V_g are P_4 and the rest of the 2-color subgraphs are C_4. This means that \overline{H} has only P_4 and K_2 as subgraph so that $H = sP_4 + rK_2 (s, r \geq 0)$. Consequently,

$$\sigma(H) = [x(x^2 + x^3 + x^2 + x)]^p = \sigma(G).$$

Obviously, $s, r \geq 1$ so that $\sigma(H) = (x^4 + 3x^3 + x^2)(x^3 + x^2 + x)\sigma(H_1)$ and that by Lemma 3.1, $H = (K_{2,2,2} - e) + H_1$ for some graph H_1. Since $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$, by induction on p, we have $H_1 \in J_p(K_{1,2,3})$. This implies that $H \in J_p(K_{1,2,3})$.

Case (ii): Not every V_i has exactly two vertices.

Then there is a j such that $|V_j| = 1$. Without loss of generality, let $|V_j| = 1$ for $j = 1, \ldots, r, r \geq 1$. Then $H = K_r + H_*$ for some graph H_*. Let F_1, F_2, \ldots, F_t be the connected components of H_*. Then $H = K_r + F_1 + \ldots + F_t$ with $H_* = F_1 + \ldots + F_t$.

If for some i, $F_i = K_2$, then \overline{H} contains a subgraph $K_1 \cup K_r$. This means that $H = K_1 + H'$ for some graph H' and so

$$\sigma(H) = (x^4 + 3x^3 + x^2)\sigma(H') = [x(x^2 + x)(x^3 + 3x^2 + x)]^p = \sigma(G).$$

Clearly, $\sigma(H')$ must contain a factor $(x^2 + x)$ so that $\sigma(H) = (x^4 + 3x^3 + x^2)\sigma(H^*)\sigma(H_1)$ (where $\sigma(H^*) = x^2 + x$) for some graph H_1. Obviously, $\overline{H^n} = K_2$. Hence, $H' = K_{1,2,3} + H_1$ with $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$. Again, by induction on p, we have $H \in J_p(K_{1,2,3})$.

If for some i, $F_i = K_3$ then $H = K_3 + H'$. By the similar argument as above, $\sigma(H')$ must contain a factor $(x^3 + 3x^2 + x)$ so that $H = K_{1,2,3} + H_1$ or $(K_{2,2,2} - e) + H_1$ with $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$. Again, by induction on p, we have $H \in J_p(K_{1,2,3})$.

If for some i, $F_i = P_4 (=K_{2,2,2} - e)$, then $H = P_4 + H'$. By the similar argument as above, $\sigma(H')$ must contain a factor $(x^2 + x)$ so that $H = (K_{2,2,2} - e) + H_1$ with $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$. Again, by induction on p, we have $H \in J_p(K_{1,2,3})$.

So, assume that F_i is not K_2, K_3 or P_4 for any $i = 1, \ldots, t$. Let n_i and m_i denote the number of vertices and edges in F_i respectively. Then $\sum_{i=1}^{t} m_i = 4p$, the number of edges in \overline{H}.

If $n_i \leq 3$, then $F_i = P_3$. However, this is impossible because $\sigma(G)$ does not contain
(x^3 + 2x^2) as a factor. Hence, \(n_i \geq 4 \). This implies that \(6p = |V(G)| = r + \sum_{i=1}^{t} n_i \geq r + 4t \) so that \(t < 3p/2 \) because \(r \geq 1 \).

Since \(H = K_r + H_\ast \), we have \(\sigma(H) = x' \cdot \sigma(H_\ast) \). It follows that \(s_{n-2}(H) = s_{n-2}(H_\ast) \) where \(n_i \) is the number of vertices in \(H_i \). Note that

\[
\sigma(H_\ast) = \sum_{j=1}^{n_i} s_j(H_\ast)x^j = \prod_{i=1}^{t} \sigma(F_i)
\]

where

\[
\sigma(F_i) = \sum_{k=1}^{n_i} s_k(F_i)x^k = x^{n_i} + m_i x^{n_i-1} + s_{n_i-2}(F_i) x^{n_i-2} + \ldots,
\]

\(i = 1, \ldots, t \).

By multiplying all the terms in \(\prod_{i=1}^{t} \sigma(F_i) \) and by equating the coefficient of \(x^{n-2} \), we have by Lemma 2.3,

\[
s_{n-2}(H_\ast) = \sum_{1 \leq i < j \leq t} m_i m_j + \sum_{i=1}^{t} s_{n_i-2}(F_i)
\]

\[
\leq \sum_{1 \leq i < j \leq t} m_i m_j + \sum_{i=1}^{t} \left(\frac{m_i - 1}{2} \right).
\]

Consequently,

\[
s_{n-2}(H_\ast) \leq \sum_{1 \leq i < j \leq t} 2m_i m_j + \sum_{i=1}^{t} \left(\frac{m_i^2 - 3m_i + 2}{2} \right)
\]

\[
= \left(\sum_{i=1}^{t} m_i \right)^2 - 3 \sum_{i=1}^{t} m_i + 2t
\]

\[
= \frac{16p^2 - 12p + 2t}{2}
\]

\[
< \frac{16p^2 - 9p}{2}
\]

because \(t < 3p/2 \). However, this is a contradiction because \(s_{n-2}(H) = s_{6p-2}(G) \).

\(4p + 16 \left(\frac{p}{2} \right) = (16p^2 - 8p) / 2 > s_{n-2}(H_\ast) \). This completes the proof.

Remark: Note that for even \(p \), our main result is a special case of Theorem 5.1 in (Ho, 2004).
ACKNOWLEDGEMENTS
The authors wish to thanks the referees for their valuable comments and suggestions.

REFERENCES

F. HARARY, Graph Theory (Addison-Wesley, Reading, MA, 1969).

