CHARACTERISTICS AND PROTEIN BINDING AFFINITY OF CONDENSED TANNINS IN LEUCAENA SPECIES

By

BODEE KHAMSEEKHIEW

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

March 2006
DEDICATION

To my parents, Khun Poh Chy and Khun Mae Paa Khamseekhiew
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CHARACTERISTICS AND PROTEIN BINDING AFFINITY OF CONDENSED TANNINS IN LEUCAENA SPECIES

By

BODEE KHAMSEEKHIEW

March 2006

Chairman: Associate Professor Liang Juan Boo, PhD

Faculty: Agriculture

Four experiments were conducted to evaluate the role and metabolism of phenolic compounds particularly condensed tannins (CT) in selected Leucaena species [Leucaena-hybrid Bahru; LLB, Leucaena-hybrid Rendang; LLR, Leucaena leucocephala-local; LLL and Leucaena leucocephala-Subang; LLS] using in vitro and in vivo studies. The occurrence of phenolic compounds in the above Leucaena and their correlations with in vitro gas production and degradability were investigated in the first experiment. The results showed that hybrid LLR had the highest CT content, resulting in the lowest in vitro gas production and degradability among the four species tested. Within shoot of similar age, the in vitro gas production and N degradability were negatively correlated to CT content, but such relationship were not detected if shoot samples of different age groups were pooled. The above findings indicated that concentration of tannins may not be the sole factor affecting nutrient utilisation.

Results of the second experiment showed that there were no significant differences in the total phenolics and extractable CT contents, gas production and DM degradability
for the samples dried at temperature of 45°C as compared to the standard freeze drying procedure. The present results indicated that where facilities for freeze drying are not available, drying at 45°C would serve as an option for measurement of the content of tannins as well as the effects on the in vitro. Drying at 60°C and the addition of polyethylene glycol (PEG) reduced the adverse effect of CT. When treated at 60°C, the in vitro gas production and N degradability increased by about 24.7 and 26.2%, respectively. With the addition of PEG, the corresponding values were 42.6 and 22.6%, respectively. Once again, DM degradability was highest in the local LLL (63.3%), followed by the hybrids LLB (58.9%) and LLR (55.1%), suggesting the depression of DM degradability of the hybrids as the results of their higher tannin contents.

In the third experiment, CT were isolated and purified from three Leucaena species to evaluate differences in their biological binding affinity (astringency) and molecular weight. The study showed that the phenolics precipitation protein (PPP) value for LLR and LLB were significantly higher than that of LLL. Similarly, LLR and LLB also exhibited higher binding affinity than LLL, with the values of 0.13, 0.72 and 1.32 mg CT mg⁻¹ bovine serum albumin (BSA), respectively. The above findings provide further explanation for the stronger adverse effect of CT of the hybrid species as compared to the local variety. Although majority of CT purified from the hybrid species was made of larger molecules than those of the local Leucaena, thus once again support the hypothesis that CT of stronger binding affinity are of larger molecular weight. The conclusion based on the current results is not conclusive and need further studies.
The last Chapter consisted of two in vivo experiments. The results showed that inclusion of PEG in diets improved DM and N digestibilities, N retention, rumen ammonia (NH$_3$) as well as microbial N supply in sheep, with no significant differences on animal performance when the two types of *Leucaena* species (hybrid and local) were compared.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

WATAK DAN AFINITI PROTEIN GABUNGAN TANNIN KENTAL DALAM
SPESIS LEUCAENA

Oleh

BODEE KHAMSEEKHIEW

Mac 2006

Pengerusi: Profesor Madya Liang Juan Boo, PhD

Fakulti: Pertanian

Empat eksperimen telah dijalankan untuk menilai peranan dan metabolisme sebatian
finolik terutamanya tanin kental (CT) dalam spesis Leucaena yang terpilih [Leucaena-
hybrid Bahru; LLB, Leucaena-hybrid Rendang; LLR, Leucaena leucocephala-local; LLL
dan L. Leucocephala-Subang; LLS] dengan menggunakan kajian in vitro dan in vivo.

Kemunculan sebatian finolik dalam Leucaena dan kolerasi mereka dengan produksi gas
in vitro dan degradasi dikaji diselidik dalam eksperimen pertama. Keputusan
menunjukkan hibrid LLR mempunyai kandungan CT paling tinggi yang menyebabkan,
produksi gas in vitro dan degradasi N adalah yang paling rendah di antara empat
tumbuhan yang diuji. Paada tunas yang sama umur, produksi gas in vitro dan degradasi
N adalah berkorelasii negatif kepada kandungan CT, tetapi hubungan tersebut tidak
ditemui jika sampel tunas yang berlainan umur dikumpulkan. Keputusan di atas
munujukkan bahawa kepekatan tannin berkemungkinan bukan faktor tunggal yang
mempengaruhi penggunaan nutrien.
Eksperimen kedua menunjukkan bahawa tiada perbezaan bererti dalam jumlah finolik, kandungan CT yang boleh diekstrak, produksi gas dan degradasi sampel yang dikeringkan pada 45ºC berbanding dengan prosedur pengeringan beku biasa. Keputusan kini menunjukkan bahawa apabila tiada kemudahan untuk pengeringan beku, pengeringan pada 45ºC akan menjadi satu pilihan untuk mengukur kandungan tannin dan pengaruhnya terhadap in vitro. Pengeringan pada suhu 60ºC dan penambahan polietilin glikol (PEG) merendahkan kesan berlawanan CT. Apabila dirawat pada 60ºC, produksi gas in vitro dan degradasi N masing-masing meningkat kira-kira 24.7 dan 22.6%. Dengan penambahan PEG, nilai-nilai bersamaan adalah 42.6 dan 22.6% masing-masing. Sekali lagi, degradasi DM adalah tertinggi untuk sampel LLL tempatan (63.3%), diikuti dengan LLB (58.9%) dan LLR (55.1%), mencadangkan penurunan penghadaman DM hibrid adalah akibat daripada kandungan tannin yang lebih tinggi.

Dalam eksperimen ketiga, CT diasingkan dan dibersihkan dari tiga spesis Leucaena untuk menilai perbezaan dalam daya gabungan biologikal (astringensi) dan berat molekular. Kajian menunjukkan bahawa nilai pengendapan protein finolik (PPP) LLR dan LLB adalah lebih tinggi secara bererti daripada LLL. Bersamaan ini, CT yang dibersihkan untuk LLR dan LLB juga mempamerkan afiniti gabungan yang lebih tinggi daripada LLL, dengan nilai 0.13, 0.72 dan 1.32 mg CT mg⁻¹ albumin serum sapi (BSA), masing-masing. Keputusan di atas membekalkan penerangan lanjut bagi kesan berlawanan CT daripada spesis hibrid berbanding dengan variasi tempatan. Walaupun kebanyakan CT yang dibersihkan daripada spesis hibrid terbentuk daripada molekul yang lebih besar berbanding Leucaena tempatan, hipotesis bahawa CT yang
mempunyai daya gabungan yang lebih kuat mempunyai berat molekul yang lebih tinggi. Kesimpulan berdasarkan keputusan terkini adalah tidak muktamad dan memerlukan kajian yang lebih lanjut.

Bab yang terakhir terdiri daripada dua eksperimen in vivo. Keputusan menunjukkan bahawa penambahan PEG dalam diet mamanfaatkan penghadaman DM dan N, penyimpanan N, ammonia rumen (NH₃) dan bekalan mikrobial N dalam biri-biri, dengan tiada perbezaan bererti pada persembahan haiwan apabila dua jenis spesis Leucaena (hibrid dan tempatan) dibandingkan. Spesis LLL tempatan adalah yang paling diminati oleh biri-biri.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my dedicated supervisor, Associate Professor Dr Liang Juan Boo, and members of my supervisory committee, Professor Dr Zainal Aznam Mohd Jelan, and Dr Wan Zahari Mohd for their invaluable guidance and constant encouragement given throughout this study.

The research project was funded by the Intensification of Research in Priority Area (IRPA) Program, Ministry of Science, Technology and Environment, and many facilities obtained from Malaysian Agricultural Research Development Institute (MARDI) of both Serdang and Kelantan Stations is most appreciated. I also wish to thanks Prince of Songkhla University (PSU), Surat Thani Campus for granting me the study leave. I am very grateful to the staffs of nutrition laboratory and research farm at the Department of Animal Science, Faculty of Agriculture, UPM for their prompt assistance. Special thanks go to Dr Barry W. Norton of The University of Queensland for valuable advice and Mr Michael Neilson for useful suggestion on the special technique for tannins purification, astringency and CT MW studies during his one month visit.

My deep appreciation to all post-graduate students at UPM, Thai students and the following wonderful people: Pee Thongsuk Jetana, Pee BounHeuang Ninchaleune, Pee Maneechan, Anut Chantiratikul, Devikah Suddul, Uncle Fradil Hisham, Dr Goh Yong Meng, Yeo Sun Heng, Mr Supajo, Thipsuda Tangprakon, Aimrun Wayayok, Jittima Jemong, Al-aminurashid Khairuddn, Wang Weishan, Wang Yen, Lai Pui Wah (who helped in translation the thesis abstract to BM), Dwi Yulistiani, Elizabeth Law, Imas,
Wael, Sureerat Butporm, Soontaree Boonmee, and particularly Ng Koh Hong and his family for their direct or indirect supports during this study.

Finally, I wish to express my deepest appreciation to my family: Khun Poh-Chy, Khun Mae-Paa, Pee Boonhluiar, Pee Kaew, Pee Tim, Pee Kiang, Pee Sanan, brothers and sisters-in-law, nieces, nephews, my wife-Atikah and my son-Ilham, for his patient and supportive during my study.
I certify that an Examination Committee has met on 16th March 2006 to conduct the final examination of Bodee Khamseekhiew on his Doctor of Philosophy thesis entitled “Characteristics and Protein Binding Affinity of Condensed Tannins in Leucaena Species” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Halimatun Jaakub, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

ABD Razak Alimon, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Azhar Kasim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Ørskov Egil Robert, PhD
Professor
International Feed Resources Units
Macaulay Land Use Research Institute
Craigiebuckler, Aberdeen, AB158 QH, UK
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

LIANG JUAN BOO, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

ZAINAL AZNAM MOHD JELAN, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

WAN ZAHARI MOHD, PhD
Malaysia Agricultural Research Development Institute
MARDI
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

BODEE KHAMSEEKHIEW

Date:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>2.1. Use of browse and tree legumes</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Introduction to Leucaena leucocephala</td>
<td>5</td>
</tr>
<tr>
<td>2.3. Introduction to Leucaena leucocephala</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1. Productivity of forage L. leucocephala</td>
<td>7</td>
</tr>
<tr>
<td>2.3.2. Nutritive value</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3. Anti-nutritive compounds of L. leucocephala</td>
<td>11</td>
</tr>
<tr>
<td>2.4. Secondary plant compounds</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1. The plant phenolic compounds</td>
<td>14</td>
</tr>
<tr>
<td>2.5. Tannins</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1. Hydrolysable tannins</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2. Condensed tannins: chemical and analytical method</td>
<td>18</td>
</tr>
<tr>
<td>2.5.3. Tannin-protein interaction</td>
<td>26</td>
</tr>
<tr>
<td>2.6. Factor influencing CT concentration in plants</td>
<td>37</td>
</tr>
<tr>
<td>2.6.1. Effect of species and age of plant</td>
<td>37</td>
</tr>
<tr>
<td>2.6.2. Effect of soil fertility</td>
<td>38</td>
</tr>
<tr>
<td>2.6.3. Effect of season, temperature and light conditions</td>
<td>39</td>
</tr>
<tr>
<td>2.6.4. Effect of cutting/defoliation</td>
<td>41</td>
</tr>
<tr>
<td>2.6.5. Effect of physical damage to plant</td>
<td>42</td>
</tr>
<tr>
<td>2.7. The role of CT in ruminants nutrition</td>
<td>42</td>
</tr>
<tr>
<td>2.7.1. Effect of CT on voluntary feed intake</td>
<td>43</td>
</tr>
<tr>
<td>2.7.2. Effect of CT on microbial population</td>
<td>44</td>
</tr>
<tr>
<td>2.7.3. Effect of CT on N metabolism and efficiency</td>
<td>45</td>
</tr>
<tr>
<td>2.7.4. Effect of CT on endogenous enzymes and microbes enzymes</td>
<td>47</td>
</tr>
<tr>
<td>2.7.5. The benefit of dietary CT in animal productivity</td>
<td>48</td>
</tr>
<tr>
<td>2.8. Techniques to determine deleterious effects of CT</td>
<td>50</td>
</tr>
</tbody>
</table>
2.8.1. Biological treatments 50
2.8.2. Physical treatments 51
2.8.3. Chemical and reactive agent treatments 52
2.8.4. Use of binding agents 53
2.8.5. The use of feed supplementations 53
2.9. Conclusion of the literature review 55

3. PHENOLIC COMPOUNDS AND THEIR CORRELATION WITH IN VITRO GAS PRODUCTION AND DEGRADABILITY OF SELECTED LEUCAENA SECIES 57
3.1. Introduction 57
3.2. Specific objectives 58
3.3. Materials and methods 59
 3.3.1. Sample preparation 59
 3.3.2. In vitro gas production technique 59
 3.3.3. Apparent DM and in vitro N degradability 60
 3.3.4. Chemical analysis 61
 3.3.5. Statistical analysis 63
3.4. Results 64
 3.4.1. Chemical composition 64
 3.4.2. Phenolics compounds concentration 64
 3.4.3. Correlation between phenolic compounds and their in vitro gas production and degradability 67
 3.4.4. The equation to estimate gas production, DM degradability and N degradability 75
3.5. Discussion 77
 3.5.1. Chemical composition 77
 3.5.2. Phenolic compounds concentration 78
 3.5.3. Correlation between phenolic compounds and in vitro gas production 80
 3.5.4. Correlation between phenolic compounds and apparent DM degradability 82
 3.5.5. Correlation between phenolic compounds and in vitro N degradability 84
3.6. Conclusion 85

4. EFFECTS OF DRYING PROCEDURE AND PEG ADDITION ON IN VITRO GAS PRODUCTION, DEGRADABILITY DRY MATTER AND NITROGEN OF LEUCAENA 87
4.1. Introduction 87
4.2. Specific objective 89
4.3. Materials and methods 89
 4.3.1. Sample preparation 89
 4.3.2. In vitro gas production technique 90
 4.3.3. Apparent DM degradability, true OM degradability and N degradability 90
4.3.4. Ammonia-N, SCFA and purine bases determination
4.3.5. Chemical analysis
4.3.6. Data and statistical analysis
4.4. Results
4.5. Discussion
 4.5.1. Crude protein, fiber components and phenolic compounds
 4.5.2. Effects of drying condition and PEG addition on in vitro gas production and short chain fatty acid
 4.5.3. Effect of drying condition and PEG addition on apparent DM degradability
 4.5.4. Effect of drying condition and PEG addition on N degradability
 4.5.5. Effect of PEG on microbial biomass production and portioning factor
4.6. Conclusion

5. BINDING AFFINITY FOR PROTEIN COMPLEXES AND MOLECULAR SIZE OF CONDENSED TANNINS OF SELECTED LEUCAENA SPECIES
 5.1. Introduction
 5.2. Specific objective
 5.3. Materials and methods
 5.3.1. Sample preparation
 5.3.2. Determination of the binding affinity of phenolics protein precipitation
 5.3.3. Determination the binding affinity of CT for BSA protein complexes
 5.3.4. Chromatographic protocol for the size-exclusion of CT
 5.3.5. Data and statistical analysis
 5.4. Results
 5.5. Discussion
 5.5.1. Phenolice precipitation protein and binding affinity of CT for protein
 5.5.2. Size-exclusion chromatography of CT
 5.6. Conclusion

6. THE EFFECT OF PEG ON NITROGEN UTILISATION, RUMEN PARAMETERS AND MICROBIAL PROTEIN SUPPLY IN SHEEP FED TWO VARIETIES OF LEUCAENA
 6.1. Introduction
 6.2. Specific objective
 6.3. Materials and methods
 6.3.1. Experimental diets
 6.3.2. Animal and experimental design
 6.3.3. Collection procedure
 6.3.4. Chemical analysis
 6.3.5. Data and statistical analysis
6.4. Results 147
6.5. Discussion 152
 6.5.1. Effect of Leucaena sources on animal parameters 152
 6.5.2. Effect of PEG inclusion on animal parameters 155
6.6. Conclusion 160

7. GENERAL DISCUSSION AND CONCLUSION 161
 7.1. General discussion 161
 7.2. Conclusions 167

REFERENCES 169
APPENDIX 206
BIODATA OF THE AUTHOR 215