Quantum Algorithms

Seved Massoud Amini
Department of Mathematics
Tarbiat Medares University

Tehran 14115-175, Iran

Laboratory of Theoretical Studies
Institute for Mathematical Research

Universiti Putra Malaysia

mamini{@modares.ac.ir, massoud{@putra.upm.edu.my

Abstract

We give a shott overview of quantum algorithms. Some
famous algorithms such as Deutsch-Jozsa and Simon
are covered with more details. The directions for further
development are addressed.

Introduction

Using quantum-mechanical properties of natural
particles, it is possible to build computers that are
different in some interesting ways from the ones that we
are used to.

In our usual computers, a bit is either 0 or 1 at a
particular time. Hence a group (register) of » bits can
contain only one of 27 different numbers at a given time.
A quantum bit (gubit) can be in a weighted combination
(superposition) of both 0 and | at the same time. A group
of n qubits can therefore hold all of those 2* different
numbers simultaneously.

When we measure a qubit, a given superposition boils
down to a position. In general, this is a probabilistic
cvent, and the probabilities are determined by the
state of the gquantum bit before the measurement. To
represent the exact state of a qubit, we have to specify
two complex numbers (amplitudes) which describe the
particular combination of 0 and 1 in that state.

To distinguish qubits from “classical” bits, it is common
to use the bra-kef notation of quantum mechanics. So

the expression \0) represents quantum zero, and ll}

represents quantum one. The left-sided notation (0]
would be used if one deals with co-vectors. The state of

a qubit can then be represented by «] 0> + ﬂ[l) , where o
and B are the amplitudes of |0> and |1), respectively,
in this state. When we measure this qubit, we see IO)

with probability |, and |1} with probability |B!%. The
laws of physics say that, in any quantum register, the
sum of these square terms must be 1. So in our example,
|o>+|B*=1. Similarly, an s#-gubit register will have 27
amplitudes, each determining the probability that the
binary number corresponding to it will be seen when the
register is read, and the sum of squares of their absolute
values will be 1.

Research Bulletin of institute for Mathemalical Research

We show the group of amplitudes that describe the state
of a quantum register as a vector. A qubit with state |0)

, which is guaranteed to read 0 when 1t is measured, is
represented by the Vcctor[lj , and a qubit with state |1>
0

is represented by the vector [OJ . These two vectors are
1

called the basis states. So the amplitude of the value |0)
is given in the first row of the vector, and the amplitude

of the value ll) is given in the second row. We assume

that we have the machinery to set any qubit to one of
these two valyes at the beginning of our algorithm. An

arbitrary qubit state is then represented by the vector [;J

, where o and 3 are complex numbers and |o|2+|p]*=1.

This can be generalized to n qubits easily. The state of a
register consisting of # qubits is represented by the tensor
product (®) of the individual states of the qubits in it.

A quantum program which transforms a register of
n qubits from an input state to an output state can be
represented as a 2" by 27 matrix, which, when multiplied
by the input state vector, gives the ocuiput state vector,
The laws of physics say that this matrix should be a
unitary matrix. A unitary matrix is a square matrix M
of complex numbers which has the following property:
Replace each member a+b.i of M with the number
a-b.i. Take the transpose of this matrix. Multiply this

new matrix (called M T) with the original matrix M.
The result should be the identity matrix. This property
guarantees that every quantum program is reversible,
i.e., the inverse of the function that it computes can
also be computed by a quantum program to obtain the
original input from the output.

To code a “classical” algorithm in the quantum format,
we have to make sure that our program never deletes
information. Any classical program can be modified

to ensure this, and for every classical program which
computes an output from a given input, we can
construct & quantum program (i.e. we can write the
matrix mentioned above) which performs the same

transformation on a register big enough to hold both the
input and the output.

Consider the following simple quantum program
working on a single qubit:
1 1
R IR

L

V2 42
This is called an Hadamard gate. When the input is |0)
this program changes the state of the qubit to

E

1 1 !
F A

N2 7\!2 W2
1 1
that is, to —=|0}+——=|1} . So when you read the qubit
SDIRSE :

atthe end, you have exactly 50% chance of seeing a 0, and
an equal chance of seeing a 1. Classical computers can
never create truly random numbers, but this program can.

The combined effect of several single-qubit programs
| which run parallel on the qubits in a register can be
| mepresented as the tensor product of their individual
' matrices. So if we apply the H program to each qubit
of a 2-qubit register, the result of this procedure can be
celeulated by multiplying the matrix

[T
Loy (L oy AT A
R A B e
U o N ST i T S T
FoE Al g

3 2 3 32

with the 4-element amplitude vector describing the
initial state of the two qubits. We can generalize this to
n qubits easily. So when you have an n-qubit register,
the effect of applying H to each qubit in parallel can
| be computed by multiplying the matrix that you would
- obtain by taking the tensor product of # H’s with the 27-
- clement vector describing the initial state of the register.
| Generalizing the example above, if this n-qubit register

p originally contains the value 0”), it is transformed to
- the “superposition” state

1 2" -1
2.1
2" x=0

by this program, and we would see each of the 27 binary
numbers x with equal probability when we observe the
 1egister.

When the input to a single Hadamard gate is|1> , We see
that the output is

1 1 1
A0

1
V22 V2
of, in our alternative notation, R ‘ 0> -1 ‘ 1) .
V22
Let’s see what the parallel application of H gates do to a

2-qubit register originally containing ‘01) :

LD R <
2 2 2 2 |y |2
L1 1 1 _1
2 2 2 2] 21,
1L 1 1hol |1
2 2 22 9
RS U S
2 2 2 2 *5

or%m>_%m>+%m>_%p>_

As these examples indicate, whenever we apply the H
gate in parallel to a register initially at an arbitrary basis

state |x}, where x is a binary number with » bits, the
output state is a superposition of all the different 2” basis
states, where the absolute value of the amplitude of each

basis state is \/1_ . and the sign of the amplitude of such
2}2

a basis state |z) in the resulting superposition is positive
if an even number of bits which were 1 in the original

state |x> are still 1 in |z), and negative otherwise. In
other words, the parallel application of H gates to all

qubits of an »-qubit register initially at state |x> results

in the state
1 2%

o 50

where x-z=37 x,.z; , such that x_ and z, are the 7th bit
of x and z, respectively.

The Quantum Circuit Model

A classical computer can be described by a circuit.
The input is a string of bits. The input is processed
by a succession of logical gates like NOT, OR, AND
or NAND, which transform the input to the output. In
general the output bits are Boolean functions of the
input bits. A schematic view is depicted in

e Pt ko efsaarch Buligtin of Institute for Mathematical Research

D T L A e P e Py ot L

|

.
A

e —

H

s

1 —

Figure 1: A classical circuit computing a Boolean

function.

In the quantum model we use quantum gates. Here is an
example.

Loo o ER—
019 0

O =
00 o1 A e
001D v —— =&y

The idea is using unitary matrices as gates, such as

10
V“(u i)

The equivalence of circuits obtained in this way could be
easily checked via processing arbitrary inputs through
both circuits. Two fundamental examples are

[]

where the first one is simply a confrolled-Not (unitary
matrix C above) and the second is the Toffoli gate.

Deutsch-Jozsa’s Algorithm

We will now examine a quantum algorithm which is
clearly supetior to any possible classical algorithm
for the same job: Let us say that we have a “black
box program” which takes as input an n-bit string,
and computes and outputs a boolean (0 or 1) function
f of this input. We can give any input that we like to
this program, and examine the output, but we are not
allowed to look inside at the code of the program. Such
black box subroutines are called oracles in the theory
of computation. The only thing that we know about the
function f (in this specific example) is that it is either a

" copstant function {(i.e. it gives the same output for every

input) or a balanced function (i.e. it gives output 0 for
half of the possible inputs, and 1 for the other half). Our
task is to determine whether f is constant or balanced.

Resgaich Bulighin of Institulg for Malhemalical Resgarch

AR

Obviously, the worst-case complexity of the best
classical algorithm for this job is 2°¢). You peed to run
the black box at least 2*'+1 times with different inputs
in the worst case. We will now see a quantum algorithm
that can do this job with a single run of the black box
(The case n=1 is called the Deutsch algorithm).

Our algorithm must be given a quantum version of the
black box. As we mentioned above, for any job that
has a classical algorithm that inputs #» bits and outputs
m bits, one can write a quantum algorithm that inputs
and outputs »+m qubits. So let us say that we have a
quantum program B which operates on n-+1 qubits, such

that the input |x) @ |d) is transformed by B to the

output | x> ® | d @ f(x)>, where @ is the exclusive-
or operator.

Here is an algorithm that operates on n+1 qubits to solve
our problem:

1. Initialize the register so that the first » qubits

are]0) , and the last one is |1))

2. Apply the H gate to each qubit.

3. Apply B to the register.

4. Apply the H gate to the first # qubits.

5. Read (measure) the number z written in the
first n qubits.

6. Ifz=07, fis constant, otherwise, f is balanced.

; L 0 - "halanced”
qubit 1 |0} : 1" constans”

qubit 2 11)

g 00...0 - "constant”

qubits
: else - "halanced”

3
i n lo—
qubit i

n+1)

Figure 3: Deutsch-Jozsa’s circuit.

Let us see why the algorithm works correctly: At the
end of stage 2, the state of the register is

= e

At the end of stage 3, we have, for each x in the
summation, such a term of the state in the register:

Soth

After

Now
stage

Sotl

2"
This
was
quat

Sim
Let
Deu
non
tog
it gi
con

Sim

com

con

Ste;

int

12-1

«\/27 x= (l
After stage 4, we end up with;
1ﬂ%HW({MM
— 2 L=)®
Ny e A

Now, for any number z, the probability that we see it at
stage 5 is the square of its amplitude, that is,

2
L E ()x z+f(x)

2” x=0
So the probability of seeing 0 is
Li‘(_l)f(x) : _ 1 i'f f i.s constant
o 0 if f is balanced.

This algorithm, called the Deutsch-Jozsa algorithm,
was one of the first that demonstrated the advantage of
quantum algorithms over classical ones.

Simon’s Algorithm

j Let us now examine Simon’s Algorithm. Unlike the

i Deutsch-Jozsa algorithm, Simon’s algorithm has a

£ nonzero error probability, that is, it is not 100% certain

to give the correct answer. However, the probability that

it gives the correct answer is bigger than ¥ if some mild
conditions are satisfied.

Simons Problem: Given a black box UJ ¢ which

| computes a function 7 :{0,1}" = {0,1}" (m=n)
 that is known either to be one to one or to satisfy the
equation

(x#y)/\(f(x)=f(y)) G y=x@s

| for a non-trivial s, the problem is to determine if fis
| one to one, if it is not then to find s. We denote the
E finctionality of U, as a unitary transformation:

U (|58|d))=|x)®@d® 1 (x))))

Algorithm: The “quantum part” of Simon’s algorithm
b consists of the following steps:

Step 0: Initialize two quantum registers of n and m qubits

n—1

in the states ® |0> and ”é@_l|0>.
0 0

r— efseg,rch Bulietin of Institute for Mathematical Research

Step 1. Apply n-bit Hadamard gate H_to the first
register of n bifs. The overall state will be as shown
in the following equation. Note that this step puts the
first register into an equal superposition of the 2 basis

- Sw)e(30)

Step 2: Query the black box for the state prepaved in
Step 1. Then the next state is

2"-1

>®1f()

Step 3: Apply n-bit Hadamard gate H, to the first register
again. The new state is

S ESerielre)

Now, if f is one io one then both the domain and
range (mirror of the domain under /) of # has the same

cardinality 2" . The state shown above is a superposition
of the members of the Cartesian product of the domain

and range of £, Therefore, 272" = 22" states of the form
| j)®‘ 7 (k)) are superposed, each with an amplitude

. 1 1 .
equal to either — or —— . Then, if the state of the
2" 2"

first register is measured after Step 3, the probabilities
for observing each of the 2” basis states are equal and

2
1

given by 2" =

o Hence the outcome of such a
2

measurement would be a random value between 0 and
2" 1.
If / is not one to one, then by the guarantee given to

us about s, each state of the form
amplitude given by

1 ((_ % 4 1)(1-/()@(;'«))

2”
If j-s+0 then the amplitude for |7} ®| s (k)> becomes

zero. So if f'is not one to one, then measuring the state
of the first register after Step 3, retums a value of j such

that j.5=0.

|j>®’f(k)> has the

Step 4. Measure the state { of the first register.
L 2 3. 4.

; [
e (b=
- |0y

qubits [0y —
n+1..2n 0y —L

Figure 4: Simon’s circuit,

- —
T R B Y X T T E VR Y SRR NE F AN S £ o

o

We run these four steps #—1 times to form a system of
equations of the form 1 -5 =015 5=0,.,1, 1"5= 0.

If a nontrivial s exists, then these equations are linearly
independent with probability at least Y. Consider any
(i-1)-member prefix of our sequence of observations,
namely ¢, f,,.-., £, Where 2 £ i < n—1. At most 2%
n-bit vectors are linear combinations of these. Note
that it is now useful to view the 's as vectors of bits,
and the relevant operation among them is @. Since the
maximum number of #-bit vectors ¢ such that £5=0 is
271 the minimum number of vectors that are not the
combinations of i—1 vectors is 227", As a result, the
probability that the % vector £, is independent from the first

-1 vectors is at least (2712712 = 1 _1_ Using this
2?’!*[

fact, and the constraint that the first observation should
not be the all-zero vector, we see that the probability
that one obtains n—1 independent vectors is at Jeast

st b)

which can be shown to be greater than Y.

So, if the equations we obtained really are linearly
independent, this system of »-1 linear equations in #
unknowns can be solved for the » bits of s classically,
using Gaussian elimination, in polynomial time (since
the unknowns are bits). If we get the value for s, we
query the black box twice to see if £ (0) = f (). If this
is the case, we conclude that fis two to one, and s has
the value which has already been calculated. If not, (i.e.
if we fail in solving the equations, or if the solution does
not survive the black box check) we repeat the entire
procedure. If we have not found an s which satisfies
7{0)=f(s) by the end of the third iteration of this
outer loop, we claim that /s one to one, and stop.

Clearly, if fis one to one, the algorithm says so with
probability 1. Otherwise, it fails to find »-1 linearly
independent equations in all three iterations and gives
an incorrect answer only with probability at most
(3/4)*<1/2. The runtime is clearly polynomial.

The best classical probabilistic algorithm for the same
task would require exponentially many queries of the
black box in terms of #. To see why, put yourself in place
of such an algorithm. All you can do is to query the
black box with input after input and hope to obtain some
information about s from the outputs. (Let’s assume that
we are guaranteed that the function is two to one, and
we are just looking for the string 5.) Note that, even if
you don’t get the same output to two different inputs, the
outputs you get still say something about what s looks
like, or rather, what it doesn’t look like: If you have
already made k queries without hitting the jackpot by
receiving the same output to two different inputs, then

you have learned that s is not one of the values that

can be obtained by XORing any pair of the inputs that
you have given. So next time you prepare an input, you
will not consider any string which can be obtained by

A

Research Butletin of Instifute for Mathematical Researﬂ

XORing one of those values by any previously entered
input string. Even with all this sort of cleverness, the
probability that your next query will hit the jackpot is at

most k

zn_:@

for s which are still possible after your previous queries,
(the —1 comes from the guarantee that s is nonzero)
only & would let you solve the problem by examining
the output of this query (by causing it to be the same as
one of the previous k outputs, by being obtainable by
XORing that previous input with the input to this query)
and s must be thought to be chosen uniformly at random
from the set of all candidates. The probability of success
after m+1 queries is not more than

& k &k m’
Z [k]£22n‘klgzném2

k
. since among the 2" —1— [2] values

k=1 2n ~1- k=1
2
In order to be able to say that “this algorithm solves the
problem with probability at least p”, for a constant p.
We clearly have to set m to a value around at least 22,
which is exponential in terms of . Note that p shouldn’t
decrease when n grows, since this makes the technique
ynusable for big n. If p is a nonzero constant, even a
very small one, one can use the algorithm by running it
repeatedly for only a constant number of times to find s.

Therefore, Simon’s algorithm is exponentially faster
than the best possible classical algorithm for the same
task. Moreover, it is the first algorithm that depends on
the idea of realizing the periodic properties of a function
in the relative phase factors of a quantum state and then
transforming it into information by means of probability
distribution of the observed states. The ideas used n
the period finding algorithm turns out to be useful for
developing algorithms for many other problems.

Grover’s Algorithm

We will now examine Grover’s algorithm for function
inversion, which can be used to search a phone book
with N entries to find the name corresponding to a given

phone number in O(W) steps (the best classical
algorithms can do this in O(N).steps). Assume that we
are given a quantum oracle G for computing the Boolean
function £ which is known to return 1 for exactly one

possible input number, and 0 for all the remaining 2" ~1
possible inputs. As in our previous example, the oracle

operates on n+1 qubits, such that the input 1x>®‘d> is

transformed to the output |x) ®f|d ® f (x)> Our task is
to find which particular value of x makes fx) = 1.

Here is Grover’s algorithm for an a+1 qubit register, &

where #>2:

1. Initialize the register so that the first n qubits
are 10) , and the last one is 11)
2. Apply the H gate to each qubit.

L NS ¥ #)

™

3. Do the following r times, where r is the nearest

1
cos” (—]
integer to : _JZ___n
2sin™ [I—J
v2r

a. Apply G to the register.
b. Apply the program V, which will be
described below, to the first n qubits.
4. Read (measure) the number written in the first

n qubits, and claim that this is the value which
makes fequal 1.

The program V is defined as the 2”7 by 2" matrix which

n—1

2n71

has the number

in all its main diagonal entries,

1
and F everywhere else.

a.nmll'\ =11}

qubit 4

Figure 5: Grover’s circuit

Shor’s Factorization Algorithm

The most famous potential application of quantum
computing is embodied in Shor’s algorithm, which can
find a factor of a given binary integer in a polynomial
number of steps, which is exponentially faster than the
best known classical algerithm. The pseudo code of the
algorithmm is as follows.

On input N: (N is known fo be composite number with
n bits, vou can check for primality in polynomial time
classically anmvway)

IfN is even, print 2, end.

Forevery 2< b <log N
- Perform binary search in the interval {2,NJ for an a that
satisfies a® =N, if you find one, prinf a, end.

. NOTPERFPOWER:

- Randomly pick an integer x in {2..N=1}. (This can be
E done using a quantum computer.)

k[acd(x,N)> I then print ged(x,N), end. (Fast calculation
e god is easy, using Euclid’s famous algorithm.)

ORDFIND:

Lettbe 2n+1.

Build (don't run right now) a quantum program called
E, which operates on two registers (of t and n qubits,
respectively,) and which realizes the transformation

1j>lk> - Ijﬂxfk modN) .
Do the following Slog(N) times:

QINIT:
Initialize the first quantum register of t qubits to \0>

and the second guantum vegister of n qubils to ‘1) .
Apply the H gate to each qubit in the first regisier.
Apply the program E to the combination of the first and
second registers.

Applv a program which realizes the inverse of the

transformation QF T} J
first register.

J—Z Q,frljka‘k> to the

Measure the first vegister to obtain a number m.

Apply the classical “continued fractions” algorithm, to
find irveducible fractions of the form numiden, which
approximate the number m/2': This algorithm works in a
foop, and it prepares a new fraction num/den which is a
closer approximation to m/2' at the end of each itevation.
Here v is initialized with a lavge value, say 2N*+-1. At the
end of each iteration, we take the new den value and do
the following:

If den > N then goto QINIT

Ifx® =1 {mod N)

then BEGIN

if ¥ has not been assigned a smaller value than this den
earlier, then let r be den

Go to QINIT

END

If none of these conditions are satisfied, we continue
with the next iteration of the continued fractions loop,
which will prepare a new and better num/den with a
greater value for den.

If no new value has been assigned to 1, print “failed”,
end.

LASTST: If v is odd or x? = -1 (mod N), print “failed”,
end.

Check if ged(x* + 1, Nj or ged(x” — 1, N) is a nontrivial
factor of N, if so, print that nontrivial factor, if not, print
“fatled”, end.

Note that only the “middle part” (stages QINIT to
the measurement) of this algorithm actually involves
qubits.

Why does this work?

We handle the case where N is a perfect power (i.e. the
power of a single integer) separately. Note that if at
=N for integers @ and b and N>1, then b can be at most
log N. This is such a small number that we can try all
possible values for » and remain within a polynomial
bound. Finding whether an « exists for a particular b can
be done by binary search over the space of all possible
a’s (another very efficient algorithm) where we just raise
the candidates to the #* power to see if the result equals
N. Since the b's are so small, this exponentiation can be
done in polynomial time.

:”:,Msgarch Bullglin of Institute for Mathematical Research

Research Bulletin of inslitute for Mathemagtical Research

The job of the part of the program starting with the stage
ORDFIND is to find what mathematicians call “the order
of x modulo N,” i.e. the least positive integer » such that
x=1(mod N) for an x which is chosen randomly from
the positive integers less than N which are co-prime to
N, that is, ged(x,N)=1. The program reaches the stage
LASTST only when that » has been found for x and N.
Now, if that r survives the additional checks specified in
that line, at least one of ged(x”* + 1, N), ged(x* =1, N)
is guaranteed to be a nontrivial factor of N.

Because if r is the order of x modulo & and r is even,
then x”(mod N) (let’s call it y) is definitely an integer
which is not equal to l{mod N), and y=1(mod N).
This ¢an be rewritten as y*—1=0(mod ¥), and since we
clearly have y#—1 = N-1 (mod N), also as -1y +1)=0
{mod N), such that both y—1 and y+1 are nonzero. This
means that N has a factor in common with y—1 or y+1.
Furthermore, that factor cannot be N itself, since the
previously mentioned constraints mean that both of y+1
and y+1 are positive integers less than N. So when we
compute ged(x”+ 1, N) and ged(x”*—1,N), at least one
of them will be a nontrivial factor of ¥.

Now, all we need to show is that the ORDFIND stage of
the program really finds the required order, and that all
this happens in polynomial time with high probability.
To do this, we introduce a quantum algorithm for solving
a more general problem: That of finding the phase of
the eigenvalue of a particular quantum program. Here
are the definitions for the terminology in the previous
sentence:]v} is an eigenvector and the complex number
ais an eigenvalue of a quantum program U if they satisfy

U‘v>:a|v>.

In the phase estimation problem, we assume that we
are given a quantum program E which performs the
transformation Eq j)iu})—)l j)Uj |u> for integer j for
the program U in which we are interested. We are also
given ‘v), which is guaranteed to be an eigenvector
of U. With this much information, it is certain that the
cigenvalue corresponding to this eigenvector is of the
forma = €% , and our task is to find the real numbere,
called the phase, which is between 0 and 1.

The phase estimation algorithm is carried out as follows:
We initialize the first register to |0) . We initialize the
second register to |v> . We apply the H gate to all
qubits of the first register. We apply the program £ to
the register pair. Finally, we apply the inverse quantum
Fourier transform to the first register, and then measure
the first register.

|2} |9a)
li"z} L ftn}
fzo) g2

Figure 6: OFT on Z,, elements of Z, is represented in
binary notation x =xx X, ¥ = ¥V,

By dividing the integer we read by the number 2/, where
¢ is the number of qubits in the first register, we obtain
a pretty good approximation to ¢ with pretly high
probability of correctness.

The way we explained it above, one has to know the
number of solutions (M) to the problem before one can
use Grover’s algorithm to find a solution. However, a
clever combination of the iterate used in that algorithm
and the phase estimation technique we saw m the
discussion of Shor’s algorithm can be used to estimate

Musing only @(\/ﬁ) oracle calls, where N is as defined
in the discussion of Grover’s algorithm. This means
that a search-based quantum algorithm for solving NP-
complete problems will run quadratically faster than a
search-based classical algorithm.

Computability

Can quantum computers compute all functions that can
be computed by classical computers? The answer is yes,
and is based on the fact that the three-qubit Toffoli gate
can be used to implement any classical computation,
as proven in, as usual, Nielsen & Chuang (2000). In
fact, just the Toffoli and Hadamard gates form another
quantum-universal set of gates.

Can quantum computers compute functions that classical
ones (i.e. Turing machines) cannot? If so, wouldn’t that
be the end of the theory of computation as we learned it?

Recall that we have defined a quantum algorithm as a
unitary matrix of complex numbers. We do not know
of any law of physics that forbids any such matrix
from having an actual physical implementation, so
it may be the case that actual physical entities which
are embodiments of quantum programs which contain
arbitrary transcendental numbers of infinite precision
in their matrices exist. Note that this violates one of
the assumptions that we made about Turing machines;
namely, that they must be completely describable by a
finite string. We now show that, for every language (even
for the classically undecidable ones like 4,,) there exists
a quantum algorithm which can decide that language if
we allow a small probability of error in the answers.
This is impossible for classical computers, even if you
let them use random numbers and allow the small error

probability.

We know that the set of all strings on a given nonempty
alphabet can be put in one-to-one correspondence with
the set of positive integers, and it is easy to write a
program that computes the integer corresponding to a
given string. We use this idea in the first stage of the
following program which decides language L with
bounded error.

On input w:

1. Compute the integer corresponding to w in the
lexicographic ordering and assign it to variable j.

nu

if'

ab:
lar
ev
We

clz
no

To
dis
co
Tu
de:
thi
de:
$in
de
50

Letibej-1.

3. Seta single qubit to | 0} .
4. Apply the R gate, which will be described
below, 8 times to this qubit,

1 1
5. Apply the gate T2t this qubit.
1 1
V22
6. Observe this qubit. If you see|1>, accept;
otherwise, reject.

The R gate is the matrix| “°% ¢ -sing , where the
sinf cosd

number g = 27{ §@) , such that the function from
x=1 §°

the positive integers to the set {-1, 1} is defined to be 1

| if the string x is in L and -1, otherwise.

The secret of the success of this program is, of course, its
ability to encode the membership function of the entire
| language in the digits of the real number 6. Clearly,
b even if we had a universal quantum computer on which
we could implement any quantum program that we can
“write, we would not be able to use it to solve one of the
b classically undecidable problems, because we just do
| not know which 0 to use!

To aveld this confusion, most researchers limit their
 discussions to quanturn programs which contain only
j computable numbers (i.e. numbers that have classical
Turing machines which can print their digits to any
besired degree of precision) in their matrices. With
this restriction, the quantum programs have finite
Mescriptions in the TM language, and can therefore be
simulated (within any given nonzero upper bound for
deviations) by classical TMs, meaning that they cannot
solve any classically undecidable problem.

2t use a version of Grover’s search. Recently, two
Hiternative trends have entered the field, which we will

Quantum Walks

One of the bBiggest breakthroughs in classical algerithm
design was the introduction of randomness and the
notion of a probabilistic algorithm. Many problems have
good algorithms that use a random walk as a subroutine.
To give just one example, the currently best algorithm to
solve 35AT is based on a random walk.

With this motivation in mind, guaentum analogues of
random walks have been introduced. There exist two
different models of a quantum walk, the continuous-
time model and the discrete time model. The continuous
model gives a unitary transformation directly on the
space on which the walk takes place. The discrete model
introduces an extra coin register and defines a two-step
procedure consisting of a “quantum coin flip” followed
by a coin-controlled walk step.

The quantities important for algorithm design with
random walks are their mixing time (the time it takes to
be close to uniformly distributed over the domain) and
the hitting time (the expected time it takes to hit a certain
point). These quantities have been analyzed for several
graphs in both the continuous and the discrete model.

It turns out that a quantum walk can speed up the
mixing time up to quadratic with respect to its classical
counterpart; so the classical and quantum performance
are polynomial related. The hitting behavior of a
quantum walk, however, can be very different from
classical. It has been shown that there are graphs and
two vertices in them such that the classical hitting time
from one vertex to the other is polynomial in the number
of vertices of the graph, whereas the quantum walk is
exponentially faster. It is open whether quantum hitting
times can be used to speed up classical algorithms for
relevant problems.

Adiabatic Quantum Algorithms

Another recent alternative for algorithm design has been
the introduction of adiabatic quantum glgovithms by
Farhi et al. The idea is the following: many optimization
and constraint satisfaction problems can be encoded
into a sum of local Hamiltonians such that each term
represents a local constraint. The ground state of H
violates the smallest number of such constraints and
represents the desired optimal solution. In order to
obtain this state, another Hamiltonian is chosen so that
the corresponding ground state is easy to prepare.

Anadiabaticalgorithm starts in the initial state and applies
the eagsy Hamiltonian. The Hamiltonian is then slowly
changed to the original one, usually in a linear fashion
over time, such that the Hamiltonian J (2) at time £ is a
convex combination of the new and old Hamiltonians.
If this is done slowly enough, the adiabatic theorem
guaranties that the state at time t will be the ground state
of H(1), leading to the solution, the ground state of H, at
the running time 7. The instantaneous ground state of
the system is #racked.

e — st ,@&search Bulletin of Insfitute for Mathematical Research

g

Conclusion

The search for new quantum algorithms continues.
Although an adiabatic algorithm can be simulated
efficiently with a quantum circuit (ene needs to
implement a time-dependent unitary that is given by a
set of local Hamiltonians, each one acting only on a few
qubits) and vice-versa, and therefore these two models
of computation are essentially equivalent, the advantage
of the adiabatic model is that it deals with gaps of
Hermitian matrices, an area that has been widely studied
both by solid state physicists and probabilists. This has
caused some hopes for this new toolbox to yield new
algorithms.

Acknowledéement

The treatmentof algorithms in this article is based on
feeture notes of Prof. 4Ahmet Celal Cem Say, from the
Department of Computer Science in Bogazici University,
Turkey. The recent development is taken from the lecture
notes of Prof. Julia Kempe, in the Universite de Paris
suimmer school in 2006.

References

[1] Adleman, L., DeMarrais, J., Huang, M. 1997,
Quantum Computability, SIAM Journal on
.Computing, 26, 1524-1540.

[2] Ambainis, A. and Watrous, J. 2002, Two-way
finite automata with quantum and classical
state, Theoretical Computer Science, 287, 299-
311.

3] Benenti, G., Casati, G., Strini, G. 2004.
Principles of Quantum Computation and
Information. Singapore: World Scientific.

£5]

[6]

(7]

(8]

[9]

[10]

[11]

[12]

Bemstein, D. J. 1998. Detecting perfect powers
in essentially linear time, Math. Comp., &7,
1253-1283. :

Childs, A. M., Cleve, R., Deotio, E., Farhi, E.,
Gutmann, S., Spielman, . A. 2003. Exponential
Algorithmic Speedup by a Quantum Walk.
STOC 03, 59-68.

Farhi E., Goldstone, I., Gutmann, S., Sipser,
M. 2000. Quantum Computation by Adiabatic
Evolution, Quant-Ph/0001106. -

Gruska, 1. 1999. Quantum Computing. New
York: McGraw Hill.

Kempe, . 2006. Quantum Algovithms. Summer
School on Theory and Technology in Quantum
Information, Communication, Computation
and Cryptography, Universite de Paris-Sud.

Kitaev, A. Yu., Shen, A. H., Vyalyi, M. N.
2002. Classical and Quantum Computation.
American Mathematical Society.

Moore, C., Cruichfield, J. P. 2000. Quantum
Automata and Quantum Grammars, Theoretical
Computer Science, 237, 275-306.

Nielsen, M. A., Chuang, 1. L. 2000. Quantum
Computation and Quantum Information.
Cambridge, New York: Cambridge University
Press.

Rudolph, T. and Grover, L. A 2 Rebit Gate
Universal for Quantum Computing. quant-
ph/0210187.

