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Abstract

This paper considers a non-oriented two-
dimensional bin packing problem, where a set of
small rectangles, which may be rotated by 90°, has
to be allocated to one or more identical bins. A
genetic algorithm (GA) hybridised with a heuristic
placement routine is proposed to solve the problem.
The algorithm employs an innovative crossover
operator that considers a number of different
children from each pair of parents. Comprehensive
results are presented, and the algorithm is shown to
be competitive when compared with other
metaheuristic algorithms.

Introduction

Cutting and Packing problems are optimization
problems that are concerned with finding a good
arrangement of multiple small items in one or more
larger objects. This type of problem is encountered
in many areas of industry such as wood, glass, and
textile industries, newspaper paging, cargo loading,
and etc. The usual objective is aimed at maximising
the utilisation of the large objects, or maximising
the value of the small items packed. This work is
focused on the non-oriented case of the two-
dimensional rectangular bin packing problem with
the objective of packing without overlaps, all the
rectangles into the minimum number of bins.

A considerable amount of research has been carried
out and wvarious heuristic and metaheuristic
approaches have been proposed to seolve the
problem. Some excellent and comprehensive
reviews of the approaches can be found in
Dowsland and Dowsland [5], Hopper and Turton
[6], and Lee [7].

This paper focuses on the development of a new
strain of GA called MultiCrossover Genetic
Algorithm (MXGA) in comparison with other
metaheuristic algorithms namely Standard Genetic
Algorithm (SGA), Unified Tabu Search (UTS) and
Randomised Descent Method (RDM) for solving
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the problem. A common feature found in the
metaheuristic algorithms developed is their two-
stage approach, where the algorithms are combined
with a heuristic placement routine. In this two-
stage approach, an algorithm manipulates the
encoded solutions, which are then evaluated by the
placement routine transforming the packing
sequence into the corresponding physical layout.

Heuristic placement routine

Inspired by the best-fit heuristic proposed by Burke
et al. [3] and Whitwell [10] for solving strip
packing problem, Bennell et al. [1] developed a
heuristic placement routine called Lowest Gap Fill
(LGF) that is effective in filling the available gaps
in the partial layout by dynamically selecting the
best rectangle for placement during the packing
stage.

LGF consists of two stages: preprocessing stage
and packing siage. As in the best-fit heuristic,
before the start of the LGF placement routine, the
rectangles are initially arranged following a
horizontal orientation and sorted in a non-
increasing order of their width, breaking ties by
non-increasing height. This preprocessing stage
required O(nlogn) time, where » is the number of
rectangles.

LGF employs a best-fit type strategy by examining
the lowest available gap in the current bin and then
placing the rectangle that best fits the gap available.
This routine not only keeps track of the free
position in the layout, but also of the dimensions of
the available gap at the respective position. When
no remaining rectangle can fit into any of the
available gaps in the current bin, the bin is closed
and a new emply bin is initialised to replace the
closed bin as the current bin. Any unfilled space in
the closed bin will be regarded as wastage. The
routine continues until all the rectangles in the list
have been packed into a minimum number of bins.
This packing stage requires O(nz) time. The LGF




is sufficiently fast to be used repeatedly within a
metaheuristic algorithm, and is comparable in
performance with existing heuristics that are
computationally more expensive.

Metaheuristic algorithms
MultiCrossover genetic algorithm (MXGA)

A key feature of the MXGA is the application of a
simple yet effective crossover operator for multiple
times to each set of parents in order to optimise the
quality of the child chromosomes. A more detailed
description of the MXGA is given by Lee [7].

In the MXGA, the complete set of rectangles n,
forms the length of the chromosome (individual).
The genes are represented by a uniform random
permutation of the integer numbers of bins in the

interval [1, LB], where LB is the lower bound of

Dell’Amico e/ al. [4]. Thus, a solution to the
packing problem in this case consists of a sequence
of positive integer numbers indicating the bin
number, in which the rectangles are placed into the
bin. The exact location in the layout is then
determined by the heuristic placement routine.

The probabilistic binary tournament selection
scheme 1s used as the selection mechanism of each
parent in the MXGA. Two individuals are chosen
at random, and then a random number r is

generated from the interval [0,1] Afr<s, where s

is a parameter, the fitter of the two individuals is
sclected to be the parent; otherwise, the less fit
individual is selected. The two individuals are then
returned to the original population and can be
sclected again.

The multicrossover operator in MXGA has the 1-
point crossover strategy at its core. Instead of
performing a single 1-point crossover with each
pair of parents, the crossover process is repeated ¢
times to produce 2/ valid temporary offspring.
Then, the best and a sclected valid temporary
offspring (using the probabilistic binary tournament
selection) are chosen to be the offspring for the
current generation.

Note that the crossover operator is only applied to
the selected parents with a given crossover
probability, »_ . When crossover is not applied, a
swap operator is used to generate new offspring
that is different from their parent. The basic step of
this operator is to randomly select a swap point in a
parent, and then swap the substrings separated by
the swap point to form an offspring.

The mutation operator is applied in two stages.
First, a subset of individuals is selected from the

new offspring population with a given individual
mutation probability p,, . Then each gene in the

sclected offspring is considered in turn, and the bin
number is randomly changed to an element of the

set {1,2,---,LB} according to the gene mutation

probability p_ .

The elitism replacement scheme is used whereby
the offspring have to compete with their parents to
gain admission to the new population. After the
new population has been selected, a process called
Jiltration is used to identify the identical
individuals from the new population. Any duplicate
individuals are removed and replaced by uniformly
randomly generated new individuals to avoid
premature convergence and to add diversity to the
new population. Because of the computational cost
of the filtration procedure, this procedure is
invoked every R generations.

Standard genetic algorithm (SGA)

The SGA differs from the MXGA in the use of the
crossover operator, reproduction procedure and the
replacement scheme. The SGA applies the 1-point
crossover operator only once to produce two
offspring from two seclected parents, and uses the
reproduction procedure instead of a swap operator.
Hence, when the crossover does not apply to the
selected parents, they are simply reproduced for the
next generation. Finally, the replacement strategy is
steady-state.

Unified tabu search (UTS)

The main feature of the UTS framework is the use
of a unified parametric neighbourhood, whose size
and structure are dynamically varied during the
search. The algorithm also adopts a search scheme
which is independent of the specific packing
problem to be solved. More precisely, at cach
iteration of the main loop, the size and the structure
of a neighbourhood are determined and a specific
procedure is inveked to explore it. Based on the
output, the exploration is iterated until the stopping
criterion is met. Detailed description of the
algorithm can be found in Lodi ef al. [8].

Given a current solution, the neighbourhood is
searched through moves which consist of
modifying the solution by changing the packing of
a subset of rectangle S, in an attempt to empty a
specific target bin which is selected based on a
filling function. Each neighbourhood has a tabu list
and a tabu tenure and is defined by the removal of a
rectangle j contained in the target bin, and the
repacking of j together with contents of & other
bins. The value of k& which defines the size of the

Research Bulletin of Insfitute for Mathematical Research

il




neighbourhood is wvaried dynamically as the
algorithm progresses.

Randomised descent method (RDM)

The RDM uses an adaptation of the UTS. The main
difference lies in the removal of the tabu list and an
alternative acceptance rule. The acceptance rule in
RDM allows the neutral moves for up to 1000
consecutive iterations before terminating the
aigorithm. When there are multiple identical
neutral moves found during the neighbourhood
search procedure in a single iteration,
randomization is used to randomly select a move
from the list of moves with the same objective
function value. Consequently, the procedure can
escape from falling into the same local optimum
and continue its search. Note that deteriorating
moves are not considered in RDM.,

Experimental design

The four metaheuristic algorithms are coded in
ANSI-C using Microsoft Visual C++ 6.0 as the
compiler. Ten different classes of problem
instances that have formed the basis for comparing
algorithms in previous studies reported in the
literature are used. These classes are listed in Table
1. The first six classes (I - VI) are introduced by
Berkey and Wang [2], while the other four classes
(VII - X) are introduced by Martello and Vigo [9]
and are based on the following types of rectangles:

Type 1: w,uniformly random in [%W,W };
h; uniformly random in [1, : H] ;

Type 2: w,uniformly random in [ L4 ];

/. uniformly random in [7 H.H ] .

Type 3: w, uniformly random in [l W, ] ;

h, uniformly random in [ 4 H, 1 |.

Type 4: w, uniformly random in [1,%_W:| ;
h. uniformly random in [1,%H:|.

For each class, five values of n = 20, 40, 60, 80,
100 are considered. Also, for cach combination of
class and value of n, 10 problem instances are
generated.
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The problem instances are provided by Lodi er al.
[8] and are publicly available at
http://www.or.deis.unibo.it/rescarch.html.

The specific values for the generic design variables
in MXGA and SGA are summarised in Table 2.

Since the optimal solutions for the problem
instances are not known, the lower bound proposed
by Dell’Amico et al. [4] is used. The performance
of the various metaheuristic algorithms and the
heuristic placement routine is compared on the
basis of the Ratio and the Overall Bin Utilisation
(OBU) defined by:

J
Ratio = ﬁ (1
LB,

LB, A,
OBU=3 T ()

Note that the variables UB, and LB, rcpresent the

heuristic solutions found and the lower bound for
the problem instance i. A, in equation (2) is the

total area of rectangles in bin j (j=12,---,UB,)

for problem instance .
Results and discussion

The computational results of the metaheuristic
algorithms and the heuristic placement routine are
presented in Table 3. For cach algorithm, the
entries in the first column report the average Ratio,
while the entries in the second column give the
average percentage OBU, both computed over the
ten problem instances for each class and each value
of n. The final line for ecach data class gives the
average overall values over that class, and the final
line of the table gives the overall average valuc
over all classes. The values in bold represent the
best solution found in each ¢lass. For a fair
comparison between the different metaheuristic
algorithms, a stopping criterion of 120 CPU
seconds per problem instance is employed. Also
note that the execution time for the heuristic
placement routine is less than 0.1 CPU second per
problem instance.
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Table 1: Classes for the problem instances

Class | Bin (WxH) Item (wj and lj)
[ 10x10 uniformly random in [1,10]
11 3030 uniformly random in [1,10]
1T 40x 40 uniformly random in [1,35 ]
Y 100100 uniformly random in [1,35]
Y 100x100 uniformly random in [1,100]
VI 300x300 uniformly random in [1,100]
VI 100x 100 Type 1 with probability 70%

Type 2, 3, 4 with probability 10% each
Type 2 with probability 70%
Type 1, 3, 4 with probability 10% each

VIII 100x100

Type 3 with probability 70%

1X 100100 : g

) Type 1, 2, 4 with probability 10% each
x 100%100 Type 4 with probability 70%

Type 1, 2, 3 with probability 10% each

Table 2: Implementation of generic design variables for MXGA and SGA

variable value ]
chromosome length, L # (number of rectangles)
population size, P, 100
crossover probability, p, 0.75
multicrossover rate, 1 (MXGA only) 5 i
individual mutation probability, p,, 0.25
gene mutation probability, p 1/n

filtration rate, R (MXGA only) every 50 generation

By considering for each class, the average values
computed over all values of #, it is clear that the
MXGA is producing the equal best or better results
for all but class IV and VI with respect to average
Ratio, and all but class II, I'V and X with respect to
average OBU.

In general, SGA produced the least impressive
results. Only a small fraction of improvement (i.e.
0.5%) in term of the average Ratio is achieved in
the SGA compared to the LGF placement routine.
This may suggest that either the SGA is not an
ideal choice of algorithm to be used in the bin
packing problem or the LGF placement routine is
itself already a powerful heuristic for the packing
problem.

A closer scrutiny of the results for UTS and RDM
show that both algorithms exhibit reasonable
performance, with UTS performing marginally

better. This supports the idea that the acceptance
rule and randomization procedure introduced into
RDM are comparable with the ideas of tabu lists
and tabu tenure used in the UTS in generating high-
quality solutions. This indicates that the
randomisation procedure is capable of directing the
moves to escape from local optima.

Improvements of 2.5% in the MXGA compared to
LGF placement routine show that the MXGA is
able to produce better solution quality. A
significant improvement of 2% in the MXGA
compared to SGA 1is obtained from the owverall
results. This suggests that the various techniques
used in the MXGA are capable of improving the
results although fewer generations are generated
within the time limit. The overall results show that
the MXGA algorithm is the preferred choice
followed by the UTS, RDM and SGA.
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Table 3: Comparison of LGF with MXGA, SGA, UTS and RDM

Class  m LGF MXGA SGA UTS | RDM
Ratio OBU Ratio OBU Ratio OBU Ratio OBU Ratio 0OBU
50 | 1.03 8054 | 1.03 8148 | 103 8111 | 103 8131 | 1.05  B80.69
40 | 1.04 8495 | 104 8594 | 104 8579 | 1.04 8575 | 105 8436

I 60 | 1.05 8656 | 1.04 8840 | 1.05 8663 | 104 8805 | 1.04 8773
g0 | 106 8622 | 106 8740 | 106  §7.00 | 1.06 8725 | 106 8723
100] 1.04 9156 | 102 9343 | 103 9226 | 1.03 9245 | 103 9267

Average | 1.044 8597 | 1.037 8733 | 1041 8656 | 1039 8696 | 1046 8654
20 | 1.00 4240 | 100 4240 | 100 4240 | 1.00 4240 | 1.00  42.40
40 | 110 5472 | 110 5607 | 110 5480 | 110 5607 | 110 56.07

0 60 | 1.05 7468 | 100 7654 | 120 6724 | 1.00  76.81 | 100 7681
g0 | 107 7848 | 100 8351 | 107 7800 | 1.00 8345 | 103 8134
100 | 103 7809 | 100 8148 | 103 7821 | 1.00 8148 | 103  78.09

Average | 1.050 6567 | 1.020  68.00 | 1.080 64.13 | 1.020 68.04 | 1032 6694
20 | 106 6570 | 104 6891 | 1.06 6618 | 104 6891 | 1.06  66.02
40 | 113 6926 | 109 7433 | 109 7320 | 1.10 7287 | 109 7411

m 60 | 110 772 | 108 876 | 110 7771 | 1.09 8023 | 109  80.25
g0 | 110 7847 | 106 8333 | 109 7925 | 109 7982 | 109  79.10
100 | 108 8105 | 106 8527 | 108 810 | 1.06 8334 | 107 8301

Average | 1.093 7432 | 1.065 7872 | 1085 7549 | 1.077 7703 | 1080 76.50
50 | 100 3836 | 1.00 3836 | 100 3836 | 1.00 3836 | 1.00 3836
40 | 100 5671 | 100  se71 | 1.00 5507 | 1.00 5671 | 1.00  56.71

v 60 | 115 6758 | 1.0 7146 | 110 7007 | L10 7105 | L10 7107
g0 | 110 7443 | 107 7649 | 1.0 7296 | 1.03 7925 | 107  76.24
wol 107 7525 | 103 7930 | 107 7575 | 103 7915 | 103 7915

Average | 1.063 6241 | 1040 6447 | 1.053 6244 | 1.033 6490 | 1.040 06431
50 | 1.09 6512 | 104 7058 | L06 6803 | 1.06 6834 | 104 7044
40 | 110 7158 | 106 7654 | 108 7374 | 109 7289 | 1.07 7521

v 60 | 109 7526 | 107 7823 | 109 7537 | 1.09 7546 | 1.07  77.65
g0 | 109 7512 | 107 7896 | 1.08 7635 | 108  76.63 | 1.07  78.85
100 | 1.08 7911 | 105 8393 | 107 8098 | 1.08 7944 | 1.07  81.89

Average | 1.092 7224 | 1,058 77.65 | 1.076 7489 | 1.079 7455 | 1.064 7681
20 | 100 2923 | 100 2923 | 1.00 2923 | 100 2923 | 1.00 2923
40 | 140 4755 | 140 4909 | 140 4740 | 130 5012 | 140 4825

vl 60 | 105 6635 | 1.00 7003 | 1.05 6622 | 105 6600 | 103 6834
R0 | 1.00  68.67 | 100 6867 | 100 6666 | 1.00 6867 | 100  68.67
00| 107 7521 | 107 7599 | 1.0 7260 | 1.07 7534 | 107 7525

Average | 1103 5740 | 1.093 58.60 | 1.110 5642 | 1.083 5787 | 1.100 5795
20 | 119 6534 | L1l 7194 | 1.13 6896 | 1.13 6851 | 113  68.6]
40 | 112 7574 | 107 8043 | 109 7716 | 108 7897 | 1.08 7889

vl 60 | 110 7832 | 105 8522 | 108 8060 | 1.07 8274 | 1.06 8324
20 | 1.10 8105 | 108 8479 | 1.10 8123 | 1.10  8l14 | 110 8133
100 109 8354 | 107 8630 | 1.00 8200 | 108 8436 | 1.08 8411

Average | 1.119 7680 | 1075 8174 | 1101 77.99 | 1.093 7914 | 1.090 79.24
20 | 115 6654 | 110 7204 | 112 6927 | L10 7214 | 110 72.14
40 | 116 7185 | 100 8023 | 111 7655 | L13 7495 | 111 7625

VI 60 | 1.09 8136 | 106 8493 | 110 7996 | 107 8327 | 1.07  83.0l
g0 | 100 8111 | 107 8521 | 110 8122 | 1.09 8263 | L10 8111
00| 100 8212 | 106 8655 | 1.09 8231 | 1.08 8474 | 108  84.56

Average | 1116 7660 | 1.078 81.81 | 1105 77.86 | 1.094 79.55 | 1.092 794
20 | 101 4303 | 100 4357 | 101 4303 | 100 4357 | 1.00 4357
40 | 102 4478 | 101 4575 | 101 4564 | 101 4573 | 101 4575

X 60 | 1.01 4344 | 101 4356 | 101 4347 | 101 4356 | 1.01  43.56
20 | 1.01 4503 | 101 4512 | 101 4503 | 101 4503 | 1.01 4512
100 | 101 4610 | 101 4610 | 1.01 4599 | 1.01 4610 | 101  46.10

Average 1011 4448 | 1.007 44.82 | 1.008 4463 | 1.007 4482 | 1.007 44.82
20 | 120 6225 | 113 6840 | 113  67.13 | L15 6634 | LI13  67.01
40 | 107 7745 | 106 7987 | 106 7817 | 106 7973 | 106  79.55

X 60 | 1.08 8266 | 107 8442 | 110 7999 | 106 8521 | 1.07 8467
20 | 1.06 8525 | 106 8583 | 107 8266 | 1.05 8914 | 105  89.00
100! 107 8245 | 104 8785 | 107 8280 | 104 8689 | 105 8565

Average | 1098 7801 | 1.070 8127 | 1086 78.15 [ 1072 8146 | 1072 S8I.18

AVERAGE | 1079 6939 | 1.054 7244 | 1.074 6986 | 1.060 7143 | 1.062  71.36
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