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Abstract

A deterministic model for monitoring the impact of
treatment on the transmission dynamics of dengue
in the human and vector populations is presented.
In addition to having a locally-asymptotically
stable disease-free equilibrium (DFE) whenever
the basic reproduction number is less than unity, it
is shown, using a Lyapunov function and LaSalle
Invariance Principle that the DFE of both
treatment-frec and treatment model, in the absence
of dengue-induced mortality, is globally-
asymptotically stable whenever the reproduction
number is less than unity. Each of the models has a
unique endemic  equilibrium  whenever its
reproduction number exceeds unity. Numerical
simulations of the model show that for high
treatment rates, the disease can be controled within
a community.

Introduction

Dengue hemorrhagic fever (DHF) was first
recognized in the Philippines in 1953, and in
Thailand in 1955 (Esteva [12], Gubler [19], WHO
[32]). It has become the most important arthropod-
borne viral disease of humans that is endemic in
many countries in Southeast Asia, the Americas,
the Africa, the Eastern Mediterranean, and the
Western Pacific (Chowell et. al[8], Shekhar [28]).
Currently, the annual estimations of dengue fever
range from 50 to 100 million cases yearly (Monath
[27]), with approximately 20,000 deaths globally
(Shekhar [28]). Figures from the World Health
Organization show that hundreds of thousands of
cases of DHF are recorded annually (Blaney [3.4],
WHO [33]). Cases of dengue range from
asymptomatic to clinically non-specific flu-like
symptoms to dengue fever (DF) to dengue
hemorrhagic fever (DHF) and dengue shock
syndrome (DSS). DHF and DSS are the most
severe form of dengue disease with an average
case-fatality rate being approximately 17%. Many
primary dengue infections are asymptomatic.

The disease is caused by any of four closely-related
virus serotypes (DEN-1-4) of the genus Flavivirus,
and is transmitted by its principle mosquito mainly
Aedes aegypti. Aedes aegypti is a highly
anthropophilic daytime feeder, living around
densely populated human habitat (Chowell [8]).
Susceptible female mosquitoes acquire the
infection when feeding on infectious humans.
Susceptible humans are infected when bitten by
feeding infectious female (Yang [34]).

There is no specific treatment for dengue. Persons
with dengue fever should rest and drink plenty of
fluids. They should be kept away from mosquitoes
for the protection of others. At present, the
treatment strategy of dengue fever consists of the
following: (i) The Hemopurifier, which has been
designed to isolate and capture highly pathogenic
viruses and emerging viral threats, it represents the
only proposed treatment for DHF that
simultaneously targets broad-strain clearance of
dengue virus and also assists in the modulation of
excessive cytokine activity. (i) Antipyretics-aspirin
and nonsteroidal anti-inflammatory drugs such as
ibuprofen should be avoided so that platelet
function will not be impaired. (iii) Monitoring of
blood pressure, urine output, hematocrit, platelet
count, and level of consciousness.

Several mathematical models have been developed
in the literature to gain insights into the
transmission dynamics of dengue in a community
(see, for instance, Chowell et. al [8]. Coutinho [9],
Derouich [10], Esteva [11,12,13 and 14] Feng
[15], Ferguson et. al [16], Garba [17, 18],
Struchiner et. al [29], Tewa et. al [30], Yang [34]).
While Chowell et al. [8] estimated the basic
reproduction number of dengue using spatial
epidemic data. Tewa et al. [30] established global
asymptotic stability of the equilibria of a single-
strain dengue model. Garba et al. [17] investigate
the qualitative dynamics of a single strain dengue
model in the presence of an imperfect vaccine, the
authors [18] also consider the effect of cross-
immunity on the transmission dynamics of two
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strains of dengue, and Struchiner et al. [29] gave a
detailed discussion on current research issues in
modelling mosquito-bome diseases.

This  paper complement, and extends, the
aforementioned studies by considering a new
mathematical model which incorporates the
dynamics of individuals and vectors who are
asymptomatically infected to the disease (that is,
individuals that are infected but not yet infectious
are assumed capable of transmitting the disease).

Basic model

The basic dengue treatment model to be designed is
based on subdividing the total human population at

time ¢, denoted by Vu() into a number of
mutually-exclusive compartments namely,
susceptible  (S4(),  asymptomatically infected
(4, () | symptomatically infected (+()) | treated
individuals (7() and individuals in  whom
treatment fails (#4()) | so that

Ny (f): Sy (I)+ Ay (I)Jr I, (")*' Ty ([)"' Fy (’)

Similarly, the total vector population at time ¢,
denoted by ), is split into susceptible  (S:()),

exposed (£/(1) and infectious mosquitoes U+ (), so
that

N =8,00)+ B, () +1,(:).

The susceptible human population is increased by
the recruitment of individuals into the population at

arate 1y . These individuals acquire infection,
following contact with exposed or infectious

vectors in the £y and /v classes, at a rate %
where

N b
s :CW(AJ\,H,,\,I,)(L"V_J (D
N,

The parameter Cur s the effective contact rate
between the susceptible humans and infectious
mosquitoes, while 5, is the modification

parameter 0<#, <1 accounts for the assumed
reduction in transmissibility of exposed mosquitoes
relative to infectious mosquitoes. Noting that for
the number of bites to be conserved, the following
equation must hold (Garba [17]),

Cuw N, =Cyy (N ao NV, )N " (2)
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where Cir is the effective contact rate between
infectious humans and susceptible mosquitoes, so
that,

G (NH: Nv)

o VH
N, = Ny

Cs " 3)
Thus, substituting (3) in (1), gives

(2 By + Iy)
Ny

Ay = Cyyp
Similarly, it can be shown that the rate at which

mosquitoes become infected denoted by 4y is
given by,

A, + I, +n.F
A= (’}’A " VH 1r H)_

e

The parameter 0=7, <1 accounts for the assumed
reduced infectiousness of asymptomatically
infected individuals, while 7- 20 is the relative
risk of infectiousness of individuals who fail
treatment. It is assumed that newly-infected
individuals are asymptomatically infected before
clinical symptoms, after which they become
symptomatically infected (Yang [34]). Tt is worth
stating that since the focus of the paper is to
evaluate treatment strategies of dengue that target
individuals who are symptomatically infected,
transition to or from 4, to 7, is not incorporated;
this is needed to help keep track of the infection
and treatment stages. It is assumed that the
population of asymptomatically infected humans is
generated by the infection of susceptible humans

(at the rate4; ) and diminished by development of
clinical symptoms (at a rate®y) and natural death

(at a rate 4y ). Symptomatically infected individuals
are generated via the development of symptoms by
asymptomatically infected humans (at the rate

%), these population is reduced following
treatment (at a rate 7, ) and moved to the treated
class (TH), while those who fail treatment move to
the class (%) (atarate 7,). All human population
suffer natural death (at the rate ## ). Furthermore,

infected individuals in the 7+ and Fi class suffer
an additional dengue disease-induced death (at a

rate 9y, ). It is assumed that treated individuals
acquire lifelong immunity against re-infection (so
that they do not acquire dengue infection again).
Individuals in 7 class fail treatment for various
reason including non-compliance to the treatment
or development of resistance. In other words,

individuals in #, class may have {and can
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transmit) dengue resistant strain. For mathematical
convenience, we are not considering multiple strain
dynamics.

The susceptible mosquitoes are generated by birth
(at a rate Tly) and diminished by infection,
following effective contact with infectious human
(at the rate %), and due to natural death (at a rate
Hy ). All vectors suffer natural death (at the rate
M), and infectious vector suffer additional

dengue disease-induced death (at a rate 5;1).
Finally, the insecticide to eliminate the adult
mosquitoes, which 1s  applied inside and
surrounding houses (in severe epidemic situations
heavy duty application of insecticide can be used),
is assessed by the additional mortality rate to all

vectors population (at a rate Yv ). The model is
given by the following system of differential
equations (see Figure 1 for a flow diagram)

ds
=y =28y —tuySy.,

o H T ARy T He Sy
dA, .

u'“ = Ay Sy ~ (05 + tu ) Ay,

T
dly ~
L Ay =ty +#y +8y )y,

4)

dT , (

b TSy - (}’H + My )[” >

dF, ) 2
drH =yuTy — (g +6u ) Fy.

% =, —Ap Sy — (_,u,,,- g )SI, ,
dE,
di
df
df

=S = ((r,,- + fy +Up ) E,,

=opEp — (.u,_. +up + &y ).f,, .

It is assumed that all the parameters and stated
variables of the model are non-negative (since the
model monitors human and vector populations) for
allr =0,

Basic properties
In this section, the basic dynamical features of the
model will be explored. We claim the following:

The closed set

J(SH’AH?[H?T:']1F;I=Si'ﬂf">"7[."}€Rj : l
= Il

I .
WS,,M,, M AT AFE s a4 & 0 J
Hy H 14,

is positively-invariant and attracting with respect to
the basic model .

Thus, in D, the model is  well-posed

epidemiologically and mathematically (Hethcote
[20]). Hence, it is sufficient to study the dynamics
of the basic model in D.

Treatment-free model

Belore analyzing the full model, we first consider
the treatment-free model, obtained by setting
Ty =Yy =Ty =Fy =0 i (5). Further, since data
suggest that the dengue-induced mortality in
human is negligible (Kawaguchi [22]), we set the

mortality parameter to zero (i.e., 5:4 =0 ). Thus,
dn
dt
so that the total human population is constant at
steady-state give the following reduced model.

=Tl — 44Ny,

dj;” =Tl —AySy — 1Sy,
%:JHA‘H—#H]H: 5
% =Ty~ A8 — (e + 0 ) Sips

dj;) = Ay Sy _(GV +piy + 0y ) By

It can be shown that the biologically-relevant
region

J(Sﬁa‘4/r=f'f-f-.~'§a'-5y,11.')EL6,: l
= m HL
F{! Ay Ly B SYLEV 4V <—
Hyy L+ Uy

Is positively-invariant and attracting with respect
to treatment-free model,

Disease-free equilibrium (DFE)

The discase-free equilibrium (DFE) of treatment-
free model (5) is given by

IT I,
By =(Sy. Ay 1y B 0y )= |—£,0,0,——,0,0

Ly Ly 1y
Following Vanden [31], the linear stability of £,
can be established using the next generation
operator method on system. The matrices, ' (for
the new infection terms) and *1 (of the transition
terms) are given, respectively, by
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Fl' — HiCntSe MG 0 0

I, T,

0 0 0 0

. 0 0 0]

—cy My 0 0

V=l 0 0 T, 0
0 0 —op T,

where,
Li=oytuy, T,=0,+u +u,

and T, = p, + v, +3,.

It then follow that the basic reproduction number,

denoted by mo, is given by

k]

R, = p(FV_l ) - Carlly 1ty + 04 )(UVT3 +0oy)
S L, (#4 +0, JTT.T,

where £ is the spectral radius (dominant
eigenvalue in magnitude) of the next generation

-1
matrix £11 Hence, using Theorem 2 of Vanden
[31], we have established the following result:

Lemma 2 The disease free equilibrium, E", of the
model (5), is locally asymptotically stable (LAS) if

Ry <1 | and unstable if R, > 1.

The  threshold quantity ERO, is the basic
reproduction number of the disease (Anderson [1,
2] and Hethcote [21]). It represents the average
number of secondary cases that one infected case
can generate if introduced into a completely
susceptible population. Tt can be interpreted as
follows. Susceptible mosquitoes can  acquire
infection following effective contact with either an

asymptomatically (4,) or symptomatically

infected human ([,,.). The number of vector
infections generated by an asymptomatically
infectious human (near the DFE) is given by the
product of the infection rate  CivTatln /Tl and the
average duration in the  An  class /T .
Furthermore, the number of wvector infections
generated by an infectious human (near the DFE) is
given by the product of the infection rate of
infectious humans Gty /Tl | the probability that an
asymptomatically infectious human survives the

Research Bulletin of Institute for Mathematical Res_earch/@

asymptomatic stage and move to the symptomatic
infectious stage o /T, and the average duration in

the infectious stage (/#;). Thus, the average
number of new mosquito infections generated by
infected humans (asymptomatically or

symptomatically) is given by (noting that
S, =11, /(u, +UV)
(UAIUH T Oy )H v
HV
11,7 (J”V Ty ) (6)

Similarly, susceptible humans acquire infection
following effective contact with either an exposed

(Ev) or infectious mosquito(Jr +). The number of
human infections generated by an exposed
mosquito is the product of the infection rate of

and the

average duration in the exposed Class(]/ Tz) The
number of human infections generated by an
infectious mosquito is the product of the infection

exposed mosquito (Cwﬂvﬂﬁf nh’)

rate of infectious mosquitoes Cotly /1y the
probability that an exposed mosquito survives the
exposed class and move to the infectious stage

/Ty and the average duration in the infectious

stape (1/1"3)' Thus, the average number of new
human infections generated by an infected
mosquito  (exposed or infectious) is given by

(noting thatSy =11,/ 44, )

(77/1173 + GV )H!/

(&
7 A @)

The geometric mean of (6) and (7) gives the basic
reproduction number, R,

R for dengue disease is also given in Chowell
[8]. Esteva [L1]).

(interpretation for

The epidemiological implication of Lemma 2 is

that, in general, when Ro is less than unity, a
small influx of infected mosquitoes into the
community would not generate large outbreaks,
and the disease dies out in time (since the DFE is
LAS).

Global stability of disease-free equilibrium

Theorem 1

The disease-free equilibrium £y of the treatment-
free model is globally asymptotically stable (GAS)
if 9‘10 <1,

Proof: the proof is based on using the following
Lyapunov function.

N
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f=84,+8,1,+8:.E, +g,,
Where,

& = CHVI—[VTE(‘T?VTS + av)(??.'-!/uh’ +oy )7
&= CHI’HF-’TlTE( v+ o, )»

&= HHﬂVﬂTsmu(]?VT) + O_v)’

g =y, TT, TR,

The Lyapunov derivatives is given by (where a dot
represent differentiation with respect to 7)

f = glAH +g2‘iu +g3EV + g4y,

f=1r,

Con 1y 12y, (]?I’T? +oy J(’?AAH +1y )*'—'(3{ _ 1)‘
O, TR (7, B+ 1) J 2

Thus /<0 if R0 =1 \ith /=0 if and only if

4y =1, =E, =1, =0, Further, the largest compact

invariant set in g\'\*gﬁ:AHv"Haslfvﬁz’:l!')EI‘Z] :U\J is the
singleton {F,}. It follows from LaSalle Invariance
Principle that every solution to equation (5) with
intial condition in I converges to DFE E, as
b5 . Thay is, (A, (00,1, (1), E(0),1,(T)) —(0,0,0,0)

v A= =Fr=F =% =
wy &R, Subsimatng SR TR ST % oo

the first and the fourth equations of the treatment-
free model (5) gives S« and S-S, 4
7= % Thys:;

(1 2), 4, (0.2, 00,5, 0. B, (0).1,(1) > (5},,0.05,,.0,0)

as L% for Mo <1 g6 that B, is GAS in T if
R, <1

The above result show that, for the model, dengue
disease can be eliminated from the community if

; y 9

the associated threshold quantity, Ro, can be
brought to a value less than unity. It also shows
that, for the dengue treatment-free model the

; ca . . S ’
classical epidemiological requirement of M, <1 IS
both necessary and sufficient for dengue
elimination from the community.

Endemic equilibrium

The non-trivial equilibria of the model, where at
least one of the infected variables is non-zero, can
be obtained by solving the equations in at stead
state, Let E[: = (S,;,A;,];:,S;*,E;,];ii
represents any arbitrary endemic equilibrium of the
model. Further, let

L
H
w2 /,1” (WAAH + [:*]
A =Cpy ——— 87 (3)
| HY HH

be the forces of infection in humans and vectors at
steady state, respectively. Solving the equations of
the model at steady state gives

L3
o s AL,

== » A = = >
Ll YR T,(/"LHJr,u”i

[w _ O"”lhl.flﬁ o _ L , (g)
" l"u]?[l: + iy )’ ' ;W T T, .
= 1 i

R A C AR S PR |
Non-existence of endemic equilibria for R, <1

In this section, the non-existence of endemic

equilibria of the model when®o <1, will be
explored. We claim the following:

Theorem 2 The dengue treatment-free model,
given by (5), has no endemic equilibrium when

W=l and has a unique endemic equilibrium
otherwise.

Proof” Using (9) in the expression for 4, and 4.
in (8) and simplifying shows that the non zero
(endemic) equilibria of the model satisfy the
following linear equation

ayAy +b, =0,

where
ay =1, pu,T,T, [CHV (77.4 Hy 0y, )+TI (/UV T, )]:
and by, = nﬁﬂnzTrTsz (173113)

It is clear that a,>0, and
R, > 1. Th

by, <0 whenever
us, the basic lincar system has a unique

wE
positive solution, given by 4y = b /a, whenever

o>l Therefore the treatment-free model, has a

unique positive endemic equilibrium whenever

b e . iy .
Rl and no positive endemic equilibrium

whenever R, <1.
Analysis of the treatment model

Consider, now, the full treatment model, given by
with  similar ~ assumption of dengue-induced
mortality rate negligible(‘?‘f =0) ;

Setting
Ny =11,/ 1, and 0, =0

in model (4) gives the
following reduced model:
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ds
a’(” =0y =48, — p1ySy,
dA,
L= 248y (O-H Ty )AH
dt
di
L= oyl — (TH +Hy + 51.' )[H >
dr
dT
d;! =78, — (]/H + 4y )TH >

dF . (10)
L=yuTy _(/-‘11 +0H)FH'=

a%_ =11, -4,.8, - (,u,, +u, )SV ,
dE
dt
dl,

dt

V

= 4,8, —(o, + p, +v, )E,,

=0, E, —(,UV +u, +3, )IV.

Existence and stability of equilibria
disease-free equilibrium (DFE)

The model has a DFE given by,

I,
Hy Hy Ty

I1
E, :(Sm A Ly T By Sy ijl’) o [_” 0.000,—— ao’oy»

and the associated next generation matrices are
given by

0 0 0 0 Cup Cul
0 0 0 0 0 0
0 0 0 0 0 0
F= 0 0 0 0 0 0
41y Cris 1457 5 ChaS) 4 ConiieSy
. nﬂj - ‘(-IH 0 : C]_[H,‘ 0 O
0 0 0 0 0 0
2 0 0 0 0 0]
fo B 0 0 0 0
0 =y P 0 0 0
Ve=| 0 Yy Hy 0 0 ,
0 0 0 B 0
0 0 0 0 -0, P
where,

B=oy+u, . Po=p, +o, . P=y, +p,,

Py=o0,+pu, +o,and Py=p, +v, +6,.

It follows then that the basic reproduction number,
denoted by ™ | is given by
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{ CJEWHV(WFPE + O-V) HP'%(UA]% + Oy )+ TeY FTHJH]

R = |
\ 1L, (44, +v,)RBRAR

Hence, using Theorem 2 of Vanden [31], we have
established the following result:

Lemma 3 The disease free equilibrium, E,, of the
model is locally asymptotically stable (LAS) if
R, <l, and unstable if W;>1.

Global Stability of disease-free equilibrinm

The disease-free equilibrium, £, , of the treatment
model, is globally asymptotically stable (GAS) in
D if R, <1,

The proof 1s based on using a comparison theorem.
Notice, first of all, that the equations for the
infected components in  can be written in terms of
FV™' matrix.

Endemic equilibrium

In order to find endemic equilibria of the treatment
model (that is, equilibria where at least one of the
infected components of the model is non-zero), the
following steps are taken. Let

& * E XS sk

ET :( H»AJ—:(»[J.' :-Tu 9P}-I ,S;*ﬂE;*,[:,*)

represents any arbitrary endemic equilibrium of the
model . Further, let

o o (m, Ef* + IW)
2’ = C . g SRR R - T
o i 1 » and
o Hiy (77,4/4_’:. + ]:‘ + 771»'F*$)

= Chy I - (1)
i

be the forces of infection of humans and vectors at
steady state, respectively. Solving the equations in
(10) at steady state gives

S e g el
A+ Hy m
i cm/E;HH e 0% ,/1,’;11 i
A }’H@ﬁ@_ Sig:%m_ (12)
! AP E (/?; +Hy ) ' i: Ll O, ’
- A1, .- m,

F;lﬂq + 14, +u,.)’ h Ao 4ty 0,

Substituting the expressions in (12) into (11), and
simplifying, it follows that the non-zero equilibria

N



of the treatment model satisfy the quadratic
Ay (azz/lﬂ J“‘bzz): 0, (13)

where,

a, =I1,P,P. Con Bty (77/1[;2 +G,l, )—i—
PRP(u, +0, )+ Copttp uTy0
and

by, =11, 14, AP, P, P4P(/-£V tu, )(1_9?;2, )

The positive endemic equilibrium of the model can

- Hk

be obtained by solving for “» in (13) and
substituting the result into (12). Clearly, A =0 i
a fixed point of (13) which corresponds to the DFE,

Er. For 4 # 0 equation can be reduced to
Ayl + 853 = 0.

Since all the model] parameters are assumed to be

non-negative, it follows that @» >0 and b,, <0

q " - .
whenever " >1, Thus, the linear equation has a

unique positive solution, given by 4y = by, /a,,,

whenever  Hr > 1

R, <1

and no positive solution

when . This solution is summarized below.
Lemma 4 The model has a unique positive

= e i g
endemic equilibrium whenever Ry =1

It can be shown, using the same approach as in the
proof of Theorem 3, that the unique endemic

equilibrium, £7 | is LAS whenever Y > 1-

In summary, it is clear that the treatment model has
the same dynamical features as the treatment-free
model (i.e., both models have globally-
asymptotically stable DFE whenever the associated
reproduction number is less than unity; and unique
locally-asymptotically stable endemic equilibrium
whenever the reproduction number exceeds unity).
Thus, adding treatment to the model does not alter
its dynamical features.

Numerical simulations

Since both models have been shown to exhibit
similar qualitative dynamical features,
Consequently, numerical simulations will be
carried out on the treatment model. With the sct of
parameters in Table 2, the basic reproduction

numbers 7 =0.0547 so that %r <1). Thus by
Theorem 5, the DFE is GAS Figure 2 depicts

SSm——

simulation of this model when %7 <1 This result

also holds for %7 =1, confirming the global
asymptotic stability property of the DFE whenever
R, <1

It is also shown that, with the set of parameters in

Table 2, and Z# :0'], the prevalence of the
infected individual i1s lower when an effective

treatment strategy is applied (ie, Tw = 0.99)
compared with less effective treatment method

(e, Fw=01y 4 depicted in Figure 3A.
Similarly, the number of treated individual is

higher when “un = 0.99 and lower when 7w =0-1
, as shown in Figure 3B, confirming the positive
epidemiological impact of dengue treatment in the
community (by reducing discase burden). Using the
set of parameter in Table 2 and different values of

(u,,), it is shown that with a higher and effective
mosquito control strategy, the population of
susceptible and exposed mosquitoes is lower

(u,,:S]: compared with less effective mosquito

(v, =0.5)

control strategy as shown in Figure 4A-B.

Conclusions

This paper presents a deterministic model for the
transmission dynamics of a single strain of dengue
disease. The model, which allows dengue
transmission by exposed vectors, was extended to
include treatment for dengue. The two models were
rigorously analysed to gain insights into their
qualitative dynamics. The following results were
obtained:

1. The basic (treatment-free) model has a
locally stable disease-free equilibrium
whenever the associated reproduction
number is less than unity.

L. The treatment model, like the trcatment-
free model, has a globally-stable DFE
whenever their associated reproduction
number is less than unity.

1il. Each of the models has a unique endemic
equilibrium whenever their associated
reproduction number exceeds unity.

1v. Dengue treatment would always have
positive epidemiological impact in the
community (by reducing disease burden),
or even disease elimination in the
community,

v, Simulation of the treatment model shows
that the use of vector control strategies can
result in the effective control of dengue in
a community by reducing the population
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of susceptible and exposed mosquitoes.
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Table 1: Description of variables and parameters of the models

Interpretation

Susceptible humans

Asymptomatically infected humans

Symptomatically infected humans

individuals in treatment class

individuals in whom treatment fails

Susceptible mosquitoes

Exposed mosquitoes

Infectious mosquitoes

Biting rate of infectious mosquitoes

Biting rate of susceptible mosquitoes

Transmission probability from mosquitoes to humans
Transmission probability from humans to mosquitoes

Infection rate of humans
Infection rate of mosquitoes

Recruitment rate of humans
Recruitment rate of mosquitoes
Average lifespan of humans

Average lifespan of mosquitoes

Progression rate from 4 to I class
Progression rate from £ to v class
Disease-induced death rate for humans
Disease-induced death rate for mosquitoes
Treatment rate for humans

Failed treatment rate for humans

Vector control induced death for mosquitoes

Modification parameters

Nominal vaue

variable
variable
variable
variable
variable
variable
variable
variable
5 /day
5/day
05

0.5
3.6/day
3.6 /day
50000/day

400000/ day
67 years

14 days

0.0548/ day
0.0384 /day
0.0005/ day
0.6 /day
0.99/ day
0.5 /day
0.5/ day

Relative risk of infectiousness of individuals in whom 0.6 /day

treatment fails

N
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Figure 1: Schematic diagram of the model
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Figure 2: Time series plots for the model (16). (A) Asymptomatically infected individuals (4,); (B)
Symptomatically infected individuals (/;); (C) Treated individuals (7%); and (D) Individuals in

whom treatment fails (Fy). Parameter values used are as in Table 2 with &,= 0.09 (so that

N, =0.0547<1)
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Figure 3:  Prevalence as a function of time for the treatment model (16). (A) Symptomatically infected
individuals (7y); (B) Treated individuals (7%); using various values of treatment rate (7, =0.10

(dotted line) and T, =0.99 (solid line)). Other parameter values used are as in Table 2.
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Figure 4: Graph that show the dynamics of (A) Susceptible mosquitoes (B) exposed mosquitoes using

different mosquitoes control strategies for the treatment model (16). v, = 0.5 (solid line).

Other parameter values used are as in Table 2.
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