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Research on the area of the synthesis of carbon nanotubes is fundamental and critical 

to the entire subject of carbon nanotubes. This dissertation describes an experiment 

to synthesize carbon nanotubes by the method of catalytic chemical vapor deposition 

(CCVD). It focuses on the relationship between the as-prepared catalyst and the 

synthesized carbon nanotubes. The effect of growth parameters for the synthesis of 

carbon nanotubes was also studied. 

 

The Fe-Mo-MgO catalysts with five different molar ratios of iron (Fe) in this 

composite catalyst were prepared through the impregnation method. The goal of this 

work was to identify the suitable molar ratio of iron (Fe) in the composite catalyst of 

Fe-Mo-MgO on which carbon nanotubes (CNTs) can be grown with a higher yield 

and quality. 
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Scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-

ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to 

characterize the as-prepared catalysts and as-grown carbon nanotube samples. 

 

Among these catalysts with different molar ratio of iron, the main and obvious 

observation in the synthesis of carbon nanotubes was the yield of synthesized carbon 

nanotubes. That is, increasing the molar ratio of iron, the yield of produced carbon 

nanotubes increases strongly, but the quality did not improve. While by decreasing 

the Fe concentration, both the structural defects and yield were reduced. Therefore, 

based on the experimental results, the best catalyst was catalyst 3 (Fe: Mo: MgO = 

0.5: 0.1: 10) with a moderate molar ratio of iron. This catalyst not only had good 

yield but also good quality. 

 

The different parameters such as flow rate of argon (Ar) as a carrier gas, and 

temperature to improve the growth condition of CCVD method for the synthesis of 

CNTs by Fe-Mo-MgO catalyst were examined.  It is found that the best flow rate for 

carrier gas is 100 ml/min. For the flow rate lower or higher than this, there were very 

few CNTs formed, since the low flow rate of Ar could not carry enough ethanol 

vapors through the reactor to be deposited on the catalyst. As for the high flow rate 

of Ar, most of the carbon source exited from the outlet of the reactor and again they 

could not be deposited on the catalyst, thus few carbon nanotubes were formed.  

 

In the synthesis of carbon nanotubes by CCVD method, the temperature plays a key 

role. The results show that when the temperature is lower than 750˚C, few CNTs 

were formed, and when the temperature is higher than 900˚C, more and more 
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amorphous carbons were formed in the CNTs. The best temperature for the growth 

of carbon nanotubes by these catalysts is between 800˚C and 900˚C. 

 

The results showed that the growth of carbon nanotubes was significantly influenced 

by the reaction condition due to its sensitivity. The synthesis products were always a 

mixture of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon 

nanotubes (MWCNTs). 
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Oleh 

SETAREH MONSHI TOUSSI 

Jun 2010 

Pengerusi:  Fakhru’L-Razi B Ahmadun, PhD 

Fakulti: Institut Teknologi Maju (ITMA) 

 

Kajian penyelidikan dalam bidang sintesis nanotiub karbon adalah asas dan kritikal 

kepada seluruh bidang nanotiub karbon. Kajian disertasi ini menerangkan ujikaji 

untuk sintesis nanotiub karbon dengan menggunakan teknik pemangkinan 

pemendapan wap kimia. Ia menumpu kepada hubungan antara pemangkin sedia ada 

dan nanotiub karbon yang disintesis. Kesan parameter pertumbuhan untuk sintesis 

nanotiub karbon juga telah dikaji. 

 

Pemangkin Fe-Mo-MgO bersama dengan lima nisbah kemolaran iron (Fe) yang 

berbeza dalam setiap pemangkin komposit telah disediakan melalui cara 

pengisitepuan atau impregnasi. Matlamat kajian ini adalah untuk mengenalpasti 

nisbah kemolaran  iron (Fe) yang sesuai dalam pemangkinan komposit Fe-Mo-MgO 

dimana nanotiub karbon boleh dihasilkan dengan hasil dan kualiti yang tinggi. 
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Mikroskop pengimbas elektron (SEM), mikroskop pancaran elektron (TEM), 

pembelauan x-ray (XRD), dan analisis termogravimetri (TGA) digunakan untuk 

mengkaji sifat pemangkin sedia ada dan sampel pemangkin nanotiub karbon yang 

dihasilkan. 

 

Antara pemangkin ini dengan nisbah kemolaran iron (Fe) yang berbeza, pemerhatian 

jelas dalam sintesis nanotiub karbon adalah nanotiub karbon yang terhasil. Dengan 

meningkatkan nisbah kemolaran Fe, hasil  nanotiub karbon telah meningkat dengan 

banyak, tetapi kualiti tidak meningkat.  Apabila menurunkan konsentrasi Fe, kedua-

dua kecatatan struktur dan hasil berkurangan. Oleh itu, berdasarkan kepada 

keputusan eksperimen, pemangkin yang terbaik adalah pemangkin 3 (Fe: Mo: MgO 

= 0.5: 0.1: 10) dengan kemolaran iron yang sederhana.  Pemangkin ini bukan sahaja 

mempunyai hasil yang baik bahkan juga kualiti yang baik. 

 

Parameter yang berbeza seperti kadar pengaliran gas argon (Ar) sebagai gas 

pembawa, dan suhu digunakan untuk meningkatkan keadaan pertumbuhan dalam 

pemangkinan pemendapan wap kimia untuk sintesis nanotiub karbon (CNTs) dengan 

pemangkin Fe-Mo-MgO telah dikaji. Didapati kadar pengaliran terbaik untuk gas 

pembawa adalah 100 ml/min. Untuk kadar pengaliran lebih rendah atau lebih tinggi 

daripada ini, CNTs yang dihasilkan adalah sangat sedikit, kerana kadar pengaliran 

argon yang rendah tidak dapat membawa wap etanol yang mencukupi melalui 

reaktor untuk dimendapkan keatas pemangkin. Apabila kadar pengaliran argon 

tinggi, kebanyakkan sumber karbon mengalir keluar daripada reaktor dan ia tidak 

dapat dimendapkan keatas pemangkin, maka sedikit nanotiub karbon yang terbentuk. 
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Dalam sintesis nanotiub karbon melalui cara pemangkinan pemendapan wap kimia, 

suhu memainkan peranan utama. Keputusan menunjukkan apabila suhu lebih rendah 

daripada 750˚C, hanya sedikit CNTs terbentuk, dan apabila suhu melebihi 900˚C, 

semakin banyak karbon amorfus terbentuk dalam CNTs. Suhu yang terbaik untuk 

pertumbuhan nanotiub karbon dengan pemangkin ini adalah antara suhu 800˚C 

hingga 900˚C. 

 

Keputusan menunjukkan bahawa tumbesaran nanotiub karbon dipengaruhi oleh 

keadaan reaksi disebabkan oleh sensitivitinya. Sintesis produk merupakan gabungan 

daripada nanotiub karbon dinding tunggal dan nanotiub karbon dinding banyak. 
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           CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

 

Carbon nanotubes (CNTs), one of the allotropes of carbon, are molecular scale tube 

of graphite sheet. Depending on the ways in which the sheets are rolled into a 

cylinder, carbon nanotubes, take different diameters, chiralities, and structures. 

carbon nanotubes (CNTs) are generally of two types: single-walled carbon nanotubes 

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs) (Henrich et al., 2006). 

 

In 1985, a group of researchers at Rice University discovered buckminsterfullerene 

molecule. Since this molecule consists of 60 carbon atoms in sp2 hybridized bonds, it 

is called C60 and is arranged in a symmetric fashion (Kroto et al., 1985). This 

discovery stimulated researchers to search new forms of carbon. In 1991, the 

Japanese scientist Sumio Iijima discovered fullerene-related carbon nanotubes. He 

initially observed only multi-walled carbon nanotubes (MWCNTs) with 2 to 20 

layers, using transmission electron microscopy (Iijima, 1991). In 1993 in a 

subsequent publication, he confirmed the existence of single-walled carbon 

nanotubes (SWCNTs) and explained their structure (Iijima and Ichihashi, 1993). 

 

1.2 Statement of the Problem 

 

In recent years, there has been an increasing interest in the field of carbon nanotubes 

(CNTs). The extraordinary properties of CNTs, such as chemical, physical, electrical 

(Saito, 1997), mechanical (Wong et al., 1997) and thermal properties (Berber et al., 
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2000; Kim et al., 2001) made them potentially useful in a wide variety of 

applications in nanotechnology, electronics, and other fields of material science. 

These unique properties have attracted the researchers for low-cost synthetic 

production, large-scale production, control of diameter and walls, and their 

chiralities. Single-walled carbon nanotubes (SWCNTs) have especially created an 

active area of current research, because they show unique chirality-dependent 

electronic structures, mechanical strength, and high electrical and thermal 

conductivity (Kang et al., 2008) 

 

Based on our existing knowledge and literature review, catalyst is the most important 

key factor to control the single-walled carbon nanotubes (SWCNTs) growth. Hence, 

the focus of this study is on the nature of catalyst for the growth of SWCNTs. 

Therefore, the study deals with different molar ratios of iron (Fe) in the catalysts for 

synthesizing carbon nanotubes. 

 

1.3 Objective of the Study 

 

This study aims at determining the effects of the iron concentration in the Fe-Mo-

MgO catalyst on the synthesis of carbon nanotubes via catalytic chemical vapor 

deposition (CCVD) technique. It is worthwhile to investigate whether single-walled 

carbon nanotubes (SWCNTs) can be synthesized when Fe-Mo-MgO is used as a 

catalyst, while argon is utilized as a carrier gas and ethanol as a carbon source by 

CCVD method. Accordingly, the objectives of the study are as the followings: 
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1. To study the relationship between different molar ratios of iron (Fe) in the as-

prepared Fe-Mo-MgO catalyst and the yield and quality of the synthesized 

SWCNTs via catalytic chemical vapor deposition (CCVD) method. 

 

2. To examine the effect of different flow rates of carrier gas (Ar) and also 

temperature on the yield and quality of synthesized SWCNTs with the as-

prepared catalysts.  

 

To be more specific, the purpose of this research is to prepare Fe-Mo-MgO catalyst 

with different molar ratios of iron (Fe) and examine the effects of as-prepared Fe-

Mo-MgO catalyst on the synthesis of carbon nanotubes (CNTs) by using ethanol 

decomposition and argon as a carrier gas in order to obtain single-walled carbon 

nanotubes (SWCNTs) with high yield and quality. 

 

1.4 Scope of the Study 

 

Within the scope of our investigation lies the preparation of the catalyst with 

different molar ratios of iron by impregnation method. The catalysts were 

characterized with x-ray diffraction (XRD) to see the structural changes in catalysts 

before and after heat treatment in order to see the material composition in the 

catalysts.  

 

The as-prepared catalysts with different molar ratio of iron were used to synthesize 

single-walled carbon nanotubes (SWCNTs), and to examine their effects on the yield 

and quality of synthesized CNTs. The effect of different flow rate of carrier gas (Ar) 
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and temperature on the growth of carbon nanotubes were also tested. To study the 

relationship between these factors and synthesized CNTs, different characterization 

methods were used. Scanning electron microscopy (SEM), x-ray diffraction (XRD), 

thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) are 

the characterization methods that were used for the synthesized CNTs in this study. 

 


