

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS OF ZINC-ALUMINIUM-HIPPURATE NANOCOMPOSITE BY VARIOUS METHODS.

FAIZA BINTI ABDUL BAHAR ITMA 2009 5

SYNTHESIS OF ZINC-ALUMINIUM-HIPPURATE NANOCOMPOSITE BY VARIOUS METHODS.

By

Faiza Binti Abdul Bahar

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirements for the Degree of Master of Philosophy

DECEMBER 2009

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Master of Science

SYNTHESIS OF ZINC-ALUMINIUM-HIPPURATE NANOCOMPOSITE BY VARIOUS METHODS.

BY

FAIZA BINTI ABDUL BAHAR

DECEMBER 2009

Chairman:	Mohd	Zobir	bin	Hussein,	PhD

Faculty : Institute of Advanced Technology

Zinc-aluminium-layered double hydroxide (ZAL) with nitrate as counter anion was prepared by direct co-precipitation method at constant pH, 7.5 under N_2 (g) atmosphere. The anion of hippuric acid (HA), as an organic guest was chosen to be intercalated into the interlayers of Zn-Al-layered double hydroxide (ZAL) inorganic host by direct coprecipitation method for the formation of Zn-Al-hippurate nanocomposite (ZAH), a hostguest type of material.

Various parameters, such as Zn to Al initial molar ratios, R_i which are 2, 3, 4, 5 and concentrations of hippurate anion in a range of 0.06 to 0.15 M, have been studied for

the formation of Zn-Al-hippurate nanocomposite synthesised by direct coprecipitation method (ZAHDM). X-ray diffraction pattern shows expansion of the precursor basal spacing compared to ZAL in order to accommodate the hippurate anion, which is larger in size than the nitrate. ZAHDMs synthesised at 0.15 M HA for all the ratios were chosen for further characterizations because sharper, symmetrical and more intense peaks were observed for these samples compared with samples prepared with other concentrations. In this study, ZAHs was also prepared by indirect anion exchange method (ZAHXMs) and reconstruction method (ZAHRMs).

The nanocomposites prepared by these different methods show that the highest basal spacing values were observed for the nanocomposite synthesis by direct coprecipitation method (ZAHDMs) and the lowest were obtained by using anion exchange method (ZAHXMs). This shows that different crystalline structure was observed for the different method of synthesis of the nanocomposites. The final ratio, R_f value for ZAHDM and ZAHRM nanocomposites were near to its initial molar ratio, R_i but for ZAHXMs (synthesis by anion exchange method), the R_f obtained are only in the range of 0.90 – 1.72 compared to their R_i of 2 – 5. The BET specific surface area values obtained for ZAHXM also show the lowest value compared to ZAHDM and ZAHRM nanocomposites. These show that the method of synthesis also plays the role in determining the resulting properties of the nanocomposites.

For ZAHDMs and ZAHXMs nanocomposites, the accumulated release profile of HA from the interlayer of the nanocomposite in a sodium aqueous solution were studied and values of the percentage release were obtained by separately put each of the

ii

nanocomposite into the sodium carbonate aqueous solutions at various concentrations of 0.0025, 0.005 and 0.01 M. The release rate of HA was found to be faster for nanocomposite prepared by indirect anion exchange method, compared to the one synthesised by direct co-precipitation method. The data of the HA released from the nanocomposites into various aqueous carbonate solutions were then fitted into various models of release kinetics. In which, the release of the intercalated guest for both ZAHDM and ZAHXM were found to be governed by pseudo-second order kinetic.

Abstrak tesis yang dikemukakan kepada Senat Universiti Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

SINTESIS ZINK-ALUMINIUM HIPPURAT NANOKOMPOSIT DENGAN PELBAGAI KAEDAH.

BY

FAIZA BINTI ABDUL BAHAR

DISEMBER 2009

Chairman: Mohd Zobir bin Hussein, PhD

Faculty : **Institute of Advanced Technology**

Hidroksida berlapis ganda Zink-Aluminium (ZAL) dengan nitrat sebagai anion lawan di dalam ruang hidroksida berlapis ganda disintesis melalui kaedah pemendakan bersama serentak pada pH 7.5 di dalam keadaan dialirkan gas nitrogen. Asid hippurik, iaitu satu bahan organik telah dipilih untuk disisipkan ke dalam ruang antara lapisan hidroksida berlapis ganda Zink-Aluminium (ZAL) melalui kaedah pemendakan serentak untuk membentuk nanokomposit Zn-Al-hippurat (ZAH).

Pelbagai parameter, seperti nisbah kandungan logam Zn/Al dalam bahan pemula iaitu 2, 3, 4 dan 5 dan kepekatan anion hippurat dari 0.06 - 0.15 M telah diuji dalam pembentukkan nanokomposit Zn-Al-hippurat yang disintesis melalui kaedah

pemendakkan bersama serentak (ZAHDM). Corak pembelauan sinar-x menunjukkan berlakunya pengembangan jarak antara ruang bagi perumah bagi menempatkan anion hippurat, yang saiznya lebih besar berbanding anion nitrat. ZAHDM yang disintesis pada kepekatan HA 0.15 M bagi setiap nisbah yang telah dipilih bagi pencirian selanjutnya kerana ia menunjukkan puncak yang simetri dan tajam jika dibandingkan dengan sampel lain yang disintesis pada kepekatan berbeza. Di sini, nanokomposit juga disintesis melalui kaedah penukaran anion secara tak langsung dan kaedah pembinaan semula.

Nanokomposit yang disintesis melalui tiga kaedah yang berbeza menunjukkan jarak antara ruang bagi nanokomposit yang disintesis melalui kaedah pemendakan bersama serentak (ZAHDM) adalah yang tertinggi dan jarak antara ruang yang terendah diperolehi melalui kaedah penukaran anion secara tak langsung (ZAHXM). Ini menunjukkan perbezaan struktur hablur dapat deperhatikan pada semua kadeah yang berbeza dalam penyediaan nanokomposit. Nilai nisbah akhir, R_f bagi ZAHDM dan ZAHRM nanokomposit menghampiri nilai nisbah awal, R_i tetapi bagi ZAHXM yang disediakan melalui kaedah penukaran anion secara tak langsung, nilai R_f yang diperolehi cuma pada julat 0.90 - 1.72 berbanding nilai R_i iaitu 2 hingga 5. Nilai luas permukaan spesifik yang diperolehi oleh ZAHXM juga menunjukkan nilai terendah jika dibandingkan dengan ZAHDM dan ZAHXM nanokomposit. Ini menunjukkan bahawa kaedah yang berbeza juga memainkan peranan dalam penentuan ciri-ciri nanokomposit. Bagi nanokomposit ZAHDM dan ZAHXM, profil pelepasan terkumpul HA⁻ dari ruang lapisan nanokomposit di dalam larutan akues natrium diselidiki dan nilai peratusan pelepasan HA⁻ diperolehi dengan memasukkan setiap nanokomposit secara berasingan ke dalam larutan akues natrium karbonat pada pelbagai kepekatan iaitu 0.0025, 0.005 dan 0.01 M. Kadar pelepasan HA⁻ didapati lebih cepat bagi nanokomposit yang disediakan melalui kaedah pertukaran anion secara tak langsung berbanding dengan kaedah pemendakkan serentak. Data dari profil pelepasan telah dipadankan kepada beberapa model pelepasan kinetik. Didapati bahawa, pelepasan anion HA yang tersisip pada ZAHDM and ZAHXM didapati mengikuti kinetik tertib kedua.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah SWT that had given me the strength and good health during my duration completing this study.

Firstly, I would like to express my greatest gratitude to my supervisors Professor Dr Mohd Zobir bin Hussein and my co-supervisor, Assoc. Prof Dr Asmah Hj Yahaya for their unlimited guidance, advise, constructive comments and assistance throughout the entire duration of this study.

I also would like to extend my gratitude to all science officers, laboratory technicians and laboratory assistants in ITMA and also in chemistry department UPM for their assistance and contribution toward my study. I also would like to express my gratitude to UPM for the PASCA scheme scholarship.

My sincere thanks to my lab mates in ITMA for their excellence in boundlessly sharing knowledge with me. I really appreciate the time we spend together at ITMA.

Lastly, my deepest appreciation to my family for giving me love and support throughout my study at UPM.

I certify that an Examination Committee has met on 17 December 2009 to conduct the final examination of Faiza binti Abdul Bahar on her Master of Science thesis entitled "Layered Double Hydroxide as a Host for the Formation of a New Nanocomposite Material Prepared by Various Methods" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the relevant degree.

Members of the Examination Committee were as follows:

Prof. Madya Dr. Abdul Halim Abdullah, PhD

Department of Chemistry Faculty of Science Universiti Putra Malaysia (Chairman)

Prof. Madya Dr. Mansor Hj. Ahmad @ Ayob , PhD

Department of Chemistry Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Dr. Nor Azowa Ibrahim, PhD

Department of Chemistry Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Prof. Dr. Musa Ahmad, PhD

Pusat Pengajian Sains Kimia dan Teknologi Makanan Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia 43600 UKM Bangi Selangor (Enternal Examiner)

> Professor Dr. Hasanah Mohd Ghazali Professor and Dean School of Graduate Studies Universiti Putra Malaysia

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Prof. Dr. Mohd Zobir Hussein, PhD

Department of Chemistry Faculty of Science Universiti Putra Malaysia (Chairman)

Prof. Madya Dr. Asmah Hj Yahaya, PhD

Centre of Foundation Studies for Agricultural Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 June 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

> Faiza binti Abdul Bahar Date: 17 December 2010

TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	iv
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xxiii
CHAPTER	

1	INT	RODU	JCTION	1
2	LIT	ERAT	URE REVIEW	6
	2.1	Layer	red Double Hydroxide (LDH)	6
		2.1.1	Historical background	7
		2.1.2	Structural properties of layered double hydroxide	8
		2.1.3	Syntheses of layered double hydroxide	10
		2.1.4	Application of layered double hydroxide	10
	2.2	Anior	n in the interstitial region	11
	2.3	Guest	t anion : Hippuric acid (HA)	12
	2.4	Nanoo	composite	14
		2.4.1	Syntheses of nanocomposite materials	15
		2.4.2	Previous studies in nanocomposite	17

3 MATERIALS AND METHODS

3.1	Mater	ials	21
3.2	Appar	atus and instrumentation	22
3.3	Synth	eses of layered double hydroxide	22
	3.3.1	Preparation of Zn-Al- NO_3^{-} - layered double hydroxid (ZAL)	23
3.4	Synth	eses of Zn-Al-hippurate nanocomposite	23
	3.4.1	Direct co-precipitation method	24
	3.4.2	Anion exchange method	25
	3.4.3	Reconstruction method	26
3.5	Contr	olled release study of the guest anion, HA into aqueous solution	26
3.6	Physic	co-chemical analyses and characterization	27
	3.6.1	Powder X-ray diffraction (PXRD)	27
	3.6.2	Fourier transform infrared spectroscopy (FTIR)	28
	3.6.3	Elemental analysis	28
	3.6.4	Carbon-Hydrogen-Nitrogen Analysis (CHN)	29

		3.6.5	Thermogravimetric and differential thermal gravimetric analyses (TGA/DTG)	29
		3.6.6	Surface area and porosimetry analyses (ASAP)	30
		3.6.7	Scanning electron microscopy (SEM)	30
		3.6.8	Ultra-violet / visible spectrosscopy (UV/VIS)	31
4	RES	SULTS	AND DISCUSSION	32
	4.1	Physic	co-chemical properties of Zn-Al-NO ₃ ⁻ - layered double hydroxide (ZAL)	32
		4.1.1	Powder X-ray diffraction	32
		4.1.2	Fourier transform infrared spectroscopy	33
		4.1.3	Elemental analysis	35
		4.1.4	I hermal analysis	39 45
		4.1.5	Surface properties	45
		4.1.0	Surface morphology	47
	4.2	Physic precip	co-chemical properties of Zn-Al-hippurate nanocomposite by direct co- itation method (ZAHDM)	50
		4.2.1	Powder X-ray diffraction	50
		4.2.2	Fourier transform infrared spectroscopy	52
		4.2.3	Elemental analysis	56
		4.2.4	I hermal analysis	59 61
		4.2.5	Surface properties	01
		4.2.0	Surface morphology	12
	4.3	Contro ZAHI	olled release study of hipurate anion, (HA) from the interlayer of DM	73
		4.3.1	Release kinetics of HA	76
				79
	4.4	Physic	co-chemical properties of Zn-Al-hippurate nanocomposite by anion	79
		4.4.1	Powder X-ray diffraction	79
		4.4.2	Fourier transform infrared spectroscopy	84
		4.4.3	Elemental analysis	87
		4.4.4	Thermal analysis	90
		4.4.5	Surface properties	92
		4.4.6	Surface morphology	102
	4.5	Contro ZAHX	olled release study of hipurate anion, (HA) from the interlayer of KM	102
		4.5.1	Release kinetics of HA	106
	4.6	Physic recons	co-chemical properties of Zn-Al-hippurate nanocomposite by struction method (ZAHRM)	111

	4.6.1	Calcination of the LDH	111
	4.6.2	Formation of Zn-Al hippurate nanocomposite by reconstruction method	120
		(ZAHRM)	
4.7	Compa	rison of chemical properties between nanocomposite synthesised	
	through	h three different methods.	145
	4.7.1	Comparison of nanocomposites prepared by direct co- precipitation and	145
		indirect anion exchange method	
	4.7.2	Comparison of ZAHDM4, ZAHXM4 and ZAHRM300	152
		nanocomposites	
			155
5 CON	ICLUS	ION	
REFERE	NCES		158
APPEND	ICES A	Α	163
APPEND	ICES H	3	165
APPEND	ICES (167
APPEND	ICES I		168
BIODAT	A OF S	TUDENT	171
LIST OF	PUBL	ICATION	172

LIST OF TABLES

Table		Page
1	Elemental composition of ZAL synthesised at various R and at pH 7.5.	38
2	Weight percentage of H and N in ZAL synthesised at various R and at pH 7.5.	38
3	Thermal properties of ZAL synthesised at various R and at pH 7.5	40
4	Surface properties of ZAL synthesised at $R_i = 2, 3, 4$ and 5	47
5	Elemental composition of ZAHDM synthesised at $R_i = 2, 3, 4, 5$ using 0.15 M hippuric acid at pH 7.5	57
6	Weight percentage of C, H, and N in ZAHDM synthesised at various R using 0.15 M hippuric acid at pH 7.5	59
7	Thermal properties of HA and ZAHDM nanocomposite synthesised by direct method at various R using 0.15 M hippuric acid at pH 7.5	61
8	Surface properties of ZAHDM synthesised at $R_i = 2, 3, 4$ and 5 with ZAL4 as comparison	70
9	Percentage release of HA ⁻ from ZAHDM synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	75
10	Correlation coefficient (r^2) , rate constant (k) and half life $(t_{1/2})$ obtained from the zeroth order by fitting the release data of HA ⁻ from ZAHDMs synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	80
11	Correlation coefficient (r^2), rate constant (k) and half life ($t_{1/2}$) obtained from the first order by fitting the release data of HA ⁻ from ZAHDM synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	81
12	Correlation coefficient (r^2), rate constant (k) and half life ($t_{1/2}$) obtained from the pseudo-second order by fitting the release data of HA ⁻ from ZAHDM synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	82
13	Correlation coefficient (r^2), rate constant (k) and half life ($t_{1/2}$) obtained from the parabolic diffusion equation by fitting the release data of HA ⁻ from ZAHDM synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	83

14	Elemental composition of ZAHXMs synthesised at at various R using 0.15 M hippuric acid at pH 7.5	89
15	Weight percentage of C, H and N in ZAHXMs synthesised at $R_i = 2, 3, 4, 5$ using 0.15 M hippuric acid at pH 7.5	90
16	Thermal properties of ZAHXM nanocomposites synthesised at various R using 0.15 M hippuric acid at pH 7.5	97
17	Surface properties of ZAHXM synthesised at various R with ZAL4 as comparison	100
18	Percentage release of HA ^{$-$} ZAHXM synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	104
19	Correlation coefficient (r^2) , rate constant (k) and half life $(t_{1/2})$ obtained from the zeroth order fitting of the release data of HA from ZAHXMs synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	107
20	Correlation coefficient (r^2) , rate constant (k) and half life $(t_{1/2})$ obtained from the first order fitting of the release data of HA ⁻ from ZAHXMs synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	108
21	Correlation coefficient (r^2) , rate constant (k) and half life $(t_{1/2})$ obtained from the pseudo-second order fitting of the release data of HA ⁻ from ZAHXMs synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	109
22	Correlation coefficient (r^2), rate constant (k) and half life ($t_{1/2}$) obtained from the parabolic diffusion equation fitting of the release data of HA ⁻ from ZAHXMs synthesised at various R into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions	110
23	Surface properties of ZAL4 and its calcined products obtained by heating ZAL4 at different temperatures: 100, 200, 300, 400, 500, 600, 700 and 800 $^{\circ}$ C	120
24	Elemental composition of ZAHRM100 – ZAHRM 800 synthesised by reconstruction method at Zn to Al molar ratio 4 at pH 7.5	128
25	Weight percentage of C, H and N in ZAHRM100 – ZAHRM800 synthesised by reconstruction method at Zn to Al molar ratios 4 and at pH 7.5	128
26	Thermal properties of ZAHRM100- ZAHRM800 synthesised by reconstruction method using calcined oxides obtained at different temperature: 100, 200, 300, 400, 500, 600, 700 and 800 °C	130

27	Surface properties of ZAHRM100- ZAHRM800 synthesised by reconstruction method using calcined products obtained by calcination at different temperatures, 100, 200, 300, 400, 500, 600, 700 and 800 °C	141
28	Comparison of nanocomposites properties synthesised by direct co- precipitation, indirect anion exchange and reconstruction methods.	154

LIST OF FIGURES

Figure		Page
1	Schematic representation of LDH structure	8
2	The molecular structure of hippuric acid	12
3	PXRD patterns of ZAL synthesised at various $R_i = 2, 3, 4, 5$ at pH 7.5	34
4	FTIR spectrum of ZAL synthesised at various $R_i = 2, 3, 4, 5$ at pH 7.5	36
5	Plot of Al (x _{Al}) of ZAL against initial molar ratio, Zn/Al	37
6	TGA-DTG thermograms for ZAL2	41
7	TGA-DTG thermograms for ZAL3	42
8	TGA-DTG thermograms for ZAL4	43
9	TGA-DTG thermograms for ZAL5	44
10	Adsorption-desorption isotherms for ZAL synthesised at $R_i = 2, 3, 4$ and 5	46
11	Plot of BET surface area against initial molar ratio, Zn/Al of ZAL	47
12	BJH pore size distribution for ZAL synthesised at $R_i = 2, 3, 4$ and 5	48
13	Scanning electron micrographs for ZAL4 at magnifications of a) 1000 X, b) 5 000 X and c) 10000 X.	49
14	PXRD patterns of ZAHDM nanocomposites synthesised at various R and at 0.06 - 0.15 M HA.	51
15	PXRD patterns of ZAL and ZAHDM synthesised at various R using 0.15 M hippuric acid at pH 7.5	53
16	FTIR spectra of HA, ZAL4 and ZAHDM synthesised at various R using 0.15 M hippuric acid at pH 7.5 with ZAL4 for comparison	55

17	Plot of Al (x_{Al}) and percent loading (%) of ZAHDM nanocomposites against molar ratio, Zn/Al	58
18	TGA-DTG thermograms for pure HA	62
19	TGA-DTG thermograms for ZAHDM2	63
20	TGA-DTG thermograms for ZAHDM3	64
21	TGA-DTG thermograms for ZAHDM4	65
22	TGA-DTG thermograms for ZAHDM5	66
23	Plot of total weight loss (%) of ZAHDM nanocomposites against initial molar ratio, Zn/Al	67
24	Adsorption-desorption isotherms for ZAL4 and ZAHDMs synthesised at various R using 0.15 M hippuric acid at pH 7.5.	68 71
25	Plot of BET surface area against initial molar ratio, Zn/Al of ZAHDM nanocomposites	
26	BJH pore size distribution for ZAL4 and ZAHDMs synthesised at various R using 0.15 M hippuric acid at pH 7.5.	73
27	Figure 27: Scanning electron micrographs for a) ZAHDM2, b) ZAHDM3, c) ZAHDM4 and d) ZAHDM5 at magnifications of 5 000 X	-74
28	Release profiles of HA ⁻ into 0.0025, 0.005 and 0.01 M Na ₂ CO ₃ aqueous solutions from ZAHDM synthesised at various R using 0.015 M hippuric acid at pH 7.5.	77
29	PXRD patterns for the samples recovered from the aqueous solutions after the release of HA ⁻ from the interlayer of ZAHDM5 at various release times from 0 to 16 hours	80
30	Fitting of HA ⁻ release data to zeroth order kinetics for a) ZAHDM2, b) ZAHDM3, c) ZAHDM4 and d) ZAHDM5.	81
31	Fitting of HA ⁻ release data to first order kinetics for a) ZAHDM2, b) ZAHDM3, c) ZAHDM4 and d) ZAHDM5.	82
32	Fitting of HA ⁻ release data to pseudo-second order kinetics for a) ZAHDM2, b) ZAHDM3, c) ZAHDM4 and d) ZAHDM5	83
33	Fitting of HA ⁻ release data using parabolic diffusion equations for a)	85

	ZAHDM2, b) ZAHDM3, c) ZAHDM4 and d) ZAHDM5 using 0.15 M 7.5	
34	PXRD patterns of ZAL and ZAHXMs synthesised at various R using 0.15 M hippuric acid at pH 7.5	87
35	FTIR spectra of hippuric acid, ZAL and ZAHXMs synthesised at various R using 0.15 M hippuric acid at pH 7.5	90
36	Plot of Al (x_{Al}) and percent loading (%) of ZAHXM nanocomposites against initial molar ratio, Zn/Al	92
37	TGA-DTG thermograms for ZAHXM2	93
38	TGA-DTG thermograms for ZAHXM3	94
39	TGA-DTG thermograms for ZAHXM4	95
40	TGA-DTG thermograms for ZAHXM5	96
41	Plot of total weight loss (%) of ZAHXM nanocomposites against initial molar ratio, Zn/Al	97
42	Adsorption-desorption isotherms for ZAL4 and ZAHXMs synthesised at various R using 0.15 M hippuric acid at pH 7.5	99
43	Plot of BET surface area against molar ratio, Zn/Al of ZAHXM nanocomposites	100
44	BJH pore size distribution for ZAHXMs synthesised at various R using 0.15 M hippuric acid at pH 7.5 with ZAL4 for comparison	101
45	Scanning electron micrographs for a) ZAHXM2, b) ZAHXM3, c) ZAHXM4 and d) ZAHXM5 at magnifications of 5 000 X	102
46	Release profile of HA ⁻ into 0.0025, 0.005 and 0.01 M of Na ₂ CO ₃ aqueous solutions from ZAHXM synthesised at various R using 0.015 M hippuric acid at pH 7.5.	103
47	PXRD patterns for the samples recovered from the aqueous solutions after the release of HA^- from the interlayer of ZAHXM5 at various release times, from 0 to 8 hours	105
48	Fitting of HA ⁻ release data to zeroth order kinetics for a) ZAHXM2, b) ZAHXM3, c) ZAHXM4 and d) ZAHXM5.	107
49	Fitting of HA ⁻ release data to first order kinetics for a) ZAHXM2, b)	108

ZAHXM3, c) ZAHXM4 and d) ZAHXM5.

50	of HA ⁻ release data to pseudo-second order kinetics for a) ZAHXM2, b) ZAHXM3, c) ZAHXM4 and d) ZAHXM5.	109
51	Fitting of HA ⁻ release data to parabolic diffusion equations for a) ZAHXM2, b) ZAHXM3, c) ZAHXM4 and d) ZAHXM5.	110
52	PXRD patterns of ZAL4 and its calcined products obtained by heating ZAL4at different temperatures: 100, 200, 300, 400, 500, 600, 700 and 800 °C	113
53	FTIR spectra of ZAL4 and its calcined products obtained at different temperatures: 100, 200, 300, 400, 500, 600, 700 and 800 $^{\circ}$ C	115
54	Adsorption-desorption isotherms of ZAL4 and its calcined products obtained at different temperatures: 100, 200, 300, 400, 500, 600, 700 and 800 $^{\circ}$ C. (Inset: isotherm at 100, 200 and 300 $^{\circ}$ C)	117
55	BET surface area value versus the calcinations temperature at 100, 200, 300, 400, 500, 600, 700 and 800 $^{\circ}$ C.	118
56	BJH pore size distribution of ZAL4 and its calcined products obtained at different temperatures: 100, 200, 300, 400, 500, 600, 700 and 800 °C. (Inset: Pore size distribution of 100 - 300 °C)	119
57	PXRD patterns of ZAL4 and the reconstructed samples, ZAHRM prepared with calcined products obtained at different temperatures, 100, 200, 300,400, 500, 600, 700 and 800 °C	123
58	PXRD intensity of reconstruct nanocomposite (ZAHRM 100 – ZAHRM 800) versus calcinations temperature at 100, 200, 300, 400, 500, 600, 700 and 800 °C	124
59	FTIR spectra of ZALR4 and the reconstructed samples, ZAHRM prepared with calcined products obtained at different temperatures, 100, 200, 300, 400, 500, 600, 700 and 800 °C	125
60	TGA-DTG thermograms of the reconstructed samples ZAHRM100 prepared from calcined product obtained at 100 $^{\circ}$ C	131
61	TGA-DTG thermograms of the reconstructed samples ZAHRM200 prepare from calcined product obtained at 200 $^{\circ}C$	132
62	TGA-DTG thermograms of the reconstructed samples ZAHRM300 prepared from calcined product obtained at 300 $^{\circ}\mathrm{C}$	133

63	TGA-DTG thermograms of the reconstructed samples ZAHRM400 prepared from calcined product obtained at 400 $^{\circ}C$	134
64	TGA-DTG thermograms of the reconstructed samples ZAHRM500 prepared from calcined product obtained at 500 $^{\circ}\mathrm{C}$	135
65	TGA-DTG thermograms of the reconstructed samples ZAHRM600 prepared from calcined product obtained at 600 °C	136
66	TGA-DTG thermograms of the reconstructed samples ZAHRM700 prepared from calcined product obtained at 700 $^{\rm o}{\rm C}$	137
67	TGA-DTG thermograms of the reconstructed samples ZAHRM800 prepared from calcined product obtained at 800 °C	138
68	Adsorption-desorption isotherms of ZAL4 and ZAHRM100- ZAHRM800 synthesised by reconstruction method using calcined products obtained at different calcination temperatures, 100, 200, 300, 400, 500, 600, 700 and 800 °C (Inset: Isotherms of ZAL4 and ZAHRM100)	140
69	BET surface area value versus the calcinations temperature at 100, 200, 300, 400, 500, 600, 700 and 800 $^{\circ}$ C for the formation of renconstructed nanocomposites.	142
70	BJH pore size distribution of ZAL4 and ZAHRM100- ZAHRM800 synthesised by reconstruction method using calcined products obtained at different calcication temperatures, 100, 200, 300, 400, 500, 600, 700 and 800 °C (Inset: Pore size distribution of ZAL4, ZAHRM100, ZAHRM200 and ZAHRM600)	143
71	Scanning electron micrographs of: a) ZAHDM4 (synthesised by direct method), b) ZAHRM300, c) ZAHRM400, d) ZAHRM700 and e) ZAHRM800 at magnifications of 5000 X.	144
72	Basal spacing (003) against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5.	146
73	Final molar ratio (R_f) against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5.	147
74	Percent loading against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5	148
75	Total weight loss against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5	149

76	Plot of BET surface area against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5	150
77	Saturated percentage release at 0.0025 M of Na ₂ CO ₃ aqueous solution against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5	151
78	Saturated percentage release at 0.005 M of Na_2CO_3 aqueous solution against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5.	152
79	Saturated percentage release at 0.01 M of Na ₂ CO ₃ aqueous solution against Zn/Al initial molar ratio of ZAHDM and ZAHXM nanocomposites synthesised at Zn to Al molar ratios 2 -5	153

LIST OF ABBREVIATIONS

ASAP	Analysis of surface area and porosity
BET	Brunauer, Emmett and Teller
BJH	Barett, Joyner and Halenda
С	constant
CHN	carbon-hydrogen-nitrogen
FTIR	Fourier transform infrared
HA	hippuric acid
HA	hippurate
k	rate constant
LDH	Layered double hydroxide
M^{2+}	Divalent metal cation
M^{3+}	Trivalent metal cation
\mathbf{M}_{f}	final concentration of HA ⁻
$\mathbf{M}_{\mathbf{i}}$	initial concentration of HA ⁻
PXRD	Powder x-ray diffraction
R	Ratio
$R_{\rm f}$	Final ratio

R_i Initial ratio

- SEM Scanning electron microscopy
- $t_{1/2}$ time taken for the HA concentration to increase to half of its initial values

