FORMATION AND CHARACTERISTICS OF ENGKABANG-BASED NANO-COSMECEUTICALS

SITI SALWA ABD GANI
FS 2010 21
FORMATION AND CHARACTERISTICS OF ENGKABANG-BASED NANO-COSMECEUTICALS

By

SITI SALWA ABD GANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

July 2010
DEDICATED TO:

My family: Abah & Emak, my siblings,
my nephews and nieces

For your unwavering support, love and what you mean to me.
FORMATION AND CHARACTERISTICS OF ENGKABANG-BASED NANO-COSMECEUTICALS

By

SITI SALWA ABD GANI

July 2010

Chairman: Professor Dr. Mahiran Basri, PhD
Faculty: Science

Engkabang fat esters were synthesized from engkabang fat using Lipozyme® RM IM as a catalyst. The main composition of the fat esters were oleyl palmitate, oleyl stearate and oleyl oleate. The percentage yield was 93.67%.
Phase behaviors of engkabang fat and engkabang fat esters were determined through the construction of ternary phase diagrams using nonionic surfactants.
The increase of hydrophilic lipophilic balance (HLB) value of the surfactant gave larger homogenous and isotropic region in both ternary phase diagrams of Engkabang fat/Nonionic surfactant/Deionized water and Engkabang fat esters/Nonionic surfactant/Deionized water. Homogenous and isotropic regions were larger in the phase diagrams of engkabang wax esters compared to the phase diagrams of engkabang fat. Compositions of homogenous region from the ternary phase diagrams were selected as a pre-formulated cosmeceuticals
emulsions. Then, they were modified with the additions of solubilisant gamma, glycerin, xanthan gum and beeswax in an attempt to get stable formulations at high temperature.

Formulations F10 and E15 were chosen for further studies due to the stability at 45°C. They were prepared using high shear homogenizer, followed by using high pressure homogenizer. Both formulations were stable at room temperature, at 45°C and after undergoing thaw cycles test. The particle sizes of F10 and E15 after using high pressure were 115.75 nm and 148.41 nm, respectively. The zeta potential of F10 and E15 at 25°C were -36.4 mV and -48.8 mV and the pH values were 5.59 and 5.81, respectively. The rheology of F10 and E15 showed pseudoplastic material with shear thinning properties. There were no bacteria and fungus growth in the samples. Short-term moisturizing effect on 20 subjects analyzed by means of Analysis of Variance (ANOVA), gave P-values of 7.35×10^{-12} and 2.77×10^{-15} for F10 and E15, respectively. The hydration of the skins increased after application of F10 and E15 with P-value below 0.05.

The formulations of encapsulated and non-encapsulated titanium dioxide using engkabang fat and esters were produced by emulsification method using high shear homogenizer. All the formulations were stable after undergoing thaw cycles test, at room temperature and 45°C for three months except for Formulations F10-4A and F10-6A. The particle sizes of formulations were in...
range 80 nm to approximately 400 nm. Surface charge measurements of formulations having values from -30 mV to -59 mV denoted the presence of stable dispersions.

The morphological characterization confirmed the encapsulations of titanium dioxide in the formulations. The rheology analysis of the formulations showed shear thinning property as when the shear rate increased, the viscosity decreased. Formulations containing Engkabang fat could be classified as the thixotropic materials, whereby formulations containing Engkabang fat esters could be classified as pseudo plastic materials under a non-Newtonian fluid. Increasing amount of TiO$_2$ gave higher pH values of the formulations and higher conductivity. The TGA thermograms showed three major weight losses due to the evaporation of water content, evaporation of water content in lattice structure and decomposition of oil phase. The stable formulations containing encapsulated of TiO$_2$ gave higher absorbance compared to the formulations containing non-encapsulated of TiO$_2$.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi syarat untuk mendapatkan ijazah Doktor Falsafah

PENGHASILAN DAN SIFAT-SIFAT EMULSI BERASASKAN ENGKABANG DALAM BIDANG NANO-KOSMESUTIKAL

Oleh

SITI SALWA ABD GANI

Julai 2010

Pengerusi: Profesor Dr. Mahiran Basri, PhD

Fakulti: Sains

Ester lemak engkabang disintesis daripada lemak engkabang menggunakan Lipozyme® RM IM. Komposisi utama daripada ester lemak adalah oleyl palmitate, oleyl stearate dan oleyl oleate. Peratusan penghasilan adalah 93.67%. Fasa perilaku lemak engkabang dan ester lemak engkabang ditentukan dengan menggunakan rajah tiga fasa menggunakan surfaktan tidak berion. Peningkatan nilai keseimbangan sifat suka air dan minyak (HLB) surfaktan memberikan fasa homogen dan isotropik yang lebih besar di kedua-dua wilayah diagram tiga fasa lemak engkabang / surfaktan tak berion / air dinyah ion dan lemak ester engkabang / surfaktan tak berion / air dinyah ion. Fasa homogen dan isotropik lebih besar dalam rajah tiga fasa ester lemak engkabang dibandingkan dengan rajah tiga fasa lemak engkabang. Fasa homogen dari diagram tiga fasa dipilih sebagai emulsi awal kosmesutikal.
Kemudian, formulasi itu diubahsuai dengan penambahan solubilisant gamma, glycerin, xanathan gum dan beeswax untuk mendapatkan formulasi yang stabil pada suhu tinggi.

Formulasi mengandungi enkapsulasi dan tidak enkapsulasi titanium dioksida menggunakan lemak dan ester engkabang dihasilkan melalui kaedah pengemulsian menggunakan mesin pengemulsi bertekanan tinggi. Semua formulasi adalah stabil selepas menjalani ujian kitaran mencair, pada suhu bilik
dan 45⁰C selama tiga bulan, kecuali formulasi F10-4A dan F10-6A. Saiz zarah formulasi adalah antara 80 nm ke 400 nm. Pengukuran cas permukaan formulasi menunjukkan nilai daripada -30 mV ke-59 mV mengesahkan kestabilan formulasi-formulasi tersebut.

ACKNOWLEDGEMENTS

In the name of Allah S.W.T the compassionate and merciful, I would like to express my deepest gratitude to Allah S.W.T. for allowing me to complete my study. I wish to express my sincere appreciation to my supervisor, Prof. Dr. Mahiran Basri for her valuable guidance, advice, supervision, patience, and suggestions during the period of this study. My appreciation also goes to my co-supervisors, committee members and EMTECH group’s principle researchers; Prof. Dr. Mohd Basyaruddin Abdul Rahman, Prof. Dr. Anuar Kassim, Prof. Dr. Raja Noor Zaliha Raja Abd Rahman, Prof. Dr. Abu Bakar Salleh, Dr. Zahariah Ismail for their valuable time, comments, encouragement and moral support.

My deepest appreciation is also extended to Sarawak Forestry Research Centre, Sarawak Forest Tree Seed Bank, Sarawak Timber Museum, and Sarawak Forest Department for their help and kindness. I could not forget the experiences there especially when I saw the real engkabang tree in Semengoh Reserve Forest, Sarawak. I would like to convey million thanks to Rosita Hamdan and Datuk Kenneth Kanyan for their help while I was in Sarawak.

I am grateful to Advanced Oleochemical Technology Division (AOTD), Sime Darby Plantation Sdn. Bhd., my laboratory members; K. Us, Hasmam, Sook Han, Atena, Fariza, Lim, Malahat, Naz and others for their cooperation in one way or another. Finally, my deepest appreciation and love goes to my family.
especially to my ‘abah’ and ‘emak’, Hj. Abd Gani Talip and Hjh. Fatimah Kadir for their strong support, understanding and love. Your unwavering support and love lifted my spirit and confidence, and really reduce my physical and mental burdens. May Allah bless you all the time.
I certify that a Thesis Examination Committee has met on 1st July 2010 to conduct the final examination of Siti Salwa Abd Gani on her thesis entitled “Formation and Characteristics of Engkabang-based Nano-Cosmeceuticals” in accordance with Universities and Universities Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Doctor of Philosophy Degree.

Members of the Thesis Examination Committee were as follows:

Zulkarnain Zainal, Ph.D
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Faujan Hj. Ahmad, Ph.D
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Mohd Aspollah Hj. Md. Sukari, Ph.D
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Shahidan Radiman, Ph.D
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis is submitted to the Senate of University Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of Supervisory Committee are as follows:

Mahiran Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Anuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Raja Noor Zaliha Raja Abd Rahman, PhD
Professor
Faculty of Biotechnology and Biomolecular Science
Universiti Putra Malaysia
(Member)

Zahariah Ismail, PhD
Chief Chemist 1
Banting, Selangor, Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

(SITI SALWA ABD GANI)
Date:
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGEMENTS ix
APPROVAL xi
DECLARATION xiii
LIST OF TABLES xviii
LIST OF FIGURES xx
LIST OF SCHEMES xxvi
LIST OF ABBREVIATIONS xxvii

CHAPTER

1 INTRODUCTION 1
Objectives 3

2 LITERATURE REVIEW 5
Cosmeceuticals
Cosmeceuticals as Quasidrugs 5
Market Values of Cosmeceuticals Product 6
Importance of Cosmeceuticals 8
Hydration on the Human Skin 8
Ultraviolet Protection 11
Delivery System 18
Cosmeceuticals Ingredients 23
Fats and Esters 24
Surfactants as Emulsifiers 31
Humectants 39
Active Ingredients 40
Rheology Modifier 45
Preservatives 46
Stability of Emulsion System 48
Formation of Emulsions 48
Preparation of Nano-Emulsions using High 50
Pressure Homogenizer
Ostwald Ripening 51
Reducing Ostwald Ripening 53
Characteristics of Cosmeceuticals Emulsions 54
Particle Sizing 54
Electrical Charges in Dispersions 56
Rheology 59
3 MATERIALS AND METHODS

Materials

Synthesis of Engkabang Fat Esters
Alcoholysis Reaction
Isolation and Purification of Engkabang Fat Esters
Identification of Engkabang Fat Esters (EFE)
Thin Layer Chromatography (TLC)
Gas Chromatography (GC)
Analysis of Yield of Engkabang Fat Esters
Percentage Yield of Engkabang Fat Esters
Determination of HLB Value of EFE

Construction of Ternary Phase Diagram
Phase Behavior of Engkabang Fat (EF) and Esters (EFE)
Effect of Phase Behavior of EF and EFE with Respect to Different Nonionic Surfactants
Effect of Addition of Solubilisant Gamma in Ternary System
Selection of Composition Points in Ternary System
Preparation of Pre-formulated Emulsion Using Low Shear Rate Emulsification
Stability of Engkabang-based Formulations
Addition of Solubilisant Gamma
Addition of Glycerin
Addition of Xanthan Gum
Addition of Beeswax
Preparation of Emulsion using High Shear and High Pressure Homogenization
Preparation of Formulation Containing Encapsulated Titanium Dioxide
Preparation of Formulation Containing Non-encapsulated Titanium Dioxide

Characteristics of the Emulsions
Stability Study and pH Measurement
Particle Size Measurement
Surface Charge Measurement
Rheology Study
Transmission Electron Microscopy (TEM) Analysis
Conductivity Measurement
Thermogravimetric Analysis (TGA)

Safety Test
Microbiology Test
Irritancy Test (In-Vitro Irritection Assay)

Efficacy Test
Moisturizing Efficacy Test
RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Synthesis of Engkabang Fat Esters</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of Engkabang Fat Esters (EFE)</td>
<td>94</td>
</tr>
<tr>
<td>Thin Layer Chromatography (TLC) Analysis</td>
<td>94</td>
</tr>
<tr>
<td>Gas Chromatography (GC) Analysis</td>
<td>96</td>
</tr>
<tr>
<td>Determination of HLB Value of Engkabang Fat Esters</td>
<td>100</td>
</tr>
<tr>
<td>Phase Behavior Study</td>
<td>101</td>
</tr>
<tr>
<td>Effect of Phase Behavior of Engkabang Fat with Respect to Different Nonionic Surfactants</td>
<td>101</td>
</tr>
<tr>
<td>Effect of Phase Behavior of Engkabang Fat Esters with Respect to Different Nonionic Surfactants</td>
<td>106</td>
</tr>
<tr>
<td>Effect of Engkabang Fat and Esters with Respect to the Homogenous and Isotropic Region</td>
<td>111</td>
</tr>
<tr>
<td>Effect of Addition of Solubilisant Gamma in Ternary System</td>
<td>112</td>
</tr>
<tr>
<td>Selection of Composition Points in Ternary Phase Diagrams</td>
<td>115</td>
</tr>
<tr>
<td>Preparation of Pre-formulated Emulsions Using Engkabang Fat and Esters</td>
<td>120</td>
</tr>
<tr>
<td>Stability of Engkabang-based Formulations</td>
<td>121</td>
</tr>
<tr>
<td>Addition of Solubilisant Gamma</td>
<td>121</td>
</tr>
<tr>
<td>Addition of Glycerin</td>
<td>125</td>
</tr>
<tr>
<td>Addition of Xanthan Gum</td>
<td>130</td>
</tr>
<tr>
<td>Addition of Beeswax</td>
<td>132</td>
</tr>
<tr>
<td>Physico-chemical Analysis of Formulations F10 and E15</td>
<td>137</td>
</tr>
<tr>
<td>PH Measurement</td>
<td>137</td>
</tr>
<tr>
<td>Particle Size Measurement</td>
<td>137</td>
</tr>
<tr>
<td>Surface Charge Measurement</td>
<td>140</td>
</tr>
<tr>
<td>Rheology Study</td>
<td>141</td>
</tr>
<tr>
<td>Safety Test</td>
<td>144</td>
</tr>
<tr>
<td>Microbiology Test</td>
<td>144</td>
</tr>
<tr>
<td>Irritancy Test (In-vitro Irritation Assay)</td>
<td>149</td>
</tr>
<tr>
<td>Efficacy Test</td>
<td>151</td>
</tr>
<tr>
<td>Moisturizing Efficacy Test</td>
<td>151</td>
</tr>
<tr>
<td>Addition of Titanium dioxide (TiO$_2$) as Sunscreen Agent</td>
<td>156</td>
</tr>
<tr>
<td>Physico-chemical Analysis of Engkabang-based Formulations Containing TiO$_2$</td>
<td>157</td>
</tr>
<tr>
<td>Stability Study of Engkabang-based Formulations Containing TiO$_2$</td>
<td>157</td>
</tr>
<tr>
<td>Particle Size Measurement of Engkabang-based Formulations Containing TiO$_2$</td>
<td>159</td>
</tr>
<tr>
<td>Surface Charge Measurement of Engkabang-based Formulations Containing TiO$_2$</td>
<td>162</td>
</tr>
</tbody>
</table>
5 CONCLUSIONS

REFERENCES 201
APPENDICES 221
BIODATA OF STUDENT 282
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Examples of cosmeceutical ingredients and their functions</td>
</tr>
<tr>
<td>2.2</td>
<td>Major fatty acids in engkabang fat, palm oil and palm kernel oil</td>
</tr>
<tr>
<td>2.3</td>
<td>Range HLB of surfactants for different purposes</td>
</tr>
<tr>
<td>2.4</td>
<td>Preferred synthetic preservatives in the cosmetic industry</td>
</tr>
<tr>
<td>2.5</td>
<td>Application of non-newtonian fluids</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical composition of formulation F10</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical composition of formulation E15</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical composition of formulations of EF containing encapsulated and non-encapsulated of TiO₂</td>
</tr>
<tr>
<td>3.4</td>
<td>Chemical composition of formulations of EFE containing encapsulated and non-encapsulated of TiO₂</td>
</tr>
<tr>
<td>3.5</td>
<td>Materials for agar preparation</td>
</tr>
<tr>
<td>3.6</td>
<td>Relationship of human equivalent score to irritancy classification for the dermal irritation test method</td>
</tr>
<tr>
<td>4.1</td>
<td>The original compositions of the pre-formulations based on ternary phase diagrams</td>
</tr>
<tr>
<td>4.2</td>
<td>Addition of solubilisant gamma in engkabang fat formulations</td>
</tr>
<tr>
<td>4.3</td>
<td>Stability after freeze-thaw cycle, stability at room temperature, 25°C and at 45°C for three months</td>
</tr>
<tr>
<td>4.4</td>
<td>Addition of glycerin in engkabang fat formulations</td>
</tr>
<tr>
<td>4.5</td>
<td>Stability after freeze-thaw cycle test, stability at room temperature</td>
</tr>
</tbody>
</table>
temperature, 25ºC and at 45ºC for three months for F6 and F7

4.6 Addition of glycerin in engkabang fat esters formulations 128

4.7 Stability after freeze-thaw cycle test, stability at room temperature, 25ºC and at 45ºC for three months for E1, E2, E3, E5, E7, E8, E9 and E10 129

4.8 Addition of xanthan gum in engkabang fat esters formulations 131

4.9 Stability after freeze-thaw cycle test, stability at room temperature, 25ºC and at 45ºC for three months for E3, E4 and E6 131

4.10 Addition of beeswax in engkabang fat formulations 135

4.11 Stability after freeze-thaw cycle test, stability at room temperature, 25ºC and at 45ºC for three months for F7 to F10 135

4.12 Addition of beeswax in engkabang fat esters formulations 136

4.13 Stability after freeze-thaw cycle test, stability at room temperature, ±25ºC and at 45ºC for three months for E11 to E15 136

4.14 Particle sizes of Formulations F10 and E15 138

4.15 Irritancy test of Formulation E15 150

4.16 Analysis of data of F10 and F10P through Tukey-test 153

4.17 Analysis of data of E15 and E15P through Tukey-test 153

4.18 Stability after freeze-thaw cycle test, stability at room temperature and 45ºC for three months 158
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Revenue Split by Cosmeceuticals Product Type in Europe</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Stratum Corneum</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>The Sun Radiation Spectrum</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Surfactant Interaction at an Oil/Water Interface</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Illustration of Multiple Emulsions for (a) w/o/w Emulsion and (b) o/w/o Emulsion</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>Structure of Triglyceride</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Engkabang Tree</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Engkabang Seed</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Major Fatty Acids in Exotic Butters</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Sorbitan mono-oleate(Span80)</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>Sorbitan monolaurate(Span20)</td>
<td>38</td>
</tr>
<tr>
<td>2.12</td>
<td>Polyoxyethylene (20) sorbitan tri-oleate(Tween85)</td>
<td>38</td>
</tr>
<tr>
<td>2.13</td>
<td>Polyoxyethylene (20) sorbitan mono-oleate(Tween80)</td>
<td>38</td>
</tr>
<tr>
<td>2.14</td>
<td>Chemical Structure of Glycerin</td>
<td>40</td>
</tr>
<tr>
<td>2.15</td>
<td>Chemical Structures for (a) d-alpha-tocotrienol,(b) d-beta-tocotrienol, (c) d-gamma-tocotrienol, (d) d-delta-tocotrienol</td>
<td>43</td>
</tr>
<tr>
<td>2.16</td>
<td>Chemical Structure of Xanthan Gum</td>
<td>46</td>
</tr>
<tr>
<td>2.17</td>
<td>Illustration of Increase in Laplace Pressure When a Spherical Drop is Deformed to a Prolate Ellipsoid</td>
<td>49</td>
</tr>
<tr>
<td>2.18</td>
<td>Illustration of Ostwald Ripening</td>
<td>53</td>
</tr>
</tbody>
</table>
2.19 Set-up for PCCS. Two Lasers Illuminate the Same Scattering Volume Creating Two Sets of Scattering Patterns 55

2.20 Schematic Representation of Zeta Potential 58

2.21 Illustration of Deformations Produced Between Parallel Plates 60

2.22 Typical flow curves of shear stress versus shear rate 64

2.23 Typical curves of viscosity versus shear rate 64

3.1 Transmission Electron Microscope 84

3.2 Schematic Diagram of Transmission Electron Microscope 85

4.1 Thin Layer Chromatogram of Oleyl Alcohol (Lane 1), Engkabang Fat (Lane 2), and Engkabang Fat Esters (Lane 3) 95

4.2 A Chromatogram of the Standard Esters. Methyl Arachidate is the Internal Standard 97

4.3 A Chromatogram of the Sample before Reaction 98

4.4 A Chromatogram of Engkabang Fat Esters after Purification 99

4.5 Ternary Phase Diagram of Engkabang Fat/Span80/Deionized water. T2p-Two-Phase Region and TT-Three-Phase Region 102

4.6 Ternary Phase Diagram of Engkabang Fat/Span20/Deionized Water. L-Isotropic Region, Th-Homogenous Milky Region, T2p-Two-Phase Region and TT-Three-Phase Region 103

4.7 Ternary Phase Diagram of Engkabang Fat/Tween85/Deionized Water. C-Liquid Crystal Region, L-Isotropic Region, Th-Homogenous Milky Region T2p-Two-Phase Region and TT-Three-Phase Region 104
4.8 Ternary Phase Diagram of Engkabang Fat/Tween80/Deionized Water. L-Isotropic Region, Th-Homogenous Milky Region and T2p-Two-Phase Region

4.9 Ternary Phase Diagram of Engkabang Fat Esters/Span80/Deionized Water. T2p- Two-Phase Region and TT- Three-Phase Region

4.10 Ternary Phase Diagram of Engkabang Fat Esters/Span20/Deionized Water. L-Isotropic Region, Th-Homogenous Milky Region, T2p-Two-Phase Region and TT-Three-Phase Region

4.11 Ternary Phase Diagram of Engkabang Fat Esters/Tween85/Deionized Water. C-Liquid Crystal Region, L-Isotropic Region, Th-Homogenous Milky Region, T2p-Two-Phase Region and TT-Three-Phase Region

4.12 Ternary Phase Diagram of Engkabang Fat Esters/ Tween80/Deionized Water. L-Isotropic Region, Th-Homogenous Milky Region, T2p-Two-Phase Region and TT-Three-Phase Region

4.13 Ternary Phase Diagram of Engkabang Fat:Solubilisant Gamma(2:1)/Tween85/Deionized Water. C-Liquid Crystal Region, L-Isotropic Region, Th-Homogenous Milky Region, T2p-Two-Phase Region and TT-Three-Phase Region

4.14 Ternary Phase Diagram of Engkabang Fat Esters: Solubilisant Gamma (2:1)/Tween85/Deionized Water. C-Liquid Crystal Region, L-Isotropic Region, Th-Homogenous Milky Region, T2p-Two-Phase Region and TT-Three-Phase Region

4.15 Composition Points of Pre-formulated Cosmeceuticals Emulsions; (a) EF:SG/Tween85/Deionized water, (b) EF/Tween85/Deionized water, (c) EF/Span20/Deionized water, (d) EFE:SG/Tween85/Deionized water, (e) EFE/Tween85/Deionized water and (f) EFE/Span20/Deionized water
4.16 Zeta potential of Formulations F10 (red) and E15 (blue) 141
4.17 Graph of Shear Stress (τ) and Apparent Viscosity (η) versus Shear Rate (γ) for (a) F10 and (b) E15 142
4.18 Representative of Microbiology Test Results for (a) Aerobic Plate Count Test and (b) Yeast and Mould Count Test 146
4.19 The Representative Results of Positive Control for Bacteria (a) Staphylococcus aureus, (b) Pseudomonas aeruginosa and (c) Escherichia coli 147
4.20 The Representative Results of Positive Control for Fungus and Yeast (a) Aspergillus-niger (b) Candida albican 148
4.21 Hydration Value of F10 and F10P on the Human Skin 154
4.22 Hydration Value of E15 and E15P on the Human Skin. The symbol ** means P-value below than 0.01 and *** means P-value below than 0.001 155
4.23 Particle sizes of EF Formulations with Increasing Amount of TiO2 161
4.24 Particle Size of EFE Formulations with Increasing Amount of TiO2 161
4.25 Zeta Potential of EF Formulations with Increasing Amount of TiO2 164
4.26 Zeta Potential of EFE Formulations with Increasing Amount of TiO2 164
4.27 Illustration of Encapsulation of TiO2 using Oil Droplet in Colloid System 165
4.28 TEM Micrograph of Titanium Dioxide Dispersed in Deionized Water at 150 000x Magnification 166
4.29 TEM Micrograph of Formulation using Engkabang 167
Fat without TiO$_2$ (F10) at 60 000x Magnification

4.30 TEM Micrograph of F10-2A (2% Encapsulated TiO$_2$) at 60 000x Magnification

4.31 TEM Micrograph of F10-2B (2% Non-encapsulated TiO$_2$) at 100 000x Magnification

4.32 TEM Micrograph of E15(1) (without TiO$_2$) at 60 000x Magnification

4.33 TEM Micrograph of E15(1)-2A (2% Encapsulated TiO$_2$) at 60 000x Magnification

4.34 TEM Micrograph of E15(1)-6A (6% Encapsulated TiO$_2$) at 70 000x Magnification

4.35 TEM Micrograph of E15(1)-2B (2% Non-encapsulated TiO$_2$) at 100 000x Magnification

4.36 Graph of Shear Stress (τ) and Apparent Viscosity (η) Versus Shear Rate (γ) for (a) F10-2A, (b) F10-2B, (c) F10-4A, (d) F10-4B, (e) F10-6A and (f) F10-6B

4.37 Graph of Shear Stress (τ) and Apparent Viscosity (η) Versus Shear Rate (γ) for (a) E15(1)-2A, (b) E15(1)-2B, (c) E15(1)-4A, (d) E15(1)-4B, (e) E15(1)-6A and (f) E15(1)-6B

4.38 PH Values of EF Formulations with Increasing Amount of TiO$_2$

4.39 PH Values of EFE Formulations with Increasing Amount of TiO$_2$

4.40 Conductivity Measurement of EF Formulations with Increasing Amount of TiO$_2$

4.41 Conductivity Measurement of EFE Formulations with Increasing Amount of TiO$_2$

4.42 TGA Thermogram of F10

4.43 TGA Thermogram of F10-2A