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This thesis introduces a general approach by proposing a new quasi-Newton

(QN) equation via fourth order tensor model. To approximate the curvature

of the objective function, more available information from the function-values

and gradient is employed. The efficiency of the usual QN methods is improved

by accelerating the performance of the algorithms without causing more storage

demand.

The presented equation allows the modification of several algorithms involving

QN equations for practical optimization that possess superior convergence prop-

erty. By using a new equation, the BFGS method is modified. This is done

twice by employing two different strategies proposed by Zhang and Xu (2001)

and Wei et al. (2006) to generate positive definite updates. The superiority of

these methods compared to the standard BFGS and the modification proposed

by Wei et al. (2006) is shown. Convergence analysis that gives the local and
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global convergence property of these methods and numerical results that shows

the advantage of the modified QN methods are presented.

Moreover, a new limited memory QN method to solve large scale unconstrained

optimization is developed based on the modified BFGS updated formula. The

comparison between this new method with that of the method developed by Xiao

et al. (2008) shows better performance in numerical results for the new method.

The global and local convergence properties of the new method on uniformly

convex problems are also analyzed.

The compact limited memory BFGS method is modified to solve the large scale

unconstrained optimization problems. This method is derived from the proposed

new QN update formula. The new method yields a more efficient algorithm

compared to the standard limited memory BFGS with simple bounds (L–BFGS–

B) method in the case of solving unconstrained problems. The implementation of

the new proposed method on a set of test problems highlights that the derivation

of this new method is more efficient in performing the standard algorithm.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PERSAMAAN QUASI-NEWTON BAHARU DAN KAEDAH

MELALUI MODEL TENSOR BERPERINGKAT TINGGI

Oleh

FAHIMEH BIGLARI GHOLILOU

June 2010

Pengerusi: Professor Malik Hj Abu Hassan, PhD

Fakulti: Sains

Tesis ini memperkenalkan suatu pendekatan am dengan mencadangkan suatu

persamaan kuasi-Newton (QN) baharu melalui model tensor berperingkat tinggi.

Untuk menghampirkan kelengkungan bagi fungsi objektif, banyak lagi maklumat

sedia ada daripada nilai fungsi dan kecerunanan digunakan. Kecekapan bagi

kaedah QN biasa dipertingkatkan dengan mempercepatkan prestasi algoritma

tanpa permintaan storan yang lebih.

Persamaan yang dikemukakan membenarkan ubahsuaian beberapa algoritma

yang melibatkan persamaan QN untuk pengoptimuman praktik yang mempun-

yai sifat penumpuan superior. Dengan menggunakan suatu persamaan baharu,

kaedah BFGS boleh diubahsuaikan. In dibuat dua kali dengan menggunakan

dua strategi berlainan yang dicadangkan oleh Zhang dan Xu (2001) dan Wei et

al. (2006) untuk menjana kemaskinian tentu positif. Kesuperioran bagi kaedah-

kaedah ini dibandingkan dengan BFGS piawai dan ubahsuaian yang dicadan-

gkan oleh Wei et al. (2006) ditunjukkan. Analisis penumpuan yang memberi

sifat penumpuan setempat dan sejagat bagi kaedah-kaedah ini dan keputusan
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berangka yang menunjukkan kebaikan kaedah-kaedah QN terubahsuai di ke-

mukakan.

Tambahan pula, berdasarkan rumus kemaskini BFGS terubahsuai suatu kaedah

ingatan terhad QN baharu untuk menyelesaikan pengoptimuman tak berkekan-

gan berskalar besar dibangunkan. Perbandingan antara kaedah baharu ini den-

gan kaedah yang dibangunkan oleh Xiao et al. (2008) menunjukkan prestasi

lebih baik dalam keputusan berangka untuk kaedah baharu. Sifat penumpuan

sejagat dan setempat bagi kaedah baharu ke atas masalah cembung seragam juga

dianalisiskan.

Dalam kajian ini, kaedah ingatan terhad BFGS yang padat adalah juga di-

ubahsuaikan untuk menyelesaikan masalah pengoptimuman tak berkekangan

berskalar besar. Kaedah ini diterbitkan daripada rumus kemaskini QN baharu

yang dicadangkan. Kaedah baharu ini memberikan satu algoritma yang lagi

cekap berbanding kaedah ingatan terhad BFGS piawai dengan batas ringkas

(L–BFGS–B) dalam kes menyelesaikan masalah tak berkekangan. Implementasi

kaedah baharu yang dicadangkan ke atas satu set masalah ujian menggariskan

yang terbitan kaedah baharu in lebih cekap dalam prestasi algoritma piawai.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Secant modifications are proposed as a way to promote fast convergence of op-

timization algorithms which involve quasi Newton (QN) updates. They are de-

signed to replace usual secant equation which uses information of gradient at the

two most recent iterates by a new one that also employs the objective function

values. The stated goal of these modifications is to get more curvature informa-

tion in construction of quadratic model to the objective function to yield more

effective minimization processes of algorithms.

The objectie of this thesis is to propose a general approach via new QN equation

to derive new algorithms involving QN updating formulas and to improve these

methods in efficiency to solve unconstrained nonlinear problems.

1.2 Basic concepts and methods

Definition 1.2.1. A square matrix A is positive definite if there is a positive

scalar α such that

xT Ax ≥ αxT x, for all x ∈ <n.

It is positive semidefinite if

xT Ax ≥ 0, for all x ∈ <n.

Definition 1.2.2. A norm is any mapping ‖.‖ from <n to the nonnegative real

numbers that satisfies the following properties:



(i) ‖x + z‖ ≤ ‖x‖+ ‖z‖ for all x, z ∈ <n;

(ii) ‖x‖ ≥ 0, for all x ∈ <n; ‖x‖ = 0 ⇒ x = 0;

(iii) ‖αx‖ = |α|‖x‖, for all α ∈ < and x ∈ <n.

The well known examples of vector norm are as follows:

‖x‖∞ = max
1≤i≤n

|xi|, (l∞ − norm)

‖x‖1 =
n∑

i=1

|xi|, (l1 − norm)

‖x‖2 = (
n∑

i=1

|xi|2)1/2, (l2 − norm)

The above examples are particular cases of lp-norm which is defined as

‖x‖p = (
n∑

i=1

|xi|p)1/p, (lp − norm).

For the Euclidean norm ‖.‖ = ‖.‖2 the Cauchy-Schwarz inequality holds, which

states that

|xT z| ≤ ‖x‖‖z‖,

with equality if and only if one of these vectors is a nonnegative multiple of the

other. Another vector norm is the ellipsoid norm which is defined as

‖x‖A = (xT Ax)1/2,

where A ∈ <n×n is a symmetric and positive definite matrix.

Similarly, a matrix norm can be defined

Definition 1.2.3. Let A, B ∈ <m×n. A mapping ‖.‖ : <m×n → < is said to be

a matrix norm if it satisfies the properties

2



(i) ‖A + B‖ ≤ ‖A‖+ ‖B‖ for all A, B ∈ <m×n;

(ii) ‖A‖ ≥ 0, for all A ∈ <m×n; ‖A‖ = 0 ⇒ A = 0;

(iii) ‖αA‖ = |α|‖A‖, for all α ∈ < and A,∈ <m×n.

Corresponding to the above vector lp− norm, the matrix lp− norm is defined as

‖A‖p = sup
x6=0

‖Ax‖p

‖x‖p

= max
‖x‖p=1

‖Ax‖p.

Explicit formulae for these norms are as follows:

‖A‖∞ = max
i=1,...,m

n∑
j=1

|Aij|, (maximum row norm)

‖A‖1 = max
j=1,...,n

m∑
i=1

|Aij|, (maximum column norm)

‖A‖2 = (λmax(A
T A))1/2, (spectral norm).

The most frequently used matrix norms also include the Frobenius norm

‖A‖F = (
m∑

i=1

n∑
j=1

|Aij|2)1/2 = [tr(AT A)]1/2,

where tr(.) denotes the trace of a square matrix with tr(A) =
∑n

i=1 Aii.

The weighted Frobenius norm and weighted l2-norm are defined, respectively, as

‖A‖W,F = ‖W 1/2AW 1/2‖F , ‖A‖W,2 = ‖WAW‖2,

where W is an n× n symmetric and positive definite matrix.

Definition 1.2.4. The condition number of a nonsingular matrix is defined as

κ(A) = ‖A‖‖A−1‖,

where any matrix norm can be used in the definition.
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Definition 1.2.5. Suppose that {xk} is a sequence of points belonging to <n.

A sequence {xk} converges to some point x, written limk→∞ xk = x, if for any

ε ≥ 0, there is an index K such that

‖xk − x‖ ≤ ε, for all k ≥ K.

Definition 1.2.6. A point x∗ ∈ <n is an accumulation point or limit point for

{xk} if there is an infinite set of indices k1, k2, k3, . . . such that the subsequence

{xki
}i=1,2,3,... converges to x∗; that is

lim
i→∞

xki
= x∗.

Definition 1.2.7. Let {xk} be a sequence in <n that converges to x∗. The

convergence is said to be Q-linear if there is a constant r ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ r, for all k sufficiently large.

The convergence is said to be Q-superlinear if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0

and the convergence is called Q-quadratic if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2

≤ M for all k sufficiently large,

where M is a positive constant, not necessarily less than 1.

Definition 1.2.8. The convergence is R-linear if there is a sequence of nonneg-

ative scalars {vk} such that

‖xk − x∗‖ ≤ vk for all k, and {vk} converges Q-linearly to zero.

Likewise, {xk} converges R-superlinearly to x∗ if {‖xk − x∗‖} is dominated by

a sequence of scalars converging Q-superlinearly to zero, and {xk} converges

R-quadratically to x∗ if {‖xk − x∗‖} is dominated by a sequence converging

Q-quadratically to zero.
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