HEAVY METAL CONCENTRATION LEVEL IN FIDDLER CRAB (*UCA ANNULIPES*) AND SOLDIER CRAB (*DOTILLA MYCTIROIDES*) IN INTERTIDAL AREAS OF THE WEST COAST, PENINSULAR MALAYSIA

MOHD IKRAM BIN MOHAMMAD
FS 2010 16
HEAVY METAL CONCENTRATION LEVEL IN FIDDLER CRAB (*UCA ANNULIPES*) AND SOLDIER CRAB (*DOTILLA MYCTIROIDES*) IN INTERTIDAL AREAS OF THE WEST COAST, PENINSULAR MALAYSIA

MOHD IKRAM BIN MOHAMMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

March 2010
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

HEAVY METAL CONCENTRATION LEVEL IN FIDDLER CRAB (*UCA ANNULIPES*) AND SOLDIER CRAB (*DOTILLA MYCTIROIDES*) IN INTERTIDAL AREAS OF THE WEST COAST, PENINSULAR MALAYSIA

By

MOHD IKRAM BIN MOHAMMAD

March 2010

Chairman : Professor Dr. Ahmad Ismail, PhD
Faculty : Science

The study investigated the distribution concentration levels of heavy metals Zn, Cu, Cd and Pb in *Uca annulipes* and *Dotilla myctiroides* crabs with addition to sediment samples that were collected from the intertidal areas of Selangor (5 sites) and Negeri Sembilan (3 sites), west coast of Peninsular Malaysia. The particle size distribution (clay, silt and sand fraction) and organic matter content in sediment samples collected were also determined because these factors can play important roles in influencing the heavy metals concentration level in crabs.

The mean heavy metals concentration level (µg/g dry weight) in whole body of *U. annulipes* and *D. myctiroides* were found to range from 69.94 – 77.20, 45.81 – 104.93, 1.65 – 2.40 and 21.35 – 30.32 for Zn, Cu, Cd and Pb, respectively. The patterns of heavy metals distribution in both crab species of the different sampling stations were found to be \{Cu > Zn\} or \{Zn > Cu\} > Pb > Cd, where the highest were usually found for Zn and Cu which were not consistent in their order, and the lowest were found for Cd and Pb. This was explained due to the different function of
heavy metals in crabs such as for essential purpose, sequestration and even to be excreted. As for sediments, the mean heavy metals concentration level (μg/g dry weight) were found to range from 7.26 – 47.59, 1.51 – 15.19, 0.11 – 0.37 and 5.83 – 47.59 for Zn, Cu, Cd and Pb, respectively. The present levels of heavy metals in sediments of the different sampling stations were found to be low when compared to few sediment quality guideline and background level, indicating the relatively uncontaminated metal pollution conditions in which crabs inhabited.

A higher heavy metals concentration level was generally recorded in *U. annulipes* when compared to those of *D. myctiroides*. This difference was related to the particle size distribution and organic matter percentages (%) of the crab microhabitat sediment settings. Results showed that a significantly (p < 0.05) higher distribution of the fine particles (clay and silt) and organic matter content were found in sediments inhabited by *U. annulipes* when compared to those sediments inhabited by *D. myctiroides* which had significantly (p < 0.05) lower distribution. The fact that fine particles and organic matter of sediments have capability to bind heavy metals and crabs feed by scraping of surface sediments, hence the crabs potential to bioaccumulate heavy metals bonded onto fine particles and organic matter of sediments can assume to be higher for *U. annulipes* when compared to *D. myctiroides*. This therefore might explain the differences in heavy metals concentration level observed in *U. annulipes* and *D. myctiroides* which is much related to crabs preferences for different microhabitat sediment settings and daily crab activity of feeding. This ability of *U. annulipes* and *D. myctiroides* to bioaccumulate heavy metals from sediments may also be important in order to
facilitate them as potential biomonitor organism for the monitoring of heavy metal pollution in the intertidal area of west Peninsular Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

ARAS KEPEKATAN LOGAM BERAT DALAM KETAM FIDDLER (*UCA ANNULIPES*) DAN KETAM SOLDIER (*DOTILLA MYCTIROIDES*) DI KAWASAN PASANG SURUT PERSISIRAN PANTAI BARAT, SEMENANJUNG MALAYSIA

Oleh

MOHD IKRAM BIN MOHAMMAD

March 2010

Pengerusi : Professor Dr. Ahmad Ismail, PhD
Fakulti : Sains

Kajian ini menyiasat aras kepekatan distribusi logam berat Zn, Cu, Cd and Pb dalam ketam *Uca annulipes* dan *Dotilla myctiroides* seiringan sampel sedimen yang dikumpulkan daripada kawasan pasang surut Selangor (5 kawasan) dan Negeri Sembilan (3 kawasan), persisiran pantai barat Semenanjung Malaysia. Distribusi saiz partikel (bahagian liat, kelodak dan pasir) dan kandungan bahan organik dalam sampel sedimen yang dikumpulkan itu turut juga diukur kerana faktor ini boleh memainkan peranan penting dalam mempengaruhi aras kepekatan logam berat dalam ketam.

Aras kepekatan (µg/g berat kering) purata logam berat dalam keseluruhan badan *U. annulipes* dan *D. Myctiroides* adalah berada dalam lingkungan 69.94 – 77.20, 45.81 – 104.93, 1.65 – 2.40 dan 21.35 – 30.32 untuk Zn, Cu, Cd dan Pb. Corak distribusi logam berat dalam kedua spesies ketam yang dikaji daripada setiap lokasi kajian didapati sebagai {Cu > Zn} or {Zn > Cu} > Pb > Cd, di mana Zn dan Cu adalah
tidak konsisten coraknya iaitu berubah-ubah serta mempunayai nilai kepekatan paling tinggi, manakala Cd dan Pb mempunyai nilai kepekatan rendah. Ini diterangkan melalui perbezaan fungsi logam berat di dalam ketam iaitu sama ada digunakan untuk tujuan kemandirian, diasingkan dan juga perlu disingkirkan. Bagi sedimen, aras kepekatan (µg/g berat kering) purata logam berat adalah berada dalam lingkungan 7.26 – 47.59, 1.51 – 15.19, 0.11 – 0.37 dan 5.83 – 47.59 untuk Zn, Cu, Cd dan Pb. Aras kepekatan logam berat dalam sedimen daripada setiap lokasi kajian didapti masih di tahap rendah berbanding dengan beberapa tahap garis panduan kualiti sedimen dan juga aras latar belakang logam berat tersedia ada, dan seterusnya menandakan tahap pencemaran logam berat dalam sedimen yang didiami ketam masih tidak tercemar.

Aras kepekatan logam berat secara umumnya direkodkan lebih tinggi dalam *U. annulipes* berbanding dalam *D. myctiroides*. Perbezaan ini dikaitkan dengan peratusan (%) distribusi saiz partikel dan kandungan bahan organik yang terdapat di dalam sedimen persekitaran mikro ketam. Keputusan kajian telah mendapati distribusi saiz partikel sedimen yang kecil (liat dan kelodak) serta kandungan bahan organik adalah paling tinggi dan signifikan (p < 0.05) nilai peratusannya dalam sedimen yang didiami oleh *U. annulipes* berbanding sedimen yang didiami *D. myctiroides* yang rendah dan signifikan (p < 0.05) distribusinya. Oleh kerana saiz partikel sedimen yang kecil dan bahan organik mempunyai keupayaan untuk mengikat logam berat serta tabiat ketam yang memakan secara mengambil cebisan permukaan sedimen, maka potensi untuk *U. annulipes* mengambil logam berat yang mengikat kepada saiz partikel sedimen yang kecil dan bahan organik boleh dianggap tinggi berbanding dengan *D. myctiroides*. Ini secara tidak langsung menerangkan
perbezaan dalam aras kepekatan logam berat yang didapati dalam *U. annulipes* dan *D. myctiroides* yang sangat berkisar terhadap pemilihan sedimen oleh ketam dalam persekitaran mikro mereka, dan aktiviti sehari hari ketam iaitu memakan sedimen. Keupayaan *U. annulipes* dan *D. myctiroides* untuk memakan dan mengambil logam berat yang mengikat kepada sedimen juga penting dalam menentukan potensi ketam sebagai agen penunjuk biologi bagi pencemaran logam berat di kawasan pasang surut persisiran pantai barat Semenanjung Malaysia.
ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude and appreciation to my supervisors, Prof. Dr. Ahmad Ismail, Assoc. Prof. Dr. Yap Chee Kong and Dr. Nor Azwady Abd. Aziz for their guidance, advice, ideas, comments, driving force as well as tolerance and patience while I was conducting this research. With their motivations, Alhamdullilah, I have finally managed to complete this study. Once again, thank you especially to Prof. Dr. Ahmad Ismail.

Many thanks go to Faculty of Science (Department of Biology) members especially Dr. Misri Kusnan, Dr. Hishamuddin Omar, Dr. Abdul Rahim Ismail, and Assoc. Prof. Dr. Aziz Arshad (Faculty of Agriculture) for their support and guidance.

Special thanks to my colleagues and friends especially Prof. Dr. Bintal Amin, Mr. Cheng Wan Hee, Mr. Franklin Berandah Edward, Mr. Romeo M. Lomoljo, Mr. Ken, Mr. Zafri Hassan, Mr. Saufi Ramli @ Hussein, Mr. Abdul Halim Hashim, Mr. Arizuddin Ab. Wahab, Ms. Shahrizad Yusof, Mrs. Noorhaidah Arifin, Dr. Alireza Safahieh, Mr. Azman Ismail, Dr. Mohd Hanafi Idris, Mr. Mustapha Awang Kechik Fizik, Mr. Mohd. Faisal Mohd Aris Fizik and Dr. Syaizwan Zahmir Zulkifli for their help during sampling work as well as ideas and knowledge shared during the course of this study.

Finally, I would like to share this moment of happiness with my parents, my family and my beloved wife, Shafinah Kamarudin for their encouragement and support throughout all these years.
I certify that a Thesis Examination Committee has met on 4 March 2010 to conduct the final examination of Mohd Ikram Bin Mohammad on his thesis entitled “Heavy Metal Concentration Level in Fiddler Crab (*Uca annulipes*) and Soldier Crab (*Dotilla myctiroides*) in Intertidal Areas of the West Coast, Peninsular Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Misri Kusnan, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Hishamuddin Omar, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Aziz Arshad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Che Abd. Rahim Mohamed, PhD
Associate Professor
School of Environmental and Natural Resources Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

BUJANG BIN KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date : 24 June 2010
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ahmad Ismail, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Yap Chee Kong, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Nor Azwady Abd. Aziz, PhD
Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date : 15 July 2010
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

MOHD IKRAM BIN MOHAMMAD

Date : 27 May 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
 1.1 General | 1
 1.2 Objectives of the Study | 4

2 LITERATURE REVIEW
 2.1 Pollution in the Straits of Malacca | 6
 2.2 Geochemical Properties of the Sediments | 10
 2.3 Intertidal Crab as *In situ* Biomonitor Indicator | 18
 2.4 Crustacean *Uca annulipes* (Fiddler crabs) | 25
 2.5 Crustacean *Dotilla myctiroides* (Soldier crabs) | 29

3 MATERIALS AND METHODS
 3.1 Study Area | 34
 3.2 Sample Collection, Storage and Preparations (Water, Sediment, Pellet and Crab)
 3.2.1 Water Samples | 37
 3.2.2 Sediment Samples | 40
 3.2.3 Pellet Samples | 41
 3.2.4 Crab Samples | 44
 3.3 Measurements of *In situ* Water Physicochemical Parameters | 47
 3.4 Digestion of Samples (Sediment, Pellet and Crab) for Heavy Metals Determination
 3.4.1 Acid Digestion (Sediment, Pellet and Crab Samples) | 48
 3.4.2 Sequential Extraction Technique (SET) | 50
 3.5 Heavy Metal Analysis | 55
 3.6 Determination of Organic Matter Content | 56
 3.7 Quality Assurance and Assessment
 3.7.1 Equipment Cleaning and Preparation for Laboratory Analysis | 57
 3.7.2 Blank: Checking for External Contamination | 58
 3.7.3 Analytical Quality Control Sample | 59
 3.8 Particle Size Distribution Analysis | 64
 3.9 Bioconcentration Factor (BCF) Calculations | 71
 3.10 Statistical Analysis | 71
4 RESULTS
 4.1 Insitu overlaying water physicochemical parameters 73
 4.2 Heavy metals concentration level in overlaying water 76
 4.3 Heavy metals concentration level in sediments 78
 4.4 Heavy metals concentration level in intertidal crabs 84
 4.5 Geochemical fraction (SET) of heavy metals concentration level in sediments 87
 4.6 Correlation of heavy metals concentration level in intertidal crabs with sediments (SET and Total acid digestion) and water 95
 4.7 Bioconcentration Factor (BCF) 98
 4.8 Heavy metals concentration level in U. annulipes and D. myctiroides feeding pellets 102
 4.9 Particle size distribution 108
 4.9.1 Particle size distribution (clay, silt and sand fraction) in U. annulipes and D. myctiroides microhabitat sediments 108
 4.9.2 Particle size distribution (clay, silt and sand fraction) in U. annulipes and D. myctiroides feeding pellets 113
 4.10 Organic matter content 119
 4.10.1 Organic matter content in U. annulipes and D. myctiroides microhabitat sediments 119
 4.10.2 Organic matter content in U. annulipes and D. myctiroides feeding pellets 121
 4.11 Correlation between heavy metals concentration level with body weight and carapace width of U. annulipes and D. myctiroides crabs 126

5 DISCUSSION
 5.1 Insitu physicochemical parameters of overlaying water samples from U. annulipes and D. myctiroides habitat surroundings 131
 5.2 Heavy metals concentration level in overlaying water samples from U. annulipes and D. myctiroides habitat surroundings 143
 5.3 Heavy metals concentration level in U. annulipes and D. myctiroides microhabitat sediments 149
 5.4 Heavy metals concentration level in U. annulipes and D. myctiroides crabs 169
 5.5 Comparison between ‘resistant’ and ‘non-resistant’ geochemical fraction (SET) of heavy metals concentration level in U. annulipes and D. myctiroides microhabitat sediments 179
 5.6 Geochemical fraction (SET) of heavy metals concentration level in U. annulipes and D. myctiroides microhabitat sediments and their relationship with the intertidal crabs 180
 5.7 Intertidal crabs as biomonitors through correlation analysis of heavy metals concentration level in crabs with sediments (SET and Total acid digestion) and water 185
 5.8 Bioconcentration of heavy metals in U. annulipes and D. myctiroides crabs 188
 5.9 Heavy metals uptake through analysis of U. annulipes and D. myctiroides feeding pellets 193
 5.10 Particle size distribution and its association with heavy metals concentration level in U. annulipes and D. myctiroides crabs 196
| 5.11 | Organic matter and its association with heavy metals concentration level in *U. annulipes* and *D. myctiroides* crabs | 203 |
| 5.12 | Relationships between heavy metals concentration level with body weight and carapace width of *U. annulipes* and *D. myctiroides* crabs | 209 |

6 CONCLUSIONS

| 6.1 | General Conclusions | 215 |
| 6.2 | Recommendations for Future Research | 223 |

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>62</td>
</tr>
</tbody>
</table>

1. Sources of heavy metal pollution in the Straits of Malacca, west coast of Peninsular Malaysia

2. The levels of heavy metals concentration in different species of fishes, bivalves, gastropods and crustaceans from few Malaysian studies. Values are presented as µg/g dry weight basis, except where stated otherwise

3. The location, geographical position, sediment type (USDA classification scheme), crab species collected, sampling dates and site description of sampling stations for the sampling of *U. annulipes* and *D. myctiroides* crab species, sediment, feeding pellet and overlaying water samples collected from the intertidal areas of Selangor and Negeri Sembilan, west coast of Peninsular Malaysia. (St = Station; Lat = Latitude; Long = Longitude)

4. The instrument setting and sensitivity of the air-acetylene flame atomic absorption spectrophotometer (FAAS) model AAnalyst800

5. A comparison of the measured results (µg/g dry weight) of the CRM (Certified Reference Material) for soil (International Atomic Energy Agency, Soil-5, Vienna, Austria) and dogfish liver (DOLT-3, National Research Council Canada) with their certified concentration for Zn, Cu, Cd and Pb. (Note: NA - Not available)

6. Correlation coefficient and comparative results of metals analysis by total acid digestion and sequential extraction technique in sediment samples (N = 46) based on mean concentrations (µg/g dry weight) of Zn, Cu, Cd and Pb

7. The percentage (%) of recovery between measured value of overlaying water sample (unspiked sample) and measured value of spiked (1 mg/L) overlaying water sample for the heavy metal Zn collected from the different sampling stations of Selangor and Negeri Sembilan, west coast of Peninsular Malaysia. (St = Station; SE = Standard Error)

8. The percentage (%) of recovery between measured value of overlaying water sample (unspiked sample) and measured value of spiked (1 mg/L) overlaying water sample for the heavy metal Cu collected from the different sampling stations of Selangor and Negeri Sembilan, west coast of Peninsular Malaysia. (St = Station; SE = Standard Error)
The percentage (%) of recovery between measured value of overlaying water sample (unspiked sample) and measured value of spiked (0.2 mg/L) overlaying water sample for the heavy metal Cd collected from the different sampling stations of Selangor and Negeri Sembilan, west coast of Peninsular Malaysia. (St = Station; SE = Standard Error)

The percentage (%) of recovery between measured value of overlaying water sample (unspiked sample) and measured value of spiked (1 mg/L) overlaying water sample for the heavy metal Pb collected from the different sampling stations of Selangor and Negeri Sembilan, west coast of Peninsular Malaysia. (St = Station; SE = Standard Error)

In situ physicochemical parameter measurements in the overlaying water samples (mean ± standard error) taken from *U. annulipes* and *D. myctiroides* habitat surroundings of the different sampling stations. (N = 9)

Levels of heavy metals concentration in the overlaying water samples (mean mg/L ± standard error) collected from *U. annulipes* and *D. myctiroides* habitat surroundings of the different sampling stations. (N = 9)

Levels of heavy metals concentration in the *U. annulipes* microhabitat sediments (mean µg/g ± standard error) collected from the different sampling stations. (N = 9)

Levels of heavy metals concentration in the *D. myctiroides* microhabitat sediments (mean µg/g ± standard error) collected from the different sampling stations

Levels of heavy metals concentrations in the *U. annulipes* and *D. myctiroides* crab species (mean µg/g ± standard error) collected from the different sampling stations and their heavy metals occurrence pattern. The heavy metals occurrence patterns are not based on statistical analysis

Geochemical fraction of Zn in the *U. annulipes* microhabitat sediments (Mean µg/g ± standard error) (N = 3)

Geochemical fraction of Cu in the *U. annulipes* microhabitat sediments (Mean µg/g ± standard error) (N = 3)

Geochemical fraction of Cd in the *U. annulipes* microhabitat sediments (Mean µg/g ± standard error) (N = 3)

Geochemical fraction of Pb in the *U. annulipes* microhabitat sediments (Mean µg/g ± standard error) (N = 3)
20 Geochemical fraction of Zn in the *D. myctiroides* microhabitat sediments (Mean μg/g ± standard error) (N = 3)

21 Geochemical fraction of Cu in the *D. myctiroides* microhabitat sediments (Mean μg/g ± standard error) (N = 3)

22 Geochemical fraction of Cd in the *D. myctiroides* microhabitat sediments (Mean μg/g ± standard error) (N = 3)

23 Geochemical fraction of Pb in the *D. myctiroides* microhabitat sediments (Mean μg/g ± standard error) (N = 3)

24 The Pearson’s correlation coefficient of heavy metal concentrations (Zn, Cu, Cd and Pb) in *U. annulipes* and *D. myctiroides* crabs with SET geochemical fractions of heavy metal concentrations (Zn, Cu, Cd and Pb) in their respective microhabitat sediments (*U. annulipes* and *D. myctiroides* microhabitat sediments) based on log_{10}(mean + 1) transformed data (*U. annulipes*, N = 24; *D. myctiroides*, N = 21)

25 The Pearson’s correlation coefficient of heavy metal concentrations (Zn, Cu, Cd and Pb) in *U. annulipes* crabs with heavy metal concentrations (Zn, Cu, Cd and Pb) in their respective microhabitat sediments and water samples based on log_{10}(mean + 1) transformed data (N = 72)

26 The Pearson’s correlation coefficient of heavy metal concentrations (Zn, Cu, Cd and Pb) in *D. myctiroides* crabs with heavy metal concentrations (Zn, Cu, Cd and Pb) in their respective microhabitat sediments and water samples based on log_{10}(mean + 1) transformed data (N = 63)

27 Bioconcentration factors (BCF) of heavy metals in *U. annulipes* and *D. myctiroides* in the sampling period of June–August

28 Levels of heavy metals concentration in the feeding pellets (mean μg/g ± standard error) produced by the *U. annulipes* crabs collected from the different sampling stations

29 Levels of heavy metals concentration in the feeding pellets (mean μg/g ± standard error) produced by the *D. myctiroides* crabs collected from the different sampling stations

30 The uptake ratio of heavy metals in *U. annulipes* and *D. myctiroides* crabs. Calculations are based on the mean concentration values of heavy metals within crabs respective microhabitat sediment and pellet samples from the overall sampling stations
The mean ± standard error of particle size distribution (clay%, silt% and sand% fraction) in the microhabitat sediments occupied by the *U. annulipes* crabs collected from the different sampling stations. Soil texture class (USDA) given are based on the mean percentage (%) value of the clay, silt and sand fraction of sediments.

The mean ± standard error of particle size distribution (clay%, silt% and sand% fraction) in the microhabitat sediments occupied by the *D. myctiroides* crabs collected from the different sampling stations. Soil texture class (USDA) given are based on the mean percentage (%) value of the clay, silt and sand fraction of sediments.

Sampling stations and mean ± standard error of particle size distribution (clay%, silt% and sand% fraction) in the feeding pellets produced by the *U. annulipes* crabs. Soil texture class (USDA) given are based on the mean percentage (%) value of clay, silt and sand fraction in the pellet samples.

Sampling stations and mean ± standard error of particle size distribution (clay%, silt% and sand% fraction) in the feeding pellets produced by the *D. myctiroides* crabs. Soil texture class (USDA) given are based on the mean percentage (%) value of clay, silt and sand fraction in the pellet samples.

The particle size uptake percentage (%) of clay, silt and sand fraction in *U. annulipes* and *D. myctiroides* crabs. Calculations are based on the mean percentage (%) values of clay, silt and sand fraction within the crabs microhabitat sediment and pellet samples from the overall sampling stations.

Sampling stations and mean ± standard error values of organic matter content (%) in the feeding pellets produced by the *U. annulipes* and *D. myctiroides* crabs. (Note: NA - Not Available).

The estimation percentage (%) of organic matter uptake in *U. annulipes* and *D. myctiroides* crabs which were calculated based on the mean percentage values of organic matter content in the crabs microhabitat sediment and pellet samples from the overall sampling stations.

Levels of heavy metals concentration in the *U. annulipes* and *D. myctiroides* crab species that were independently processed at the level of individual samples (mean μg/g wet weight basis ± standard error) collected from the different sampling stations.

Comparisons of physicochemical parameter measurements from other reported studies.
Comparisons of heavy metals concentration in water samples with those of other studies and legal standards set by different countries. All values are presented in mg/L

Comparisons of heavy metals concentrations in crabs microhabitat sediments with other reported studies, background levels, ERL and ERM. All values are presented in μg/g dry weight

Comparisons of heavy metals occurrence patterns and levels of concentrations with those of other reported studies for crabs and crustaceans. The heavy metals occurrence patterns are not based on statistical analysis. Values are presented as μg/g dry and wet weight basis

Comparisons of heavy metals in crabs with those of other reported studies on different taxonomic (gastropods, bivalves and barnacle) group species. Values are presented as μg/g dry weight basis, except where stated otherwise

The means ± standard error of particle size distribution (%) in the microhabitat sediments occupied on by the U. annulipes crabs collected from eight different sampling stations. Soil texture class (USDA) given are based on the mean percentage (%) value of the clay, silt and sand fraction of sediments

The means ± standard error of particle size distribution (%) in the microhabitat sediments occupied on by the D. myctiroides crabs collected from seven different sampling stations. Soil texture class (USDA) given are based on the mean percentage (%) value of the clay, silt and sand fraction of sediments

The means ± standard error of particle size distribution (%) in the pellets produced by the U. annulipes crabs. Soil texture class (USDA) given are based on the mean percentage (%) value of clay, silt and sand fraction in the pellet samples

The means ± standard error of particle size distribution (%) in the pellets produced by the D. myctiroides crabs. Soil texture class (USDA) given are based on the mean percentage (%) value of clay, silt and sand fraction in the pellet samples

Levels of heavy metals concentration (mean μg/g dry weight) in the U. annulipes microhabitat sediments collected from the different sampling stations in the sampling period of June–August

Levels of heavy metals concentration (mean μg/g dry weight) in the D. myctiroides microhabitat sediments collected from the different sampling stations in the sampling period of June–August
The heavy metals (Zn, Cu, Cd and Pb) concentration in surface sediments, overlaying water samples, *U. annulipes* and *D. myctiroides* crab species collected from the different sampling stations in the sampling period of June–August
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Map and the sampling stations along the Selangor and Negeri Sembilan intertidal coastal area, west coast of Peninsular Malaysia. (A) Muddy substrates inhabited by U. annulipes; (B) U. annulipes; (C) Sandy substrates inhabited by D. myctiroides; and (D) D. myctiroides</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>A general systematic chart diagram on the sample collection of water, sediment, feeding pellet and crab species, the samples preparation stages in the laboratory, and the different analysis subjected onto the samples collected</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>The feeding pellets or tiny ball like structures produced by U. annulipes crab species during feeding activities that were found scattered on the surface microhabitat sediments surrounding their burrow entrance</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>The feeding pellets produced by D. myctiroides crab species that were found scattered on the surface microhabitat sediments surrounding their burrow entrance</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>The U. annulipes crab species collected for heavy metal analysis</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>The D. myctiroides crab species collected for heavy metal analysis</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Acid digestion procedure of U. annulipes and D. myctiroides microhabitat sediment and pellet samples</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>Acid digestion procedure of U. annulipes and D. myctiroides crab samples (dry and wet/fresh weight basis)</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>The modified SET procedure for the analysis of geochemical fractions of heavy metals in the U. annulipes and D. myctiroides microhabitat sediment samples adopted from the method of Badri and Aston (1983)</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>Determination of organic matter content in U. annulipes and D. myctiroides microhabitat sediment and pellet samples</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>The different steps of particle size distribution analysis of U. annulipes and D. myctiroides microhabitat sediment and pellet samples</td>
<td>68</td>
</tr>
<tr>
<td>12</td>
<td>The USDA soil classification scheme</td>
<td>70</td>
</tr>
</tbody>
</table>
The total mean comparison of Zn (a), Cu (b), Cd (c) and Pb (d) concentrations between *U. annulipes* (N = 63) and *D. myctiroides* (N = 70) microhabitat sediments. The mean concentrations of Zn, Cu, Cd and Pb for the *U. annulipes* microhabitat sediments in station 8 was excluded out from the total mean comparison since none *D. myctiroides* microhabitat sediments were available for comparison with the *U. annulipes* microhabitat sediments. Bars with dissimilar alphabetical letters for the concentrations of Zn, Cu, Cd and Pb of *U. annulipes* and *D. myctiroides* microhabitat sediments are significantly different (p < 0.05) as determined by Independent T-Test.

The total mean comparison of Zn (a), Cu (b), Cd (c) and Pb (d) concentrations between *U. annulipes* (N pooled samples = 1245) and *D. myctiroides* (N pooled samples = 4220) crab species. The mean concentrations of Zn, Cu, Cd and Pb for the *U. annulipes* crabs in station 8 was excluded out from the total mean comparison since none *D. myctiroides* crabs were available for comparison with the *U. annulipes* crabs. Bars with dissimilar alphabetical letters for the concentrations of Zn, Cu, Cd and Pb of *U. annulipes* and *D. myctiroides* crabs are significantly different (p < 0.05) as determined by Independent T-Test.

The total mean comparison of Zn, Cu, Cd and Pb concentrations between sediment and pellet samples. Figures (a), (b), (c) and (d) shows the comparison of heavy metals between sediment (N = 72) and pellet (N = 71) samples for *U. annulipes* from the overall sampling stations. Bars with dissimilar alphabetical letters for the concentrations of Zn, Cu, Cd and Pb of sediment and pellet samples are significantly different (p < 0.05) as determined by Independent T-Test.

The total mean comparison of Zn, Cu, Cd and Pb concentrations between sediment and pellet samples. Figures (a), (b), (c) and (d) shows the comparison of heavy metals between sediment (N = 70) and pellet (N = 69) samples for *D. myctiroides* from the overall sampling stations. Bars with dissimilar alphabetical letters for the concentrations of Zn, Cu, Cd and Pb of sediment and pellet samples are significantly different (p < 0.05) as determined by Independent T-Test.

The total mean comparison of clay (a), silt (b) and sand (c) fraction percentage (%) between *U. annulipes* (N = 21) and *D. myctiroides* (N = 22) microhabitat sediments. The mean percentage (%) value of clay, silt and sand fraction for the *U. annulipes* microhabitat sediments in station 8 was excluded out from the total mean comparison since none *D. myctiroides* microhabitat sediments were available for comparison with the *U. annulipes* microhabitat sediments. Bars with dissimilar alphabetical letters for the clay (a), silt (b) and sand (c) fraction of *U. annulipes* and *D. myctiroides*
microhabitat sediments are significantly different (p < 0.05) as determined by Independent T-Test

The total mean comparison of clay (a), silt (b) and sand (c) fraction percentage (%) between *U. annulipes* microhabitat sediment (N = 24) and pellet (N = 24) samples. Bars with dissimilar alphabetical letters for the clay (a), silt (b) and sand (c) fraction of sediment and pellet samples are significantly different (p < 0.05) as determined by Independent T-Test

The total mean comparison of clay (a), silt (b) and sand (c) fraction percentage (%) between *D. myctiroides* microhabitat sediment (N = 22) and pellet (N = 23) samples. Bars with dissimilar alphabetical letters for the clay (a), silt (b) and sand (c) fraction of sediment and pellet samples are significantly different (p < 0.05) as determined by Independent T-Test

The comparisons of organic matter content (%) between *U. annulipes* (N = 36) and *D. myctiroides* (N = 36) microhabitat sediment samples in each of the sampling stations. Station 8 (Tongkah - water canal area) was excluded since none *D. myctiroides* microhabitat sediments were available for comparison with the *U. annulipes* microhabitat sediments (Note: NA - Not Available), however, mean organic matter percentage values for *U. annulipes* microhabitat sediments were shown. Bars with dissimilar alphabetical letters for each sampling stations are significantly different (p < 0.05) as determined by Independent T-Test

The total mean comparison of organic matter content (%) between *U. annulipes* microhabitat sediment (N = 288) and pellet (N = 288) samples. Bars with dissimilar alphabetical letters are significantly different (p < 0.05) from each other as determined by Independent T-Test

The total mean comparison of organic matter content (%) between *D. myctiroides* microhabitat sediment (N = 252) and pellet (N = 252) samples. Bars with similar alphabetical letters are not significantly different (p > 0.05) from each other as determined by Independent T-Test

The relationships between Zn, Cu, Cd and Pb concentrations \([\log_{10} (\text{mean} +1)]\) with body weight and carapace width \([\log_{10} (\text{mean} +1)]\) of *U. annulipes* (N = 547) crab samples. [with negative regressive equation as \(\log(Y) = \log(a) - b \log(X)\) except for Pb]

The relationships between Zn, Cu, Cd and Pb concentrations \([\log_{10} (\text{mean} +1)]\) with body weight and carapace width \([\log_{10} (\text{mean} +1)]\) of *D. myctiroides* (N = 466) crab samples. [with negative regressive equation as \(\log(Y) = \log(a) - b \log(X)\)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligram per litre</td>
</tr>
<tr>
<td>µg/L</td>
<td>microgram per litre</td>
</tr>
<tr>
<td>µg/g</td>
<td>microgram per gram</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>M</td>
<td>molar volume</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>HClO₄</td>
<td>perchloric acid</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HNO₃</td>
<td>nitric acid</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>phosphoric acid</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>H₂O</td>
<td>water</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>natrium carbonate</td>
</tr>
<tr>
<td>NaOH</td>
<td>natrium hydroxide</td>
</tr>
<tr>
<td>NH₄CH₃COO</td>
<td>ammonium acetate</td>
</tr>
<tr>
<td>NH₂OH·HCl₂</td>
<td>hydroxyl ammonium chloride</td>
</tr>
</tbody>
</table>