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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

requirements for the degree of Master of Science. 

 

AUTOMATIC QUADRATURE SCHEME FOR EVALUATING SINGULAR 

INTEGRAL WITH CAUCHY KERNEL USING CHEBYSHEV POLYNOMIALS 

 

By 

 

NUR AMALINA BINTI JAMALUDIN 

 

April 2010 

 

Chairman: Zainidin K. Eshkuvatov, PhD 

Faculty    : Science 

 

In this thesis, an automatic quadrature scheme is presented for evaluating the 

product type indefinite integral 

       , , , ; , 1 , 1, 1 1
y

x
Q f x y c w t K c t f t dt x y c        

where   21 1w t t  ,    , 1K c t t c   and  f t  is assumed to be a smooth 

function. In constructing an automatic quadrature scheme for the case 

1 1x y     the density function  f t
 

is approximated by the truncated 

Chebyshev  polynomial  Np t of the first kind of degree N. The approximation 

 Np t yields an integration rule  , , ,NQ p x y c to the integral  , , , .Q f x y c
 

An 
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automatic quadrature scheme for the case 1, 1x y   can easily be constructed 

by replacing  f t with  Np t and using the known formula  

 

 
 

1

1
21

, 1,...,
1

k

k

T t
dt U c k N

t t c
 


 

 
 . 

In both cases the interpolation conditions are imposed to determine the unknown 

coefficients of the Chebyshev polynomials  .Np t  The evaluations of 

   , , , , , ,NQ f x y c Q p x y c for the set  , ,x y c can be efficiently computed by 

using backward direction method.  

 

The estimation of errors for an automatic quadrature scheme are obtained and 

convergence problem are discussed in the classes of functions  1, 1,1NC    

and  1,1w

pL   .  

 

The C code is developed to obtain the numerical results and they are presented 

and compared with the exact solution of SI for different functions  f t . 

Numerical experiments are presented to show the efficiency and the accuracy of 

the method. It asserts the theoretical results. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

 

SKEMA KUADRATUR AUTOMATIK UNTUK PENYELESAIAN KAMIRAN 

SINGULAR JENIS CAUCHY KERNEL MENGGUNAKAN POLINOMIAL 

CHEBYSHEV 

 

Oleh 

 

NUR AMALINA BINTI JAMALUDIN 

 

April 2010 

 

Pengerusi: Zainidin K. Eshkuvatov, Phd 

Fakulti    : Sains 

 

Dalam tesis ini, skema kuadratur automatik dipamer bagi menilai kamiran jenis 

pendaraban tak terhingga 

       , , , ; , 1 , 1, 1 1
y

x
Q f x y c w t K c t f t dt x y c        

dengan   21 1w t t  ,    , 1K c t t c  dan  f t dianggap menjadi fungsi licin. 

Dalam membina skema kuadratur automatik untuk kes 1 1x y    , fungsi ketumpatan 

 f t  dihampirkan dengan polinomial Chebyshev tercantas,  Np t  jenis pertama 

berdarjah N. Penghampiran  Np t menghasilkan  formula kamiran  , , ,NQ p x y c kepada 

kamiran  , , , .Q f x y c Skema kuadratur  automatik bagi kes 1, 1x y   boleh dibina 
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dengan mudah dengan  menggantikan  f t  kepada   Np t menggunakan formula yang 

telah diketahui, 

 

 
 

1

1
21

, 1,...,
1

k

k

T t
dt U c k N

t t c
 


 

 
  

Dalam kedua-dua kes syarat interpolasi digunakan untuk menentukan pekali Chebyshev 

polinomial  Np t yang tidak diketahui. Penghuraian    , , , , , ,NQ f x y c Q p x y c untuk 

set  , ,x y c boleh dikira secara efisien dengan menggunakan Penjelmaan Fourier Pantas 

(PFP). Penganggaran ralat bagi skema kuadratur automatik yang dibina diperolehi dan 

masalah penumpuan untuk skema kuadratur automatik dibincangkan dalam kelas fungsi  

   1 ,
1,1

N
C


  dan  1,1w

pL  . 

 

Kod C dibangunkan bagi memperolehi keputusan berangka dan dipamerkan untuk 

dibandingkan dengan penyelesaian tepat  kamiran singular untuk fungsi  f t yang 

berlainan. Eksperimen berangka dipamer bagi menunjukkan keberkesanan kaedah yang 

digunakan dan ia membuktikan keputusan teori. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Historical introduction and types of the quadrature formulas 

 

Numerical integration is the study of how the numerical value of an integral can be 

found. A fine example of ancient numerical integration is the Greek quadrature of the 

circle by means of inscribed and circumscribed regular polygons. This process led 

Archimedes to find an upper and lower bound for the value of  . Over the centuries, 

particularly since the sixteenth century, many methods of numerical integration have 

been derived. These include the use of the fundamental theorem of integral calculus, 

infinite series, differential equations and integral transforms. There is a method of 

approximate integration at which an integral is approximated by a linear combination of 

the values of the integrand, i.e. 

   
1

,

b n

k k

ka

f x dx w f x a b


                         (1.1.1) 

where 
1,..., nx x  , are points or abscissas and 

1 2, ,..., nw w w  are called weights 

accompanying these points.  

 

One may properly ask why such primitive approximations as (1.1.1) should be 

developed and utilized. The answer is very simple: The sophisticated methods in 

mathematics do not always work, and even if they work it may not be advantageous to 

use them. For example, if the indefinite integral is an elementary function and 

antiderivatives can be obtained without difficulties, it may be complicated to use it. 
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For example: 

2

4 2

0

1 2 1 1
log arctan arctan .

1 4 2 2 1 2 2 2 2

x
dt x x x x

t x x x x

   
        

  

Whereas the integration 

2

,

b

x

a

S e dx   

leads to a function that cannot be expressed in infinite terms by combinations of 

algebraic, logarithmic, or exponential operations. 

 

Another reason for approximate integration occurs when we are solving a functional 

equation for the unknown function that appears in the integrand of some integral. 

A final reason for developing rules of approximate integration is that in many instances, 

we are encounter with the problem of integrating experimental data. In such cases, 

theoretical devices may not be wholly applicable. 

 

Numerical integration has been of the great interest to the pure mathematician. The 

history reveals that many great mathematicians have contributed to this field; 

Archimedes, Kepler, Huygens, Newton, Euler, Gauss, Jacobi, Chebyshev, Markoft, 

Feger, Polya, Cauchy, Schoenberg and Sobolev are among them. 
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Figure 1.1: Scheme of the types of the quadrature formula 
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1.2 General integration rules. 

 

Polynomial interpolation is the interpolation of a given data set by a polynomial. In 

other words, given some data points (obtained by sampling), the aim is to find a 

polynomial which goes exactly through these points.  

Theorem 1.1: Let the nodes [ , ], 0 ,ix a b i n   be given and the node 
ix be distinct, 

i.e., 
i jx x if and only if i j .Then there exists a unique polynomial

np , of degree less 

than or equal to n , that satisfies either  

  , 0,...,n i ip x y i n   

for a given set of data values  ,iy or 

    , 0,...,n i ip x f x i n 
 

 for a given function  , .f C a b   

 

Interpolatory polynomials are used to fit a function  f x  over the interval  ,a b  and are 

applied in constructing the QFs for the integration problems. Consider the product type 

integral of the form  

       

   

1

( )

,

b n

k k n

ka

n n

Q f w x f x dx w f x E f

Q f E f a b



  

      

            (1.2.1) 

where  nE f  is an error term. 
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To construct a QF for evaluating the product integral (1.2.1) we usually divide the 

interval [ , ]a b  into subintervals 
1[ , ], 0,..., 1k kx x k n   , either of equal length 

b a
h

n


  

or  nodes not equal length 
1 .k k kx x x    Nodes , 0,...,kx k n  are chosen for not equal 

length as 
1 0,k k kx x x x a    and as 

kx a kh   for equal length.  If the function 

 f x  is defined only over the interval  ,a b , then the node points , 0,1,...,kx k n  must 

belong to the interval  ,a b  entirely. If  f x  is defined outside the interval of 

integrations, then all 
kx  need not belong to  ,a b . Some QFs are constructed to fit the 

integral based on some of the nodes outside the interval  ,a b .  However, in many cases 

of integration problems the nodes 
kx  lies in the interval of integrations. 

 

1.2.1 Interpolatory type quadrature rules 

 

Definition 1.1: (Degree of precision) 

The degree of precision of a QF is the positive integer n such that the error 

  0n iE p  for all polynomials  ip x
 

of degree ,i n  and  1 0n nE p   for some 

polynomial  1np x
of degree n+1 , that is 

     , 0,...,

b

i n i

a

w x p x dx Q p i n   

and 

     1 1 .

b

n n n

a

w x p x dx Q p   
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Let us illustrate interpolating quadrature formula which is exact for the polynomial of 

degree n. Let the interpolating polynomial  np x  for  f x  be such that 

      ,nf x p x r x                 (1.2.2) 

where  r x  is the remainder term, and  

    
 

   
 

1

,
n

n k

k
k k

x
p x f x

x x x








               (1.2.3) 

where       1 2 ... .nx x x x x x x    
 

 

Polynomial of the form (1.2.3) is called Lagrange interpolating polynomial and it is 

known that the remainder term       nr x f x p x   in (1.2.2) is equal to zero, if  f x  

is a polynomial of degree .i n
 
Then the exact value of the product integral (1.2.1) is

 

           
b b b

a a a

w x f x dx w x p x dx w x r x dx    .             (1.2.4) 

The behavior of the remainder  r x  depends on the preciseness of the interpolating 

polynomial  np x . Thus, if  r x  is small throughout the interval  ,a b , then the second 

integral on the right-hand side (1.2.4) can be neglected. This situation leads to the 

approximate equation 

     
1

,

b n

k k

ka

w x f x dx A f x


               (1.2.5) 

where 

 
 

   
.

b

k

k ka

x
A w x dx

x x x






               (1.2.6) 

Formula of  type (1.2.5) are called the IQF.  



7 
 

 

Remark: The necessary and sufficient condition for the QF (1.2.5) to be interpolatory is 

that it would be exact for all possible polynomials  p x  of degree at most n-1. 

 

1.2.2 Newton-Cotes formula (Basic QF)  

 

Let the interval  ,a b be divided into n equal subintervals of length 
b a

h
n


  and the 

points , 0,..., .kx a kh k n  
 

 

A classical quadrature rule has the form 

  

     
1

[ ],

b n

k k n

ka

w x f x dx w f x E f


   

where  w x denotes a weight function, 
kw are the weights, 

kx  are the nodes (quadrature 

points)  and  nE f the error term. 

 

Let   1w x  , the first basic rule is obtained from the left-hand Riemann sum 

  

       
1

1

0

,

b n

n

ka

f x dx h f a kh R f




    

and the right-hand Riemann sum 

  

       2

1

.

b n

n

ka

f x dx h f a kh R f


    

These are known as the rectangular rules. The second basic rule is the midpoint rule  


