

UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIZATION OF MONO-DIMENSIONAL OXIDE ION CONDUCTORS IN Bi₂O₃MoO₃ SYSTEM

LIM CHIA MENG FS 2007 66

PREPARATION AND CHARACTERIZATION OF MONO-DIMENSIONAL OXIDE ION CONDUCTORS IN Bi₂O₃M₀O₃ SYSTEM

By

LIM CHIA MENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

Oct 2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREPARATION AND CHARACTERIZATION OF MONO-DIMENSIONAL OXIDE ION CONDUCTORS IN Bi₂O₃M₀O₃ SYSTEM

By

LIM CHIA MENG

Oct 2007

Chair: Tan Yen Ping, PhD

Faculty: Science

A new family of mono-dimensional oxide ion conductors with a formula xBi_2O_3 : MoO₃ has been prepared by three different methods: solid state, mechanochemical and *n*-butylamine method. X-ray powder diffraction (XRPD) analysis showed that materials with compositions $Bi_xMo_{10}O_\delta$ (25.5 $\leq x \leq 27.5$) prepared by solid state method formed high-temperature (HT) phase after heating at 800°C for 48 hours. With mechanochemical and *n*-butylamine methods, the lower limit of solid solution was x = 25. In the mechanochemical method, HT-Bi₂₆Mo₁₀O₆₉ was obtained after milling at 1400 rpm for 1 hour, followed by heating at 800°C for only 1 hour or 750°C for 24 hours. With *n*-butylamine method, the reaction product had to be heated at 800°C for 48 hours to yield a phase pure HT-Bi₂₆Mo₁₀O₆₉. All the peaks in the XRPD patterns of HT-phase materials can be fully indexed in a monoclinic symmetry with space group *P2/c*. Materials of compositions $27 \leq x \leq 31$ appears to form a low-temperature (LT) phase after being heated at 650°C for 48 hours. For LTphase materials, the XRPD patterns were fully indexed in a monoclinic symmetry with space group *P2/a*.

Electrical properties of phase pure materials were determined using impedance spectroscopy. From the results, HT-Bi₂₆Mo₁₀O₆₉ prepared by mechanochemical and *n*-butylamine methods exhibited higher conductivity values compared to that prepared via solid-state method in the temperature range of 200-300°C. HT-Bi₂₇Mo₁₀O_{70.5} prepared by solid state method exhibited highest conductivity among the HT-phase solid solutions. There was, however, no difference in conductivity for HT-Bi₂₇Mo₁₀O_{70.5} prepared by the three different methods. The high-temperature polymorph of Bi₂₇Mo₁₀O_{70.5} exhibited higher conductivity than the low-temperature polymorph.

Doping was carried out on the Mo site of HT-Bi₂₇Mo₁₀O_{70.5} with selected dopants, i.e. Al, Cr, Ge, Si, Sn, Zr, As, Nb, Sb and W. All dopants could be introduced into $Bi_{27}Mo_{10}O_{70.5}$ with rather limited solid solutions. $Bi_{27}Mo_{9.5}Zr_{0.5}O_{70}$ gave a conductivity value one order higher than the parent material $Bi_{27}Mo_{10}O_{70.5}$. No significant difference in conductivity was observed for other doped materials compared to the parent material $Bi_{27}Mo_{10}O_{70.5}$.

The stoichiometric composition of phase pure materials was confirmed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The phase transition of triclinic-monoclinic for HT-Bi_xMO₁₀O_{δ} (25.5 \leq x \leq 27) was observed in differential thermal analysis (DTA) and differential scanning calorimetry (DSC). No thermal event was observed for doped materials, except Bi₂₇Mo_{9.8}W_{0.2}O_{70.5}. No weight loss of phase pure materials was observed in the thermogravimetric analysis (TGA).

Scanning electron microscopy (SEM) experiments showed that the grain size of single phase materials was in the range of $10 - 20 \mu m$, with low porosity. The straight-line plots of density versus x in $Bi_xMo_{10}O_{\delta}$ solid solutions indicated that Vegard's law was obeyed. Absorptions in the far IR region (400 – 1000 cm⁻¹) due to the vibration of Mo-O bond were observed in Fourier-transform infrared (FT-IR) spectroscopy.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN SATU DIMENSI KONDUKTOR ION OKSIDA DALAM Bi₂O₃M₀O₃ SISTEM

Oleh

LIM CHIA MENG

Oct 2007

Pengerusi: Tan Yen Ping, PhD

Fakulti: Sains

Konduktor ion oksida jenis mono-dimensi dalam keluarga baru dengan formula xBi_2O_3 : MoO₃ telah disediakan dengan tiga cara yang berlainan: tindak balas keadaan pepejal, mekanokimia dan *n*-butilamina. Analisis pembelauan serbuk sinar-x (XRPD) menunjukkan bahawa bahan-bahan dengan komposisi $Bi_xMO_{10}O_{\delta}$ (1.275 $\leq x \leq 1.375$) yang disintesis melalui cara tindak balas keadaan pepejal adalah dalam fasa suhu tinggi (HT-phase) selepas dipanaskan pada 800°C selama 48 jam. Manakala dengan cara-cara mekanokimia dan *n*-butilamina, larutan pepejal terendah mempunyai komposisi dengan x = 1.25. Bahan-bahan berkomposisi $1.35 \leq x \leq 1.55$ adalah dalam fasa suhu rendah (LT-phase) selepas dipanaskan pada 650°C selama 48 jam. HT-Bi₂₆Mo₁₀O₆₉ (bahan induk) telah dihasilkan selepas penginciran pada 1400 rpm selama 1 jam, diikuti dengan pemanasan pada 800°C selama 1 jam atau 750°C selama 24 jam. Dengan cara *n*-butilamina, bahan tindak balas perlu dipanaskan pada 800°C selama 48 jam untuk menghasilkan fasa tulen HT-Bi₂₆Mo₁₀O₆₉. Semua puncak dalam data XRPD bagi bahan-bahan berfasa suhu tinggi boleh diindeks sepenuhnya dalam simetri monoklinik dengan kumpulan ruang *P2/c*. Untuk bahan-

bahan berfasa suhu rendah, XRPD data telah diindeks sepenuhnya dalam simetri monoklinik dengan kumpulan ruang $P2_1/a$.

Kekonduksian bagi bahan-bahan berfasa tulen telah diukur dengan menggunakan spektroskopi impedans. HT-Bi₂₆Mo₁₀O₆₉ yang disediakan melalui cara-cara mekanikal kimia dan *n*-butilamina telah menunjukkan nilai kekonduksian yang tertinggi pada suhu antara 200-300°C berbanding dengan HT-Bi₂₆Mo₁₀O₆₉ yang disediakan melalui cara tindak balas keadaan pepejal. HT-Bi₂₇Mo₁₀O_{70.5} menunjukkan kekonduksian tertinggi antara bahan-bahan berfasa suhu tinggi yang disediakan melalui cara tindak balas keadaan pepejal. Namun, tiada perbezaan kekonduksian antara bahan-bahan berkomposisi HT-Bi₂₇Mo₁₀O_{70.5} yang disediakan melalui tiga cara yang berlainan. Bi₂₇Mo₁₀O_{70.5} berfasa suhu tinggi menunjukkan kekonduksian dengan Bi₂₇Mo₁₀O_{70.5} berfasa suhu rendah.

Proses pendopan dengan pelbagai dopan, termasuk Al, Cr, Ge, Si, Sn, Zr, As, Nb, Sb dan W, telah dijalankan untuk HT-Bi₂₇Mo₁₀O_{70.5}. Semua jenis dopan boleh didopkan ke dalam Bi₂₇Mo₁₀O_{70.5} dengan larutan pepejal yang agak terhad. Bi₂₇Mo_{9.5}Zr_{0.5}O₇₀ memberikan nilai kekonduksian satu tertib lebih tinggi berbanding dengan bahan induk Bi₂₇Mo₁₀O_{70.5}. Tiada perbezaan yang ketara dalam kekonduksian bagi bahan-bahan didopkan berbanding bahan induk Bi₂₇Mo₁₀O_{70.5}.

Komposisi stoikiometri bagi bahan-bahan berfasa tulen telah ditentukan melalui eksperimen plasma aruhan gandaan-spektroskopi penyebaran optik (ICP-OES). Perubahan fasa antara trikilnik –monoklinik bagi HT-Bi_xMO₁₀O_{δ} (25.5 \leq x \leq 27) telah didapati dalam analisis pembezaan terma (DTA) dan kalorimetri pembezaan

pengimbasan (DSC). Tiada peristiwa terma bagi bahan-bahan didopkan, kecuali Bi₂₇Mo_{9.8}W_{0.2}O_{70.5}. Didapati tiada kehilangan jisim bagi bahan-bahan berfasa tulen dalam analisis thermogravimetri (TGA).

Ujian imbasan elektron mikrograf (SEM) menunjukkan saiz butir-butiran bagi setiap bahan adalah dalam lingkungan 10 – 20 μ m, dengan keliangan yang rendah. Plot gengan garisan lurus untuk ketumpatan lawan nilai x dalam larutan pepejal Bi_xMo₁₀O_{δ} menunjukkan bahawa Hukum Vegard adalah dipatuhi. Penyerapan dalam IR berlingkungan jauh (400 – 1000 cm⁻¹) yang disebabkan oleh getaran ikatan Mo-O telah didapati dalam spektroskopi inframerah transformasi Fourier (FT-IR).

ACKNOWLEDGEMENTS

First of all I would like to express my truly appreciation and deep gratitude to my supervisor, Dr. Tan Yen Ping, for her guidance, constructive comments, support, kindness and invaluable advice and suggestions throughout the duration of this study. I would also like to extend my sincere appreciation to my co-supervisor Associate Professor Dr. Taufiq Yap Yun Hin for his guidance and suggestions throughout this research work.

My special thanks are due to my advisor, Professor Dr. Lee Chnoong Kheng for her constructive comments, suggestions, encouragement and advice on this work.

I am grateful to Professor Dr. Mohd. Zobir Hussein for the assistance in density measurements at the Laboratory of Multifunctional Nanomaterials of Industrial Applications (MULIA) Research Group. Particular thanks are also extended to Madam Choo (ICP-OES), Madam Rusnani Amirudin (FT-IR), Mr. Kamal Margona, Madam Zaidina, Ms. Nor Azlina (DTA, DSC, TGA) for their technical assistance and guidance in operating the instruments. I also wish to express my appreciation to all the staffs in the Electron Microscopy Unit, UPM, especially to Madam Faridah, Madam Nooraini and Mr. Ho Oi Kuan.

I would like to express my gratitude to my lab seniors and friends, Dr. Lee Chiu Sze, Dr. Tan Kar Ban, Dr. Khaw Chwin Chieh and Dr. Ong Siew Teng for their supports, patience and guidance on this work. I would also like to thank my labmates, Ms. Ng Sin Nee and Ms. Wong Sook Yeng for their supports and encouragement.

The financial support from the Ministry of Science Technology and Innovation through IRPA grant is gratefully acknowledged.

Last but not least, my deepest affection and gratitude to my beloved family members for their love, supports, encouragement and understanding.

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Tan Yen Ping, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Taufiq Yap Yun Hin, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 February 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LIM CHIA MENG

Date:

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVAL	Х
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xxiv

CHAPTER

1.	INTRODUCTION 1.1 Solid State Chemistry 1.2 Solid Solutions 1.3 Solid Electrolytes and Oxide Ion Conductors 1.4 Applications of Oxide Ion Conductor 1.4.1 Oxygen Sensors 1.4.2 Solid Oxide Fuel Cells (SOFCs) 1.5 Objectives	1 2 3 8 8 9 11
2.	LITERATURE REVIEW 2.1 Bismuth-based Oxide Ion Conductors 2.2 Bi ₂₆ Mo ₁₀ O ₆₉ Family 2.2.1 Synthesis Conditions 2.2.2 Polymorphism 2.2.3 Structure 2.2.4 Introduction of Dopants	13 19 19 21 23 31
3.	 EXPERIMENTAL 3.1 Sample Preparation 3.1.1 General Principle of Solid State Reaction 3.1.2 Solid State Reaction with Manual Mixing 3.1.3 Synthesis with Mechanochemical and <i>n</i>-butylamine Mixing 3.2 Pellet Preparation 3.3 Characterization 3.3.1 X-ray Powder Diffraction (XRPD) 3.3.2 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) 3.3.3 Thermal Analysis 3.4 Scanning Electron Microscopy (SEM) 3.5 Density Measurement 3.4 Equivalent Analysis 	35 35 37 40 40 41 44 45 47 48 48
	3.3.7 Electrical Properties 3.4 Estimation of Errors	49 62

4. RESULTS AND DISCUSSION

4.1 Phase Formation	63
4.1.1 Solid State Synthesis	63
4.1.1.1 Parent Material Bi ₂₆ Mo ₁₀ O ₆₉	63
4.1.1.2 Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions	67
4.1.2 Mechanochemical Synthesis	74
4.1.2.1 Parent Material $Bi_{26}Mo_{10}O_{69}$	74
4.1.2.2 Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions	77
4.1.3 <i>n</i> -butylamine Synthesis	83
4.1.3.1 Parent Material Bi ₂₆ Mo ₁₀ O ₆₉	83
4.1.3.2 Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions	83
4.1.4 Low-temperature (LT) phase Materials	87
4.1.4.1 LT-Bi ₃₀ Mo ₁₀ O ₇₅	87
4.1.4.2 LT-Bi ₃₀ Mo ₁₀ O ₇₅ Solid Solutions	91
4.1.5 Elemental Analysis	96
4.1.6 Thermal Analyses	100
4.1.6.1 Differential Thermal Analysis (DTA) and Differential	100
Scanning Calorimetry (DSC)	
4.1.6.2 Thermogravimetric analysis (TGA)	113
4.1.7 Scanning Electron Microscopy	113
4.1.7.1 Parent Material Bi ₂₆ Mo ₁₀ O ₆₉	113
4.1.7.2 Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions	116
4.1.7.3 Low-temperature phase Materials	126
4.1.8 Density Measurement	126
4.1.9 Fourier-transform Infrared Spectroscopy (FT-IR)	129
4.1.10 Summary	134
4.2 Electrical Properties of Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions	137
4.2.1 Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions Prepared Via Solid State Synthesis	137
4.2.2 Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions Prepared Via Mechanochemical	155
Synthesis	
4.2.3 Bi ₂₆ Mo ₁₀ O ₆₉ Solid Solutions Prepared Via <i>n</i> -butylamine	162
Synthesis	
4.2.4 Low-temperature phase Materials	166
4.2.5 Summary	169
4.3 Doped Materials	171
4.3.1 Phase Formation	171
4.3.2 Elemental Analysis	188
4.3.3 Thermal Analysis	190
4.3.3.1 Differential Thermal Analysis (DTA)	190
4.3.3.2 Thermogravimetric analysis (TGA)	191
4.3.4 Scanning Electron Microscopy (SEM)	199
4.3.5 Density Measurement	199
4.3.6 Electrical Properties of Doped Materials	205
4.3.7 Summary	227

5. CONCLUSIONS	231
FURTHER WORK	235
REFERENCES	236
APPENDICES	244
BIODATA OF THE AUTHOR	249

LIST OF TABLES

Table	I	Page
2.1	Conductivity of each phase of Bi_2O_3 at $650^{\circ}C$	14
3.1	Wavelength used and detection limits of elements in ICP-OES analysis	45
3.2	Capacitance values and their possible interpretations	58
3.3	Estimation of errors for experimental parameters	62
4.1	The lattice parameters of HT-phase materials $Bi_xMo_{10}O_\delta$ (25.5 $\leq x \leq$ 27.5) prepared via solid state method	67
4.2	Phase assemblage of $Bi_x Mo_{10}O_{\delta}$ (25 \leq x \leq 28) prepared via solid state method	68
4.3	Phase assemblage of $Bi_x Mo_{10}O_{\delta}$ (24.5 $\leq x \leq$ 28) prepared via mechanochemical method	82
4.4	The lattice parameters of HT-phase materials $Bi_xMo_{10}O_\delta$ (25 \leq x \leq 27.5) prepared via mechanochemical method	82
4.5	Phase assemblage of $Bi_x Mo_{10}O_{\delta}$ (24.5 $\leq x \leq$ 28) prepared via <i>n</i> -butylamine method	86
4.6	The lattice parameters of HT-phase materials $Bi_xMo_{10}O_\delta$ (25 \leq x \leq 27.5) prepared via <i>n</i> -butylamine method	87
4.7	Phase assemblage of $Bi_x Mo_{10}O_{\delta}$ (26 $\leq x \leq$ 32)	94
4.8	The lattice parameters of LT-phase materials $Bi_x Mo_{10}O_{\delta}$ (27 $\leq x \leq$ 31)	95
4.9	Elemental concentrations of HT-Bi _x Mo ₁₀ O _{δ} (1.275 \leq x \leq 1.375) synthesized via solid state method	97
4.10	Elemental concentrations of HT-Bi _x Mo ₁₀ O _{δ} (1.25 \leq x \leq 1.375) synthesized via mechanochemical method	98
4.11	Elemental concentrations of HT-Bi _x Mo ₁₀ O _{δ} (1.25 \leq x \leq 1.375) synthesized via <i>n</i> -butylamine method	99
4.12	Elemental concentrations of selected LT-Bi_xMo_{10}O_{\delta}	100
4.13	The phase transition temperatures of DTA and DSC for $HT-Bi_xMo_{10}O_{\delta}$ (25.5 $\leq x \leq$ 27.5) prepared via solid state method	102
4.14	The phase transition temperatures of DTA and DSC for $HT-Bi_{x}Mo_{10}O_{\delta}$ (25 $\leq x \leq$ 27.5) prepared via mechanochemical method	104

4.15	The phase transition temperatures of DTA and DSC for HT-Bi _x Mo ₁₀ O _{δ} (25 \leq x \leq 27.5) prepared via <i>n</i> -butylamine method	108
4.16	Densities of HT-Bi_xMo_{10}O_{\delta} (25.5 \leq x \leq 27.5) prepared via solid state method	128
4.17	Densities of HT-Bi _x Mo ₁₀ O _{δ} (25.5 \leq x \leq 27.5) prepared via mechanochemical method	129
4.18	Densities of HT-Bi _x Mo ₁₀ O _{δ} (25 \leq x \leq 27.5) prepared via <i>n</i> -butylamine method	129
4.19	Conductivity (σ_{250} and σ_{600}) and activation energy (E _a) of Bi _x Mo ₁₀ O _{δ} (25.5 \leq x \leq 26.5)	149
4.20	Conductivity (σ_{500}) and activation energy (E _a) of selected LT-phase materials	168
4.21	The coordination number (CN), charge, and ionic radius	171
4.22	Phase assemblage of single phase doped materials	185
4.23	The lattice parameters of single phase doped materials with general formula $Bi_{27}Mo_{10-x}M_xO_{\delta}$ (M = dopant)	187
4.24	Elemental concentrations of $Bi_{27}Mo_{10\text{-}x}Nb_xO_\delta~(0\leq x\leq 0.20)$	189
4.25	Elemental concentrations of $Bi_{27}Mo_{10-x}As_xO_{\delta}$ ($0 \le x \le 1.70$)	189
4.26	Elemental concentrations of $Bi_{27}Mo_{10-x}Zr_xO_{\delta}$ ($0 \le x \le 0.50$)	190
4.27	The DTA phase transition temperatures for HT-Bi_{27}Mo_{10}O_{70.5} and Bi_{27}Mo_{9.8}W_{0.2}O_{70.5}	191
4.28	Densities of Cr-doped materials, $Bi_{27}Mo_{10-x}Cr_xO_{\delta}$ ($0 \le x \le 1.40$)	204
4.29	Densities of W-doped materials, $Bi_{27}Mo_{10-x}W_xO_{\delta}$ ($0 \le x \le 1.10$)	204
4.30	Conductivity (σ_{250} and σ_{600}) and activation energies (E _a) of doped materials	226

LIST OF FIGURES

Figure		Page
1.1	Electrical conductivities of selected common substances and representative solid electrolytes (Greenblatt, 1994)	5
1.2	Schematic operation of SOFC (Fisher, 1999)	11
2.1	(a, b) projection of $Bi_{26}Mo_{10}O_{69}$ structure with $[Bi_{12}O_{14}]_{\infty}$ columns extending along the twofold axis (Vannier <i>et al.</i> , 1996)	24
2.2	(b, c) projection of Bi ₂₆ Mo ₁₀ O ₆₉ (Vannier <i>et al.</i> , 1996)	24
2.3	(a, c) projection of Bi ₂₆ Mo ₁₀ O ₆₉ (Vannier et al., 1996)	25
2.4	[Bi ₁₂ O ₁₄] rose (Vannier <i>et al.</i> , 1996)	26
2.5	Bi(1)-Bi(6) and Mo surroundings (Vannier et al., 1996)	26
2.6	Bi(7) surrounding (Vannier et al., 1996)	27
2.7	$Bi_{26}Mo_{10}O_{69}$ structure. The shaded zone indicates the area where oxygen diffusion is likely to take place (Vannier <i>et al.</i> , 2000)	28
3.1	Flow chart for the samples synthesis process	37
3.2	Flow chart for sample preparation and characterization	41
3.3	Principle of X-ray diffraction	43
3.4	Admittance bridge	50
3.5	Impedance bridge	50
3.6	Semi-circle and spike in a cole-cole plot (West, 1984)	54
3.7	Equivalent circuit for a polycrystalline solid electrolyte; C_{dl} – electrode double-layer capacitance; C_b , R_b –bulk crystals; C_{gb} , R_{gb} – grain boundaries	55
3.8	Semi-circles in a complex plane plot (Irvine et al., 1990)	56
3.9	Brickwork model of grain boundary regions in a ceramic placed between metal electrodes (Irvine <i>et al.</i> , 1990)	57

3.10 Impedance diagram due to a blocking interface: (a) a perfectly smooth interface; (b) rough electrode or due to Warburg impedance (Armstrong and Todd, 1995)

59

3.11	(a) A complex Z^* plot and (b) the respective $Z^{"}$ and $M^{"}$ spectroscopic plots	60
4.1	XRPD patterns showing phase evolution of $Bi_{26}Mo_{10}O_{69}$ with synthesis temperature	64
4.2	XRPD pattern of Bi ₂₆ Mo ₁₀ O ₆₉	66
4.3	XRPD patterns of $Bi_x Mo_{10}O_{\delta}$ (25 $\leq x \leq$ 28) prepared via solid state method	69
4.4	Variation of lattice parameter, a, with x in $Bi_x Mo_{10}O_{\delta}$ solid solutions prepared via solid state method	71
4.5	Variation of lattice parameter, b, with x in $Bi_x Mo_{10}O_{\delta}$ solid solutions prepared via solid state method	72
4.6	Variation of lattice parameter, c, with x in $Bi_x Mo_{10}O_{\delta}$ solid solutions prepared via solid state method	73
4.7	Phase evolution of $Bi_{26}Mo_{10}O_{69}$ synthesized via mechanochemical method (1400 rpm for 1 hour)	75
4.8	Phase evolution of $Bi_{26}Mo_{10}O_{69}$ synthesized via mechanochemical method (700 and 1000 rpm for 1 hour) with synthesis temperature	76
4.9	XRPD patterns of $Bi_x Mo_{10}O_{\delta}$ (24.5 $\leq x \leq$ 28) prepared via mechanochemical method	78
4.10	Variation of lattice parameter, a, with x in $Bi_xMo_{10}O_\delta$ solid solutions prepared via mechanochemical method	79
4.11	Variation of lattice parameter, b, with x in $Bi_xMo_{10}O_{\delta}$ solid solutions prepared via mechanochemical method	80
4.12	Variation of lattice parameter, c, with x in $Bi_xMo_{10}O_{\delta}$ solid solutions prepared via mechanochemical method	81
4.13	Phase evolution of $Bi_{26}Mo_{10}O_{69}$ synthesized by <i>n</i> -butylamine method and heated at 800°C with increasing duration	84
4.14	XRPD diffraction patterns of $Bi_x Mo_{10}O_{\delta}$ (24.5 $\leq x \leq$ 28) prepared via	85
4.15	<i>n</i> -outynamine method Variation of lattice parameter, a, with x in $Bi_x Mo_{10}O_\delta$ solid solutions prepared via <i>n</i> -butylamine method	88
4.16	Variation of lattice parameter, b, with x in $Bi_x Mo_{10}O_{\delta}$ solid solutions	89

prepared via *n*-butylamine method

4.17	Variation of lattice parameter, c, with x in $Bi_xMo_{10}O_{\delta}$ solid solutions prepared via <i>n</i> -butylamine method	90
4.18	XRPD diffraction patterns showing phase evolution of LT -Bi ₃₀ Mo ₁₀ O ₇₅ with synthesis temperature	92
4.19	XRPD diffraction patterns of LT-phase $Bi_xMo_{10}O_{\delta}$ (26 \leq x \leq 32)	93
4.20	XRPD patterns of L-Bi ₆ Mo ₂ O ₁₅ (i.e. LT-Bi ₃₀ Mo ₁₀ O ₇₅) and Bi ₁₀ Mo ₃ O ₂₄	96
4.21	DTA thermograms of $Bi_{26}Mo_{10}O_{69}$ solid solutions prepared via solid state method	101
4.22	DSC thermograms of $Bi_{26}Mo_{10}O_{69}$ solid solutions prepared via solid state method	103
4.23	DTA thermograms of $Bi_{26}Mo_{10}O_{69}$ at various heating and cooling rate	105
4.24	DTA thermograms of $Bi_{26}Mo_{10}O_{69}$ solid solutions prepared via mechanochemical method	106
4.25	DTA thermograms of $Bi_{26}Mo_{10}O_{69}$ solid solutions prepared via and <i>n</i> -butylamine method	107
4.26	DSC thermograms of $Bi_{27}Mo_{10}O_{70.5}$ and $Bi_{27.5}Mo_{10}O_{71.25}$ prepared via mechanochemical method	109
4.27	DSC thermograms of Bi ₂₇ Mo ₁₀ O _{70.5} and Bi _{27.5} Mo ₁₀ O _{71.25} prepared via <i>n</i> -butylamine method	110
4.28	DTA thermograms of selected LT-phase materials	111
4.29	TGA thermograms of selected HT- and LT-phase materials prepared via solid state method	114
4.30	TGA thermograms of selected HT-phase materials prepared via mechanochemical (a to c) and <i>n</i> -butylamine (d and e) methods	115
4.31	SEM micrographs of HT- $Bi_{26}Mo_{10}O_{69}$ (in powder form) prepared by three different methods	117
4.32	SEM micrographs of grain sizes of HT- $Bi_{26}Mo_{10}O_{69}$ (in pellet form) prepared by three different methods	119

4.33	SEM micrograph of $Bi_{26}Mo_{10}O_{69}$ solid solutions prepared by solid state method	121
4.34	SEM micrograph of $Bi_{26}Mo_{10}O_{69}$ solid solutions prepared by mechanochemical method	123
4.35	SEM micrograph of $Bi_{26}Mo_{10}O_{69}$ solid solutions prepared by <i>n</i> -butylamine method	125
4.36	SEM micrograph of selected LT-phase materials	127
4.37	Variation of density with x in $Bi_xMo_{10}O_{69}$ of $Bi_xMo_{10}O_{69}$ solid solutions prepared via solid state method	130
4.38	Variation of density with x in $Bi_xMo_{10}O_{69}$ of $Bi_xMo_{10}O_{69}$ solid solutions prepared via mechanochemical method	131
4.39	Variation of density with x in $Bi_xMo_{10}O_{69}$ of $Bi_xMo_{10}O_{69}$ solid solutions prepared via <i>n</i> -butylamine method	132
4.40	IR spectra of HT-Bi _x Mo ₁₀ O _{δ} (25.5 \leq x \leq 27.5)	135
4.41	Complex impedance plane plots for HT-Bi ₂₆ Mo ₁₀ O ₆₉ at (a) 300° C (b) 500° C (c) 850° C	139
4.42	A combined Z" and M" spectroscopic plots for $Bi_{26}Mo_{10}O_{69}$ at $250^{\circ}C$	141
4.43	A combined Z" and M" spectroscopic plots for $Bi_{27}Mo_{10}O_{70.5}$ at $250^{\circ}C$	142
4.44	Complex plane plots of HT-Bi $_{26}Mo_{10}O_{69}$ at different voltages, at 550°C	143
4.45	Complex plane plots of HT-Bi $_{27}Mo_{10}O_{70.5}$ at different voltages, at $550^{\circ}C$	144
4.46	Arrhenius plots of HT-Bi ₂₆ Mo ₁₀ O ₆₉	146
4.47	Arrhenius plots of $Bi_x Mo_{10}O_{\delta}$ (25.5 $\leq x \leq$ 27.5) synthesized via solid state method (first cooling cycle)	147
4.48	Arrhenius plots of $Bi_{26}Mo_{10}O_{69}$ in two different atmospheres	151
4.49	Arrhenius plots of $Bi_{27}Mo_{10}O_{70.5}$ in two different atmospheres	152
4.50	Isothermal conductivity at 300° C of HT-Bi ₂₆ Mo ₁₀ O ₆₉ in different atmospheres	153
4.51	Isothermal conductivity at 300°C of HT-Bi ₂₇ Mo ₁₀ O _{70.5} in different atmospheres	154

4.52	Arrhenius plots of $Bi_x Mo_{10}O_{\delta}$ (25.5 $\leq x \leq$ 27.5) synthesized via mechanochemical method (first cooling cycle)	157
4.53	Complex impedance plane plot for $HT-Bi_{26}Mo_{10}O_{69}$ synthesized via mechanochemical method at $300^{\circ}C$	158
4.54	A combined Z" and M" spectroscopic plots for HT-Bi ₂₆ Mo ₁₀ O ₆₉ synthesized via mechanochemical method	159
4.55	Arrhenius plot of $Bi_{26}Mo_{10}O_{69}$ synthesized by conventional solid state and mechanochemical methods	161
4.56	Arrhenius plots of $Bi_x Mo_{10}O_{\delta}$ (25.5 $\leq x \leq$ 27.5) synthesized via <i>n</i> -butylamine method (first cooling cycle)	163
4.57	Arrhenius plot of $Bi_{26}Mo_{10}O_{69}$ synthesized by conventional solid state and <i>n</i> -butylamine methods	165
4.58	Arrhenius plots of these selected LT-phase materials and selected HT-phase materials (first cooling cycle)	167
4.59	XRPD diffraction patterns of Al-doped solid solutions, $Bi_{27}Mo_{10-x}Al_xO_{\delta}$ ($0 \le x \le 0.40$)	173
4.60	XRPD diffraction patterns of Si-doped solid solutions, $Bi_{27}Mo_{10-x}Si_xO_{\delta}$ ($0 \le x \le 1.0$)	174
4.61	XRPD diffraction patterns of Sb-doped solid solutions, $Bi_{27}Mo_{10-x}Sb_xO_{\delta}$ ($0 \le x \le 0.2$)	175
4.62	XRPD diffraction patterns of Nb-doped solid solutions, $Bi_{27}Mo_{10-x}Nb_xO_{\delta}$ ($0 \le x \le 0.2$)	176
4.63	XRPD diffraction patterns of Ge-doped solid solutions, $Bi_{27}Mo_{10-x}Ge_xO_{\delta}$ ($0 \le x \le 0.2$)	177
4.64	XRPD diffraction patterns of Cr-doped solid solutions, $Bi_{27}Mo_{10-x}Cr_xO_{\delta}$ ($0 \le x \le 1.4$)	178
4.65	XRPD diffraction patterns of As-doped solid solutions, $Bi_{27}Mo_{10-x}As_xO_{\delta}$ ($0 \le x \le 0.5$)	180
4.66	XRPD diffraction patterns of Sn-doped solid solutions, $Bi_{27}Mo_{10-x}Sn_xO_{\delta}$ ($0 \le x \le 0.5$)	181
4.67	XRPD diffraction patterns of Zr-doped solid solutions, $Bi_{27}Mo_{10-x}Zr_xO_{\delta}$ ($0 \le x \le 0.5$)	182
4.68	XRPD diffraction patterns of W-doped solid solutions,	183

 $Bi_{27}Mo_{10\text{-}x}W_{x}O_{\delta}\ (0\leq x\leq 1.1)$

4.69	DTA thermograms of Ge- and Al-doped solid solutions	192
4.70	DTA thermograms of Sb- and Sn-doped solid solutions	193
4.71	DTA thermograms of Nb- and Zr-doped solid solutions	194
4.72	DTA thermograms of W-doped solid solutions	195
4.73	DTA thermograms of Si- and Cr-doped solid solutions	196
4.74	DTA thermograms of As-doped solid solutions	197
4.75	TGA thermograms of selected doped materials	198
4.76	SEM micrograph of selected W-doped materials	200
4.77	SEM micrograph of selected Zr-doped materials	201
4.78	Density measurement of Cr-doped solid solutions	202
	$(Bi_{27}Mo_{10\text{-}x}Cr_{x}O_{\delta},0\leq x\leq 1.40)$	
4.79	Density measurement of W-doped solid solutions $(Bi_{27}Mo_{10-x}W_xO_{\delta}, 0 \le x \le 1.10)$	203
4.80	Complex impedance plane plots of $Bi_{27}Mo_{9.5}Zr_{0.5}O_{70}$ at (a) 300°C (b) 500°C (c) 850°C	206

4.81	Complex impedance plane plots of Bi27Mo9.5As0.5O70.25 at (a) 30000	C 208
	(b) 500°C (c) 850°C	
4.82	A combined Z" and M" spectroscopic plots for $Bi_{27}Mo_{9.5}Zr_{0.5}O_{70}$ at 250°C	209
4.83	A combined Z" and M" spectroscopic plots for $Bi_{27}Mo_{9.5}As_{0.5}O_{70.25}$ at $250^{o}C$	210
4.84	Complex plane plots of $Bi_{27}Mo_{9.5}Zr_{0.5}O_{70}$ at different voltages, at $550^{\circ}C$	212
4.85	Arrhenius plots of W-doped materials	213
4.86	Arrhenius plots of Zr-doped materials	215
4.87	Arrhenius plots of Cr-doped materials	216
4.88	Arrhenius plots of Si-doped materials	217
4.89	Arrhenius plots of Ge-doped materials	218
4.90	Arrhenius plots of Sb-doped materials	220
4.91	Arrhenius plots of Nb-doped materials	221
4.92	Arrhenius plots of Sn-doped materials	222
4.93	Arrhenius plots of Al-doped materials	223
4.94	Arrhenius plots of As-doped materials	225
4.95	Arrhenius plots of $Bi_{27}Mo_{9.5}Zr_{0.5}O_{70}$ in two different atmospheres	228
4.96	Isothermal conductivity at 300°C of Bi ₂₇ Mo _{9.5} Zr _{0.5} O ₇₀ in different atmospheres	229

LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

ac	alternating current
BIMEVOX	bismuth metal vanadium oxide
dc	direct current
DTA	differential thermal analysis
DSC	differential scanning calorimetry
FT-IR	fourier-transform infrared spectroscopy
HT-	high-temperature
ICDD	international centre for diffraction data
ICP-OES	inductively coupled plasma-optical emission spectrometry
LT-	low-temperature
ppb	parts per billion
OFN	oxygen free nitrogen
SEM	scanning electron microscopy
SD	standard deviations
SOFCs	solid oxide fuel cells
TGA	thermogravimetry analysis
XRPD	x-ray powder diffraction
YSZ	yittria stabilized zirconia
a, b, c	cell parameters
А	area
A*	complex admittance
c	velocity of light
С	capacitance
C _b	bulk capacitance

