UNIVERSITI PUTRA MALAYSIA

HOMOTOPY ANALYSIS AND LEGENDRE MULTI-WAVELETS METHODS FOR SOLVING INTEGRAL EQUATIONS

SAEED VAHDATI
IPM 2009 12
HOMOTOPY ANALYSIS AND LEGENDRE MULTI-WAVELETS
METHODS FOR SOLVING INTEGRAL EQUATIONS

By

SAEED VAHDATI

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia in Fulfilment of the Requirements for the Degree of Doctor of
Philosophy

December 2009
DEDICATION

To

My Wife

For her countless sacrifices and endless patience and understanding

My Mother and My Father

For their support, encouragement and love

and

My Dear Teachers
Due to the ability of function representation, hybrid functions and wavelets have a special position in research. In this thesis, we state elementary definitions, then we introduce hybrid functions and some wavelets such as Haar, Daubechies, Chebyshev, sine-cosine and linear Legendre multi wavelets. The construction of most wavelets are based on stepwise functions and the comparison between two categories of wavelets will become easier if we have a common construction of them.

The properties of the Floor function are used to find a function which is one on the interval \([0, 1)\) and zero elsewhere. The suitable dilation and translation parameters lead us to get similar function corresponding to the interval \([a, b)\). These functions and their combinations enable us to represent the stepwise functions as a function of floor function. We have applied this method on Haar wavelet, Sine-Cosine wavelet, Block - Pulse functions and Hybrid Fourier Block-Pulse functions to get the new representations of these functions.

The main advantage of the wavelet technique for solving a problem is its ability to transform complex problems into a system of algebraic equations. We use the
Legendre multi-wavelets on the interval [0, 1) to solve the linear integro-differential and Fredholm integral equations of the second kind. We also use collocation points and linear Legendre multi waves to solve an integro-differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields. Illustrative examples are included to reveal the sufficiency of the technique. In linear integro-differential equations and Fredholm integral equations of the second kind cases, comparisons are done with CAS wavelets and differential transformation methods and it shows that the accuracy of these results are higher than them.

Homotopy Analysis Method (HAM) is an analytic technique to solve the linear and nonlinear equations which can be used to obtain the numerical solution too. We extend the application of homotopy analysis method for solving Linear integro-differential equations and Fredholm and Volterra integral equations. We provide some numerical examples to demonstrate the validity and applicability of the technique. Numerical results showed the advantage of the HAM over the HPM, SCW, LLMW and CAS wavelets methods. For future studies, some problems are proposed at the end of this thesis.
HOMOTOPY ANALYSIS AND LEGENDRE MULTI-WAVELETS
METHODS FOR SOLVING INTEGRAL EQUATIONS

Oleh

SAEED VAHDATI

Disember 2009

Pengerusi: Dr. Zulkifly Abbas, PhD

Fakulti: Institut Penyelidikan Matematik (INSPEM)

Fungsi hibrid dan wavelet adalah penting dalam penyelidikan perwakilan fungsi.
Tesis ini dimulakan dengan kenyataan takrifan asas sebelum memperkenalkan fungsi
hybrid dan wavelet seperti Haar, Daubechies, sin-cos dan wavelet berbilang linear
Legendre. Pembentukan kebanyakan wavelet adalah berasaskan kepada fungsi bi-
jaklangkah . Perbandingan antara dua kategori wavelet adalah lebih mudah dilak-
sanakan sekiranya berasaskan pembentukan yang seiras.

Sifat fungsi Floor telah digunakan untuk mendapatkan fungsi yang bernilai tunggal
pada sela [0,1) dan sifar di luar sempadannya. Parameter kembangan dan ubahan
yang bersesuaian membawa kepada perolehan fungsi sepadanan sela [a,b). Fungsi
ini serta gabungannya membenarkan perwakilan fungsi bijaklangkah sebagai fungsi
kepada fungsi ”floor” . Kaedah ini telah digunakan ke atas wavelet Haar, sin-
kos, fungsi denyut blok dan fungsi hybrid Fourier denyut blok untuk mendapatkan perwakilan baru fungsi.

Faedah utama menggunakan kaedah wavelet untuk penyelesaian masalah ialah kebolehanannya untuk mengubah masalah kompleks kepada satu sistem persamaan algebra. Kaedah Legendre Wavelet Berbilang yang selanjur telah digunakan pada selu [0, 1) untuk menyelesaikan persamaan pembza-kamiran dan persamaan kamiran Fredholm peringkat kedua. Titik kolokasi dan Legendre berbilang wavelet yang linear juga telah digunakan untuk penyelesaian persamaan pembza-kamiran menjerangkan pergerakan zarah bercas dibawah pengaruh medan magnet. Contoh kaedah juga dipamirkan untuk membuktikan keupayaan kaedah tersebut. Kaedah persamaan linear pembza-kamiran dan persamaan kamiran Fredholm peringkat kedua menunjukkan kejituan tinggi bila dibandingkan dengan kaedah lain.

ACKNOWLEDGEMENTS

First and foremost, praise to Allah for giving me strength, courage and patience in completing this research. This research would not have been possible without the support of many people during the past several years.

I am very much thankful to my supervisor, Dr. Zulkifly Abbas, for his excellent guidance, support and patience to listen. His always-cheerful conversations, a friendly behavior, and his unique way to make his students realize their hidden research talents are extraordinary. I heartily acknowledge his constant encouragements and his genuine efforts to explore possible funding routes for the continuation of my research studies. I am also thankful to him for giving me an opportunity to work as a Teaching Assistant for BSc courses.

I would like to extend my gratitude to all members of my committee: Professor Kamel Areffin Mohd Atan and Dr. Nik Mohd Asri Nik Long whose comments and valuable suggestions had a positive impact on my research work and future career plans.

I will always remember my friends Seyed Jalal Langari, Saeed Alikhani and Ali Shahrjerdi etc. that I have made during my stay in Malaysia. I am specially grateful to them for their inspiration and encouragement during my graduate studies in Malaysia.

I wish to extend my utmost thanks to my relatives in Iran, especially my parents for their love and continuous support. Finally, my thesis would have never been in this shape without lovely efforts from my wife. Her invaluable companionship, warmth, strong faith in my capabilities and me has always helped me to be assertive
in difficult times. Her optimistic and enlightening boosts have made this involved research task a pleasant journey.
I certify that an Examination Committee has met on 31 December 2009 to conduct the final examination of Saeed Vahdati on his PhD thesis entitled “Homotopy Analysis and Legendre Multi-Wavelets Methods for Solving Integral Equations” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Member of the Examination Committee were as follows:

Mohamad Rushdan Md Said, PhD
Associate Professor
Department of Mathematics
Universiti Putra Malaysia
(Chairman)

Jumiah Hassan, PhD
Associate Professor
Department of Physics
Universiti Putra Malaysia
(Internal Examiner)

Sabira Khatun, PhD
Associate Professor
Department of Computer and Communication Systems Engineering
Universiti Putra Malaysia
(Internal Examiner)

Ismail Mohd, PhD
Professor
Department of Mathematics
University Malaysia Terengganu
(External Examiner)

BUJANG KIM HUAT, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 March 2010
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Zulkifly Abbas, PhD
Assistant Professor
Institute for Mathematical Research and Department of Physics
Universiti Putra Malaysia
(Chairman)

Kamel Ariffin Mohd Atan, PhD
Professor
Department of Mathematics and Institute for Mathematical Research
Universiti Putra Malaysia
(Member)

Nik Mohd Asri Nik Long, PhD
Assistant Professor
Department of Mathematics and Institute for Mathematical Research
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 11 March 2010
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

Saeed Vahdati
Date:
TABLE OF CONTENTS

ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xv
LIST OF FIGURES	xvi
ABBREVIATIONS	xvii

CHAPTER

1 INTRODUCTION

1.1 Background

1.2 Motivation and problem statement

1.2.1 Volterra integral equations

1.2.2 Fredholm integral equations

1.2.3 Integro-differential equations

1.2.4 Degenerate kernel methods

1.2.5 Projection methods

1.3 Research aims and objectives

1.4 Organization of the thesis

2 LITERATURE REVIEW

2.1 Inner product space and Hilbert space

2.2 Orthogonal complements and direct sums

2.3 Approximation in normed spaces

2.4 Systems of piecewise constant basis functions (PCBF) on normal interval

2.4.1 Block-Pulse functions (BPF)

2.4.2 Haar functions (HF)

2.4.3 Triangular functions (TF)

2.4.4 Rademacher functions (RF)

2.4.5 Walsh functions (WF)

2.5 Relationships among the various systems of PCBF

2.6 Orthogonal sine-cosine functions (SCF)

2.7 Hybrid Fourier and block-pulse functions (HFBPF)

2.8 Operational matrix of integration (OMI)

2.8.1 OMI for BPFs

2.8.2 OMI for HFBPF

2.8.3 OMI for SCF

2.9 The product operation matrix (POM)

3 WAVELETS

3.1 Wavelets on real line

xii
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Basic properties of BPFs and TFs</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Wavelet decomposition</td>
<td>45</td>
</tr>
<tr>
<td>3.2 Wavelet reconstruction</td>
<td>46</td>
</tr>
<tr>
<td>4.1 Floor construction of Sine-Cosine wavelets</td>
<td>73</td>
</tr>
<tr>
<td>4.2 Floor construction of Block-Pulse functions</td>
<td>74</td>
</tr>
<tr>
<td>4.3 Floor construction of Hybrid Fourier Block-Pulse functions</td>
<td>76</td>
</tr>
<tr>
<td>5.1 Numerical results of example (5.2.1)</td>
<td>85</td>
</tr>
<tr>
<td>5.2 Numerical results of example (5.2.2)</td>
<td>86</td>
</tr>
<tr>
<td>5.3 Numerical results of example (5.2.3)</td>
<td>86</td>
</tr>
<tr>
<td>5.4 Numerical results of example (5.3.1)</td>
<td>90</td>
</tr>
<tr>
<td>5.5 Numerical results of example (5.3.2)</td>
<td>91</td>
</tr>
<tr>
<td>5.6 Numerical results of example (5.4.1)</td>
<td>96</td>
</tr>
<tr>
<td>5.7 Numerical results of example (5.4.2)</td>
<td>97</td>
</tr>
<tr>
<td>5.8 Numerical results of example (5.4.3)</td>
<td>98</td>
</tr>
<tr>
<td>6.1 Numerical results of example (6.1.3)</td>
<td>114</td>
</tr>
<tr>
<td>6.2 Numerical results of example (6.2.1)</td>
<td>118</td>
</tr>
<tr>
<td>6.3 Numerical results of example (6.2.2)</td>
<td>119</td>
</tr>
<tr>
<td>6.4 Numerical results of example (6.2.3)</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 A set of four BPF</td>
<td>21</td>
</tr>
<tr>
<td>2.2 A set of four HF</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Dissection of BPF into triangular functions</td>
<td>24</td>
</tr>
<tr>
<td>2.4 (a) A set of LHTF $T_1(m)(t)$, (b) a set of RHTF $T_2(m)(t)$.</td>
<td>25</td>
</tr>
<tr>
<td>2.5 A set of four RF</td>
<td>28</td>
</tr>
<tr>
<td>2.6 A set of four WF</td>
<td>29</td>
</tr>
<tr>
<td>2.7 A set of five sine-cosine functions</td>
<td>38</td>
</tr>
<tr>
<td>3.1 Haar scaling function</td>
<td>47</td>
</tr>
<tr>
<td>3.2 Haar wavelet $\psi(t)$</td>
<td>48</td>
</tr>
<tr>
<td>3.3 Sine-cosine wavelets $\psi_{n,m}(t)$ for $L = 2$ and $k = 1$</td>
<td>54</td>
</tr>
<tr>
<td>3.4 Chebyshev wavelets $\psi_{n,m}(t)$ for $m = 2$ and $k = 1$</td>
<td>66</td>
</tr>
<tr>
<td>4.1 Graph of $\Upsilon(t)$ and $\phi(t)$</td>
<td>68</td>
</tr>
<tr>
<td>4.2 Graph of $\Upsilon_{n,m}(k)$</td>
<td>70</td>
</tr>
<tr>
<td>4.3 Graph of $\psi(t)$</td>
<td>71</td>
</tr>
<tr>
<td>5.1 A set of eight LLMW</td>
<td>79</td>
</tr>
<tr>
<td>6.1 The \hbar-curve of $u(0)$ given by (6.1.24), 12th-order approximation</td>
<td>110</td>
</tr>
<tr>
<td>6.2 The \hbar-curve of $u(1)$ given by (6.1.25), 12th-order approximation</td>
<td>112</td>
</tr>
<tr>
<td>6.3 The \hbar-curve of $u(1)$ given by (6.1.26). Dotted line: 5th-order approximation; Dashed line: 10th-order approximation; Solid line: 15th-order</td>
<td>113</td>
</tr>
<tr>
<td>6.4 The \hbar-curve of $u(1)$ given by (6.1.27), 12th-order approximation</td>
<td>115</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCBF</td>
<td>Piecewise Constant Basis Functions</td>
</tr>
<tr>
<td>BPF</td>
<td>Block-Pulse Functions</td>
</tr>
<tr>
<td>TF</td>
<td>Triangular Functions</td>
</tr>
<tr>
<td>RF</td>
<td>Rademacher Functions</td>
</tr>
<tr>
<td>WF</td>
<td>Walsh Functions</td>
</tr>
<tr>
<td>HF</td>
<td>Haar Functions</td>
</tr>
<tr>
<td>SCF</td>
<td>Sine-Cosine Functions</td>
</tr>
<tr>
<td>HFBPF</td>
<td>Hybrid Fourier and Block-Pulse Functions</td>
</tr>
<tr>
<td>OMI</td>
<td>Operational Matrix of Integration</td>
</tr>
<tr>
<td>POM</td>
<td>Product Operation Matrix</td>
</tr>
<tr>
<td>SCW</td>
<td>Sine-Cosine Wavelets</td>
</tr>
<tr>
<td>LLMW</td>
<td>Linear Legendre Multi Wavelets</td>
</tr>
<tr>
<td>HPM</td>
<td>Homotopy Perturbation Method</td>
</tr>
<tr>
<td>HAM</td>
<td>Homotopy Analysis Method</td>
</tr>
<tr>
<td>NLEE</td>
<td>Nonlinear evolution equation</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background

In the classic integral equations of the second kind we can solve integral equations in some special cases, for example, when kernel is degenerate. But in most physical phenomena we are concerned with equations that are not a special case, so we cannot obtain an exact solution for them. Therefore, it is necessary that we obtain an approximate solution for these integral equations. In recent years, schoolers have been considered functions such as: continuous orthogonal functions, piecewise continuous functions, orthogonal polynomials and Taylor polynomials. Functions and polynomials can be classified as follows: The first class contains piecewise continuous functions (for example Walsh, Block-Pulse and Haar functions). Orthogonal functions belong to the second class, for example: Legendre, Chebyshev, Hermit and Laguerre polynomials. The third class contains continuous orthogonal function approximation using piecewise continuous functions, orthogonal polynomials and Taylor polynomials has less accuracy so we use the orthogonal piecewise continuous functions, say hybrid functions, and wavelets have been considered by schoolers.

Wavelet theory is a relatively new phenomena in applied mathematics. Its history returns to the recent two decades. Schooler’s study such as Morlet, Arens, Fourgeau and Giard (1982) and Grossmann (1984) yield to wavelet theory. It is impressive that pay attention to this area has been increased, for a survey one can read [34].

Current success of the wavelet theory is related to two reasons, first we can consider wavelet theory as a combination of engineering science, physics and pure mathe-
matics and on the other hand wavelets are relatively simple tools with various applications. So far wavelets have been used in areas such as: signal analysis [34], image processing [95], numerical solution of partial differential equations [16, 54], integral equations [22, 42, 55], integro-differential equations [11]. As an orthogonal system, wavelets have a special position in other systems of orthogonal functions.

The principle characterization of methods based on orthogonal functions is the approximation of differential and integral operators using concept of operational matrix. This is done as follows: first the solution of the system as an unknown function is expanded in terms of orthogonal functions with unknown coefficients then by operational matrix the equations that state behavior of the system are appeared in a linear or non-linear system, where its solution is the solution of the original system at various conditions.

For the first time, operational matrix of integration in Walsh domain was introduced [30] and a method was determined for solving some linear and non-linear differential systems and integral equations. In [20, 85], Walsh functions were used to estimate and identify linear systems that are independent of time. Operational matrix of integration for Block-Pulse functions was determined by the obtained linear transform between Walsh and Block-Pulse functions [21].

In this area some studies fared on the computational error in the methods based on operational matrix of integration in Walsh and Block-Pulse. The results showed that representation of non-smooth functions in Walsh and Block-Pulse domain have less accuracy [23].
1.2 Motivation and problem statement

This section is concerned primarily with the numerical solution of what are called Fredholm integral equations, but we begin by discussing the broader category of integral equations in general. In classifying integral equations, we say, very roughly, that those integral equations in which the integration domain varies with the independent variable in the equation are *Volterra integral equations*; and those in which the integration domain is fixed are Fredholm integral equations [10].

1.2.1 Volterra integral equations

The general form that is studied is

\[x(t) + \int_a^t k(t, s, x(s))ds = y(t), \quad t \geq a. \tag{1.2.1} \]

The functions \(k(t, s, u) \) and \(y(t) \) are given, and \(x(t) \) is unknown. This is a *nonlinear-volterra* integral equation, and it is in this form that the equation is most commonly applied and solved. Such equations can be thought of as generalization of:

\[x'(t) = f(t, x(t)), \quad t \geq a, \quad x(a) = x_0, \tag{1.2.2} \]

the *initial value problem for ordinary differential equations*. This equation is equivalent to the integral equation:

\[x(t) = x_0 + \int_a^t f(s, x(s))ds, \quad t \geq a, \]

which is a special case of (1.2.1).

For an introduction to the theory of Volterra integral equations, see Miller [83]. These integral equations are not studied in this section, and the reader is referred to Brunner and Riele [19] and Linz [74]. Volterra integral equations are most commonly
studied for functions x of one variable, as above, but there are examples of Volterra integral equations for functions of more than one variable.

1.2.2 Fredholm integral equations

The general form of such integral equations is

$$\lambda x(t) - \int_D k(t, s)x(s)ds = y(t), \quad t \in D, \quad \lambda \neq 0,$$

with D a closed bounded set in \mathbb{R}^m, for some $m \geq 1$. The kernel function $k(t, s)$ is assumed to be absolutely integrable, and it is assumed to satisfy other properties that are sufficient to imply the Fredholm Alternative Theorem \cite{10}. For $y \neq 0$, we have λ and y given, and we seek x; this is the nonhomogeneous problem. For $y = 0$, Equation (1.2.3) becomes an eigenvalue problem, and we seek both the eigenvalue λ and the eigenfunction x. The principal focus of the numerical methods presented in the following sections is the numerical solution of (1.2.3) with $y \neq 0$.

1.2.3 Integro-differential equations

An integro-differential equation is an equation involving one (or more) unknown functions $x(t)$, together with both differential and integral operations on x. Such a description covers a very broad class of functional relations and we restrict discussion here to the simplest types of one-dimensional integro-differential equation, which form a natural generalisation of Volterra and Fredholm integral equations. In particular we shall consider nonlinear first order ordinary Volterra integro-differential equations of the form

$$\begin{cases}
x'(t) = g(t, x(t)) + \lambda \int_a^s k(t, s, x(s))ds, \\
x(a) = \alpha,
\end{cases}$$

(1.2.4)
and linear first and second order ordinary Fredholm integro-differential equations of the form

\[
\begin{cases}
p(t)x''(t) + q(t)x'(t) + r(t)x(t) + \lambda \int_a^b k(t, s)x(s)ds = g(t), \\
Cx(r) + Dx'(r) = e,
\end{cases}
\]

where

\[
x(r) = (x(r_1), x(r_2), \ldots, x(r_m))^T,
\]

\[
x'(r) = (x'(r_1), x'(r_2), \ldots, x'(r_m))^T,
\]

and where for a \(p \)th order problem, \(C, D \) are \(p \times m \) matrices and \(e \) is a \(p \times 1 \) matrix.

In Equations (1.2.4) and (1.2.5) \(g, k, p, q \) are known functions and \(r, x(r) \) and \(x'(r) \) are known vectors. Note the appearance in (1.2.4) and (1.2.5) of boundary condition equations. These are necessary to help to prove that a unique solution exists; the fact that such conditions are needed is evident by analogy with first order initial value and second order boundary value problems (set \(\lambda = 0 \) in (1.2.4) and (1.2.5)). It is the presence of these additional boundary conditions which makes the treatment of integro-differential equations significantly different from that of integral equations.

1.2.4 Degenerate kernel methods

Integral equation with a degenerate kernel function were introduced by Fredholm Alternative Theorem [10]. The degenerate kernel method is a well-known classical method for solving Fredholm integral equations of the second kind, and it is one of easiest numerical methods to define and analyze.

General theory:
Consider the integral equation (1.2.3). We assume throughout this and the following sections that D is a closed bounded set. Generally, it is an m-dimensional set with a piecewise smooth boundary; or it can be a piecewise smooth boundary itself. We usually work in the space $\mathcal{X} = C(D)$ with $\|\cdot\|_\infty$, and occasionally in $\mathcal{X} = L^2(D)$. The integral operator \mathcal{K} of (1.2.3) is assumed to be a compact operator on \mathcal{X} into \mathcal{X}.

The kernel function k is to be approximated by a sequence of kernel functions:

$$k_n(t, s) = \sum_{i=1}^{n} \alpha_{i,n}(t) \beta_{i,n}(s), \quad n \geq 1,$$

in such a way that the associated integral operators \mathcal{K}_n satisfy:

$$\lim_{n \to \infty} \|\mathcal{K} - \mathcal{K}_n\| = 0.$$

Generally, we want this convergence to be rapid to obtain rapid convergence of x_n to x, where x_n is the solution of the approximating equation:

$$\lambda x_n(t) - \int_D k_n(t, s)x_n(s)ds = y(t), \quad t \in D.$$

Theorem 1.2.1 Assume $\lambda - \mathcal{K} : \mathcal{X} \xrightarrow{1-1} \mathcal{X}$, with \mathcal{X} a Banach space and \mathcal{K} bounded. Further, assume $\{\mathcal{K}_n\}$ is a sequence of bounded linear operators with

$$\lim_{n \to \infty} \|\mathcal{K} - \mathcal{K}_n\| = 0.$$

Then the operators $(\lambda - \mathcal{K}_n)^{-1}$ exist from \mathcal{X} onto \mathcal{X} for all sufficiently large n, say $n \geq N$, and

$$\|(\lambda - \mathcal{K}_n)^{-1}\| \leq \frac{\|(\lambda - \mathcal{K})^{-1}\|}{1 - \|(\lambda - \mathcal{K})^{-1}\| \|\mathcal{K} - \mathcal{K}_n\|}, \quad n \geq N.$$

For the equations $(\lambda - \mathcal{K})x = y$ and $(\lambda - \mathcal{K}_n)x_n = y$, $n \geq N$, we have

$$\|x - x_n\| \leq \|(\lambda - \mathcal{K}_n)^{-1}\| \|\mathcal{K}x - \mathcal{K}_n x\|, \quad n \geq N.$$

6