

UNIVERSITI PUTRA MALAYSIA

DETERMINATION OF ACRYLAMIDE IN BANANA-BASED SNACKS AND EFFECT OF DIFFERENT MATURITY STAGES ON FORMATION OF ACRYLAMIDE IN BANANA FRITTERS

GISIA DANIALI FSTM 2010 6

DETERMINATION OF ACRYLAMIDE IN BANANA-BASED SNACKS AND EFFECT OF DIFFERENT MATURITY STAGES ON FORMATION OF ACRYLAMIDE IN BANANA FRITTERS

By

GISIA DANIALI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Master of Science

July 2010

i

DEDICATED TO MY BELOVED FAMILY

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DETERMINATION OF ACRYLAMIDE IN BANANA-BASED SNACKS AND EFFECT OF DIFFERENT MATURITY STAGES ON FORMATION OF ACRYLAMIDE IN BANANA FRITTERS

By

GISIA DANIALI

July 2010

- Chairman : Jinap Selamat, PhD
- Faculty : Food Science and Technology

Malaysians consume considerable amount of fried and baked banana-based snacks, which have potential amount of acrylamide content. This study was carried out to a) determine acrylamide in Malaysian banana based snacks by gas chromatography- mass spectrometry, b) to study the effect of maturity stages of banana on the formation of acrylamide in banana fritters. The modified method was based on extraction with water followed by cleanup through Oasis HLB and MCX solid-phase extraction cartridges. Then it was followed by bromination (2.5 mL, saturated bromine water treatment) of acrylamide into 2, 3-dibromopropionamide prior conversion to 2-bromopropenamide by dehydrobromination with triethylamine. The results indicated that volume of 2.5 mL bromine water was sufficient to derivatize the acrylamide. The limit of detection (LOD)

and limit of quantitation (LOQ) of the modified method were 5 and 15 μ g/kg, respectively, whereas the recovery for 2.5 mL of saturated bromine water ranged from 86.6 to 105.3%. Five types of Malaysian popular fried and baked banana based snacks purchased from different local markets had acrylamide at the range from 74.0 to 7468.8 μg/kg for banana fritter (*pisang goreng*), 28.9 to 243.7 μg/kg for banana chips (*kerepek pisang*), 160.7 to 500.4 μ g/kg for sweet banana chips (kerepek pisang manis), >5 to 154.4 μ g/kg for banana cake (*kek pisang*) and 31.7 to 609.1 μ g/kg for banana balls (*cekodok pisang*). Analysis of variance showed significant differences (p < 0.05) between acrylamide concentrations in foods from different types. The highest acrylamide content was found in the banana fritter might be related to the higher heating temperature and duration of heating time. To study the effect of maturity stages of banana on the formation of acrylamide in banana fritters, two varieties of local banana Musa paradisiaca variety Awak and Abu were fried before acrylamide determination. The more mature banana had significantly (p < 0.05) higher concentrations of reducing sugars; however, the concentrations of amino acids at different maturity stages were relatively similar (p > 0.05). The study indicated that reducing sugar had significant (p < 0.05) and strong correlation (R²= 0.92 for Abu) and (R²= 0.82 for Awak) with the acrylamide formation, as compared to asparagine. Concentration of acrylamide in both banana varieties enhanced with the increase of both reducing sugars (glucose and fructose). This is demonstrated that the formation of acrylamide presented a strong dependence on the concentration of reducing sugar. However this study failed to show the correlation between acrylamide formation and asparagine as its precursor.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan untuk ijazah master sains

PENENTUAN AKRILAMIDA DALAM MAKANAN RINGAN BERASASKAN PISANG DAN KESAN PERINGKAT KEMATANGAN PISANG TERHADAP PEMBENTUKAN AKRILAMIDA DALAM PISANG GORENG

Oleh

GISIA DANIALI

Julai 2010

Pengerusi: Jinap Selamat, PhD

Fakulti: Sains Makanan dan Teknologi

Rakyat Malaysia mengambil kuantiti yang agak banyak makanan ringan berasaskan pisang yang digoreng dan dibakar yang berpotensi mengandungi akrilamida. Kajian ini telah dijalankan untuk a) menentukan kandungan akrilamida dalam makanan ringan berasaskan pisang di Malaysia dengan menggunakan gas kromatografi- spektrometri jisim, b) untuk mengkaji kesan peringkat kematangan pisang terhadap penghasilan akrilamida dalam pisang goreng. Cara pengekstrakan diubahsuai dengan menggunakan air sebagai media pengekstrakan yang disambung dengan pembersihan melalui kartrij pengekstrakan fasa pepejal Oasis HLB dan MCX. Kemudian, ia diikuti oleh pembrominan (2.5 mL, rawatan air bromin tepu) akrilamida kepada 2, 3-

dibromopropionamida sebelum penukaran kepada 2-bromopropenamida melalui dehidrobrominasi dengan trietilamina. Keputusan menunjukkan 2.5 mL air bromin adalah mencukupi untuk menghasilkan terbitan akrilamida. Had pengesanan (LOD) dan had kuantitatif (LOQ) bagi cara yang telah diubahsuai ialah 5 dan 15 µg / kg, masingmasing, manakala dapatan semula untuk 2.5 mL air bromin tepu berjulat dari 86.6 hingga 105.3%. Lima jenis makanan ringan popular di Malaysia yang berasaskan pisang yang digoreng dan dibakar dibeli daripada pasaran tempatan berbeza menunjukkan julat pembentukan akrilamida dari 74.0 hingga 7468.8 µg / kg untuk pisang goreng, 28.9 hingga 243.7 µg / kg untuk kerepek pisang, 160.7 hingga 500.4 µg / kg untuk kerepek pisang manis, daripada >5 hingga ke 154.4 μ g / kg untuk kek pisang dan 31.7 hingga 609.1 µg / kg untuk bebola pisang (cekodok pisang). Analisis varians menunjukkan perbezaan yang jelas (p < 0.05) antara kandungan akrilamida dalam makanan daripada pelbagai jenis makanan yang berbeza. Kandungan akrilamida tertinggi telah didapati dalam pisang goreng mungkin berhubung kait dengan suhu pemanasan yang tinggi dan tempoh waktu pemanasan yang lama. Untuk mengkaji kesan peringkat kematangan pisang terhadap pembentukan akrilamida dalam pisang goreng, dua varieti pisang tempatan iaitu Musa paradisiaca bervarieti Awak dan Abu digoreng sebelum penentuan akrilamida. Pisang yang lebih matang menunjukkan kandungan gula penurunan yang lebih tinggi (p < 0.05); tetapi, kandungan asid amino di peringkat kematangan berbeza adalah sama (p > 0.05). Kajian ini menunjukkan gula penurunan mempunyai kaitan jelas (p < 0.05) dan pertalian erat ($R^2 = 0.92$ untuk Abu) dan ($R^2 =$ 0.82 untuk Awak) dengan pembentukan akrilamida, berbanding dengan asparagina. Kandungan akrilamida dalam kedua-dua varieti pisang ditingkatkan dengan peningkatan kedua-dua gula penurunan (glukosa dan fruktosa), dengan ini menunjukkan

pembentukan akrilamida bergantung kuat kepada kepekatan kandungan gula penurunan. Walau bagaimanapun, kajian ini gagal menunjukkan korelasi antara pembentukan akrilamida dan asparagina sebagai pelopornya.

ACKNOWLEDGEMENTS

My full praise to our God for enabling me to complete my study.

My sincere appreciation to my supervisor and chair person of the supervisory committee, Professor Dr. Jinap Selamat, who was a great source of motivation, encouragement and scientific guidance throughout the period of my study. I am also deeply indebted to her for arranging of the necessary funding.

I would like to express my deep thanks to my supervisory committee members, Associate Professor Dr. Md. Zaidul Islam Sarker and Dr. Hanifah Nuryani Lioe for their valuable contribution and suggestions.

Thanks to the Ministry of Heath Malaysia for sponsoring this research under MOH project No. UPM 62194.

My thankfulness to Dr. Faridah Abas, Mrs linawatti, Mrs. Liza, Mr. Halim, Mr. Azman, Mr. Hamizan, for their helps during laboratory experiments.

I am also very much indebted to my dear friends Dr. Parvaneh, Maimunah, Afsaneh, Afidah, Elham, Khairulnisak, Sahar, Fatimah, Maryam, Hanise, Leili, Safzan, Anosheh, Wendy, Farhang, Diana, Babak, Dr. Sam and Morvarid for their support and for being my friend.

My deepest appreciation and gratitude to my dear parents and family members for their spiritual, moral and financial support. All of you are respected and loved for always being there for me.

REPLACE I certify that an Examination Committee met on 16/07/2010 to conduct the final examination of Gisia Daniali on his Mst degree of Food Science thesis entitled "Determination of acrylamide in banana-based snack and the effect of different maturity stages of banana on the formation of acrylamide in banana fritters" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the Master of Science degree. Members of the Examination Committee are as follows:

Russly Abdul Rahman, phd

Proffessor Food Science and Technology Universiti Putra Malaysia (Chairman)

Dr. Faridah Abas, phd

Lecturer Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Prof. Madya Dr. Tan Chin Ping, phd

Associate Professor Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Prof. Madya Dr. Azhar Mat Easa, phd

Associate Professor Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, Ph.D.

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

JINAP SELAMAT, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

MD. ZAIDUL ISLAM SARKAR, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

HANIFAH NURYANI LIOE, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 6 September 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

GISIA DANIALI

Date: 16 July 2010

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xiv
LIST OF FIGURES	xviii
LIST OF APPENDICES	xix
LIST OF ABBREVIATIONS	XX

CHAPTER

1		INTRODUCTION	1
	1.1	Background of study	1
	1.2	Objectives	3
2		LITERATURE REVIEW	5
	2.1	Banana	5
	2.	1.1 Plantains	6
	2.	1.2 Awak and Abu	7
		1.3 Nutritional and therapeutic values of banana and plantain	7
	2	1.4 Banana products	10
	2.2	Acrylamide	11
		2.1 Chemical properties of acrylamide	11
		2.2 Health aspect of acrylamide	13
		2.3 Exposure assessment	16
	2.3	Occurrence acrylamide of in food	19
	2.4	Mechanism of formation acrylamide and precursors	21
	2.5	Methods for determination of acrylamide in food	24
	2.	5.1 Determination of acrylamide by GC–MS with derivatization	25
	2.	5.2 Determination of acrylamide by GC–MS without derivatization	27
	2.	5.3 Acrylamide determination by LC-MS/MS	28
	2.6	Bromine and bromination in acrylamide analysis	29
3		DETERMINATION OF ACRYLAMIDE IN	32
		MALAYSIAN BANANA BASED SNACKS BY	
		GAS CHROMATOGRAPHY- MASS SPECTROMETRY	
	3.1	Introduction	32
	3.2	Materials and methods	36

	- · ·	Materials	36
		Instrumentation	36
	3.2.3	1	37
3.3	3.2.4	Sample preparation Method Validation	38 41
5.5	3.3.1		41
	3.3.2	Recovery test at different volumes of reducing-	41
	5.5.2	saturated bromine water	41
	3.3.3	Recovery test at different concentrations of acrylamide spiking in different samples	41
	3.3.4	Calibration curve	42
		Repeatability and reproducibility	42
3.4	5.5.5	Statistical analysis	43
3.5		Results and discussion	43
3.6		Conclusions	55
		THE EFFECT OF MATURITY STAGES OF	56
		BANANA ON FORMATION OF ACRYLAMIDE	
		IN BANANA FRITTERS	
4.1		Introduction	56
4.2		Materials and methods	59
		Materials	59
	4.2.2	1	59
	4.2.3		60
		Instrumentation	61
		Determination of sugars by HPLC	62
		Determination of amino acids by HPLC	63
	4.2.7	Determination of crude protein by kjeldahl method	64
4.3	4.2.8	Determination of acrylamide	65
		Statistical analysis	65
4.4 4.5		Results and discussion Conclusions	65 79
4.3		Conclusions	78
		SUMMARY, GENERAL CONCLUSION AND	80
		RECOMMENDATION FOR FUTURE	
		RESEARCH	
		REFERNCES	83
		APPENDICES	95

4

5

APPENDICES95BIODATA OF STUDENT104LIST OF PUBLICATIONS105

LIST OF TABLES

Table		Page
2.1	Nutritional values for the plantain and banana	8
2.2	Solubility of acrylamide in different solvents	12
2.3	Numbers of Fischer 344 rats with tumors after receiving acrylamide in the drinking-water for two years	15
3.1	Recovery results of acrylamide spiked in banana fritter, the recovery was determined by GC-MS at four different volumes of reducing-saturated bromine water $(1.6 \% \text{ v/v})$	44
3.2	Repeatability and reproducibility	45
3.3	Validation of GC-MS methods for acrylamide determination in fried food	47
3.4	Recovery of acrylamide determined by GC-MS in different matrices at three different concentrations of spiking	48
3.5	Acrylamide concentrations (μ g/kg) in banana based snacks collected from 5 locations (L1 – L5)	50
3.6	Ingredient of different banana based snacks	51
3.7	Temperature of frying oil and duration of frying time, observed in five locations $(L1 - L5)$ during the sample collection	52
3.8	The processing and raw material conditions observed when the banana fritter samples were taken from the five locations (L1 - L5)	53
4.1	Total crude protein of Awak and Abu banana varieties in four stages of maturities	66

- 4.2 Concentration of amino acids (mg/g of fresh wt) in commercial banana (Awak) at 4 stages of maturity (1.green, 2. yellow green, 3. yellow, 4. yellow with black spot), determined by HPLC after acid hydrolysis and pre-column derivatization by phenylisothiocyanate (n=3)
- 4.3 Concentration of amino acids (mg/g of fresh wt) in commercial 68 banana (Abu) at 4 stages of maturity (1.green, 2. yellow green, 3. yellow, 4. yellow with black spot), determined by HPLC after acid hydrolysis and pre-column derivatization by phenylisothiocyanate
- 4.4 Concentration of reducing sugar in two varieties of commercial 70 banana at 4 stages of maturity (1. green, 2. yellow green, 3. yellow, 4. yellow with black spot), determined by HPLC with refractive index detector
- 4.5 Concentration of acrylamide (μg/kg) in two varieties of 73 commercial banana at 4 stages of maturities (1. green, 2. yellow green, 3. yellow, 4. yellow with black spot)determined by GC-MS
- 4.6 Pearson's correlation between acrylamide concentration and 75 sugars in Awak banana variety
- 4.7 Pearson's correlation between acrylamide concentration and 76 sugars in Abu banana variety
- 4.8 Pearson's correlation of acrylamide concentration and amino 77 acids in Abu
- 4.9 Pearson's correlation of acrylamide concentration and amino 78 acids in Awak

67

LIST OF FIGURES

Figure		Page
2.1	Chemical Structure of Acrylamide	11
2.2	Mechanism of Acrylamide Formation	22
2.3	Pathways of Acrylamide Formation via Acrolein and Acrylic acid	23
3.1	Calibration Curve for Acrylamide Determination by GC-MS	46

LIST OF APPENDICES

Appendix		Page
A1	Banana samples used for banana fritter	95
A2	Chromatograms of acrylamide in different samples	96
A3	Samples used for acrylamide detection in chapter 3	97
A4	Chromatogram of amino acids	98
A5	Chromatograms of sugars in banana	101
A6	Calibration Curve for Sugar Determination	103

LIST OF ABBREVIATIONS

AA	Acrylamide
ACGIH	American Conference of Governmental Industrial Hygienists
Ala	Alanine
AOAC	Association of Official Analytical Chemists
ANOVA	Analysis of variance
Arg	Arginine
Asn	Asparagine
BB	Banana balls
BC	Banana chips
BCa	Banana cake
BF	Banana fritter
BMDL	Benchmark Dose Lower Limit
Br ₂	Bromine
°C	Centigrade degree
CAA	Clean Air Act
CE	Capillary electrophoresis
CSTEE	Scientific Committee on Toxicity, Ecotoxicity and the Environment
EDI	Estimated daily intake
ECD	Electron capture detector
e.g.	For Example
EPA	Environmental Protection Agency
Eq	Equation

EU	European Union
EWI	Estimated weekly intake
F	Female
FAO	Food and Agricultural Organization
FDA	Food and drug administration
Frc	Fructose
FT-IR	Fourier transform infrared
g	Gram
GC	Gas chromatography
GC-AFS	Gas chromatography-atomic fluorescence spectrometry
GC-MS	Gas chromatography-mass spectrometry
Gln	Glutamine
Glc	Glucose
Gly	Glycine
h	Hour
НАР	Hazardous air pollutant
HBr	Hydrobromic acid
HCI	Hydrochloric cid
His	Histidine
HLB	Hydrophilic–lipophilic balance
HPLC-DAD	High performance liquid chromatography with diode array detection
HPLC-UV-DAD	High-performance liquid chromatography with ultraviolet diode array detection
HPLC	High-performance liquid chromatography

IARC	International Agency for Research on Cancer
Ile	Isoleucine
INIBAP	International Network for The Improvement Of Banana And Plantain
IRIS	Integrated Risk Information System
IUPAC	International Union for Pure and Applied Chemistry
JECFA	Joint Expert Committee on Food Additives
KBr	Potassium bromide
Kg	Kilogram
L	Liter
LC	Liquid chromatography
LC-MS	Liquid chromatography- mass spectrometry
LC-MS-MS	Liquid chromatography with tandem mass spectrometry
Leu	Leucine
LOAEL	lowest-observed- adverse effects level
LOD	Limit of detection
LOQ	limit of quantification
Lys	Lysine
Μ	Molar
MAL	Maltose
MCX MeOH	Mixed-mode cation-exchange Methanol
mg	Milligram

mL	Milliliter
mm Hg	Millimetres of mercury
MOE	Margin of exposure
МОН	Ministry of Health Malaysia
MS	Mass spectrometry
MW	Molecular Weight
NaCl	Sodium chloride
ND	Not detected
NOAEL	No observed adverse effects level
NTP	National Toxicology Program
0	Oxygen
OH-	Hydroxide
OSHA	Occupational Safety and Health Act
PELs	Permissible exposure limits
Phe	Phenylalanine
Pro	Proline
Py-GC/MS	Pyrolysis-gas chromatography/mass spectrometry
R ²	Correlation coefficient
RQ	Reportable quantity
s SBC	Second Sweet banana chips
Ser	Serine
S/N	Signal/noise
SNFA	Swedish National Food Administration

SPE	Solid phase extraction
Suc	Sucrose
Thr	Threonine
Tyr	Tyrosine
USEPA	United States Environmental Protection Agency
Val	Valine
WHO	World Health Organization
μΕCD	Micro-electron capture detection
μg	Micro gram
μL	Micro liter

CHAPTER 1 INTRODUCTION

1.1. Background of study

Acrylamide (CH₂–CH–CO–NH₂) with MW 71 is a solid compound, and it is stable at room temperature (CAS No. 79–06–1). Side effects of acrylamide include drowsiness to in coordination, hallucination, and confusion. Direct contact with dissolved acrylamide irritates the skin, and acrylamide dust irritates the respiratory system (Environmental Protection Agency, 1994).

Cooking and processing of high carbohydrate foods at high temperatures have been shown to produce various kinds of cooking toxicants. The most recently detected food toxicant produced by heat processing is acrylamide (Jagerstad and Skog, 2005). Concern over acrylamide in foodstuffs arose in April 2002 when Swedish scientists reported unexpectedly high levels of this potentially carcinogenic compound in carbohydrate–rich foods heated to high temperatures (Swedish National Food Administration, 2002), since then scientists from different countries identified possible pathways for the formation of acrylamide (Mottram et al., 2002; Becalski et al., 2003; Zyzak et al., 2003). Acrylamide was found mainly in fried, deep fat fried, roasted or oven cooked foods which basely consist of carbohydrates. Only traces of acrylamide were found in boiled or braised foods, indicating that significant formation of acrylamide during processing requires temperatures of ≥ 120 °C (Zyzak et al., 2003).

