

UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION OF MACHINING DEFECTS IN WOOD PLANING OPERATION

SAEID REZA FARROKHPAYAM FH 2010 2

CHARACTERIZATION OF MACHINING DEFECTS IN WOOD PLANING OPERATION

By

SAEID REZA FARROKHPAYAM

Thesis Submitted to the School of Graduated Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2010

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CHARACTERIZATION OF MACHINING DEFECTS IN WOOD PLANING OPERATION

By

SAEID REZA FARROKHPAYAM

April 2010

Chairman: Jegatheswaran Ratnasingam, PhD

Faculty: Forestry

The objective of this study was to evaluate the effect of some machining factors on the machinability of selected Malaysian hardwoods and to quantify the major types of machining defects in the planing operation. The study aims to reveal the relationship between the types of surface defects generated after planing with the variable factors. It also studies the sanding process as an indicator to reveal loss thickness (yield) after the planing process on defective planks.

For this research, three wood species, Rubberwood (*Hevea brasiliensis*), Melunak (*Pentace spp*) and Dark Red Meranti (*Shorea spp*) were chosen based on their machining characteristics, commercial position in the local and global market, and their usage as a solid material in the furniture industry. 50 clear samples of each wood species, for each treatment, in a uniform moisture content (10%), of the final size of 19 by 102×910 mm, were machined by a planer unit, Weinig Unimat 23E using only the bottom spindle of the machine. The cutterhead had 4 knives with a

diameter 120 mm, rotating at 6000 revolutions per minute (RPM). The depth of cut (0.8, 1.6 and 2.4 mm) and feed rate (8, 12 and 16 m/min) were the experimental variables, while all other factors were kept constant. The surface quality of the individual sample was examined both visually, and sense of tactile to classify the samples into five grades based on the amount and severity of defects present, as given in the standard (ASTM, D 1666 – 87).

In every instance, 60 percent or more of the samples were defect-free, and the slightly defective pieces outnumber the more seriously defective ones, by a wide margin. An in-depth analysis of the samples surfaces, machined under the three parameters of processing, found that among these three factors, depth of cut had the most significant effect on torn and fuzzy grain. This research also revealed that the combination of feed rate, depth of cut and wood species used had no significant effect on the surface quality of samples.

This research showed that the planing operation as a part of wood products manufacturing can influence the quantity or volume of product parts manufactured from a given amount of lumber and labor by affecting the processing yield. The proper machining factors in relation to the wood species used decreases the surface defects. These defects results in increasing labor cost, machining cost and loss of wood material. Therefore, the optimal condition for planing operation of the three Malaysian woods to produce the best yield was realized at the minimum of depth of cut, and maximum cutting marks number per millimetre.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah

SIFAT KECACATAN-KECACATAN PEMESINAN DI DALAM OPERASI PENGETAMAN KAYU

Oleh

SAEID REZA FARROKHPAYAM

April 2010

Pengerusi: Jegatheswaran Ratnasingam, PhD

Fakulti: Perhutanan

Objektif penyelidikan ini adalah untuk mengkaji kesan beberapa faktor pemesinan spesies kayu keras Malaysia terpilih dan mengesan jenis-jenis kecacatan major akibat pemesinan pada proses pengetaman. Penyelidikan ini juga mengkaji perkaitan di antara jenis kecacatan permukaan selepas proses pengetaman dengan beberapa jenis factor, serta mengkaji proses pelicinan sebagai indikator untuk mengemukakan kehilangan hasil selepas proses pengetaman pada permukaan sampel-sampel yang cacat.

Kayu Getah (*Hevea brasiliensis*), Melunak (*Pentace spp*) dan Meranti Merah Tua (*Shorea spp*) adalah spesies kayu yang telah digunakan di dalam penyelidikan ini. Pemilihan spesies kayu-kayu ini adalah berdasarkaws kepada sifat-sifat pemesinan, kedudukan komersil di pasaran tempatan dan luar negara dan penggunaanya sebagai bahan mentah utama di dalam industri perabot. Sebanyak 50 sampel bagi setiap spesies kayu ini telah diuji. Sampel-sampel ini yang mempunyai kadar kandungan air (10%), dan bersaiz 19mm X 102mm X 910m, telah dimesin dengan

menggunakan unit mesin pengetam, Weinig Unimat 23E, dengan hanya menggunakan spindal bawah yang mempunyai 4 mata pisau, berdiameter 120 mm, pada kelajuan 6000 revolusi per minit (rpm). Kedalaman pemotongan adalah 0.8, 1.6 dan 2.4 mm dan kelajaam pemotongan adalah 8, 12 dan 16 m/min, dimana keduaduanya faktor ini merupakan factor berubah, manakala faktor-faktor yanag lain adalah dikekalkan seragam. Kualiti permukaan setiap sampel telah diperiksa dengan mata kasar dan secara fizikal, untuk diklasifikasikan kepada lima gred bergantung kepada jumlah dan jenis kecacatan yang terhasil, seperti yang tertera dalam standard ASTM, D 1666 – 87.

Secara umum, 60 peratus atau lebih daripada sampel-sampel didapati bebas dari kecacatan, dan hanya sebilangan sampel-sampel yang mempunyai kecacatan yang sederhana, manakala sampel-sampel yang mempunyai kecacatan yang sangat tinggi adalah sangat jarang.

Analisis yang mendalam pada permukaan sampel-sampel yang telah dimesin dengan menggunakan tiga proses parameter tersebut menunjukkan bahawa hanya faktor kedalaman pemotongan mempunyai kesan yang tinggi pada ira koyak dan ira serabut , berbanding dengan faktor-faktor yang lain.

Selain itu, penyelidikan ini turut mendedahkan bahawa kombinasi di antara kadar pemotongan, kedalaman pemotongan dan spesies kayu yang digunakan tidak mempunyai kesan ketara terhadap kualiti permukaan sampel-sampel. Penyelidikan ini menunjukkan bahawa operasi pengetaman adalah sebahagian daripada proses pembuatan produk kayu yang mempengaruhi kuantiti atau jumlah produk yang

dihasilkan, selain daripada jumlah kayu dan tenaga kerja melalui hasil yang diperolehi. Faktor pemesinan yang bersesuaian dengan spesies kayu yang digunakan akan mengurangkan kecacatan pada kualiti permukaan. Kecacatan ini akan menyebabkan peningkatan tenaga kerja, peningkatan kos pemesinan dan kerugian kayu. Keadaan optimum operasi pengetaman bagi tiga jenis kayu Malaysia ini, untuk mendapatkan hasil yang terbaik boleh dicapai pada kedalaman pemotongan yang minimum dan jumlah pemotongan per mm yang maksimum.

ACKNOWLEDGEMENTS

Obviously a project like this requires the assistance (and understanding) of many people. I want to thank all of them.

I would like to thank Associate Professor Dr. Jegatheswaran Ratnasingam, my supervisor, for mentoring me thoroughly during this research project.

I would also like to thank members of my supervisory committee, Associate Professor Dr. Edi Suhaimi Bakar, Associate Professor Dr. Tang Sai Hong, and Ir. Fuad Abas, for their advice and support.

Acknowledgement is given to the Forestry Faculty, Universiti Putra Malaysia, Wood Industry Skills Development Centre (WISDEC) and Zabol University for providing me with the opportunity to conduct my research.

And finally, a word of thanks to my wife, Maryam for going along with me.

I certify that a Thesis Examination Committee has met on 14 April 2010 to conduct the final examination of Saeid Reza Farrokhpayam on his thesis entitled "Characterization of Machining Defects in the Wood Planing Operation" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1988. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Name of Chairperson, PhD

Professor Mohd Hamami Shahri Faculty of Forestry Universiti Putra Malaysia (Chairman)

Name of Examiner 1, PhD

Professor Nabuchi Tadashi Faculty of Forestry Universiti Putra Malaysia (Internal Examiner)

Name of Examiner 2, PhD

Dr. H'ng Paik San Faculty of Forestry Universiti Putra Malaysia (Internal Examiner)

Name of External Examiner, PhD

Associate Professor Barbara Ozarska Department of Forest and Ecosystem Science The University of Melbourne Australia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jegatheswaran Ratnasingam, PhD

Associate Professor Faculty of Forestry Universiti Putra Malaysia (Chairman)

Edi Suhaimi Bakar, PhD

Associate Professor Faculty of Forestry Universiti Putra Malaysia (Member)

Tang Sai Hong, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 15 July 2010

DECLARATION

I declare that that thesis is based on my original work expect for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

SAEID REZA FARROKHPAYAM

Date: 1 May 2010

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OD FIGURES	xvi
LIST OF ABBREVIATIONS	XX

CHAPTER

INT	RODUCTION	1
REV	TEW OF LITERATURE	9
2.1	Wood Machining Processes and Value-Added Wood	
	Products Industry	9
2.2	Overview of the Wood Machining Process	12
	2.2.1 Orthogonal Cutting	13
	2.2.2 Peripheral Milling	20
2.3	The Planing Operation and Its Importance	25
	2.3.1 The History and Evolution of the Planer	27
	2.3.2 Surface Quality of Planed Wood	29
2.4	Factors Affecting the Planing Operation	33
	2.4.1 Workpiece Factors	34
	2.4.2 Tool Factors	41
	2.4.3 Machine Factors	44
2.5	Machines and Tools	48
2.6	Machining Defects and Its Economics Effects	52
	2.6.1 Rough Mill Yield	53
	2.6.2 Cost	57
2.7	Common Types of Wood Machining Defects and Their	
	Causes	59
	2.7.1 Fuzzy Grain	60
	2.7.2 Raised Grain	63
	2.7.3 Chipped Grain	66
	2.7.4 Chip Mark (Chip Print or Chip Bruising)	68
2.8	Wood Species	71
	2.8.1 Rubberwood	72
	2.8.2 Dark Red Meranti	79
	2.8.3 Melunak	87
RES	EARCH METHOD	95
3.1	Introduction	95
3.2	Scope of Tests and Research	96
3.3	Materials	99

3.4	Sampli	ing in Experiments	100
	3.4.1	Planing Test	101
	3.4.2	Sanding Test	112
3.5	Equipn	nents	115
	3.5.1	Planing Machine	116
	3.5.2	Sanding Machine	118
3.6	Data A	cquisition	119
	3.6.1	Evaluation of Planing Defects	120
	3.6.2	Evaluation of Samples after Sanding	124
3.7	Statisti	cal Analysis	127
RESU	LTS AI	ND DISCUSSION	133
4.1	Moistu	re Content and Density	133
4.2	Evalua	tion of Planing Test Results	134
	4.2.1	Comparative Planing Properties Based on	
		Defect-Free Percentage	134
	4.2.2	Comparative Averages of Defective Pieces Based	
		on Type of Defect	137
4.3	Freque	ncy of Types of Defects Related to the Factors	140
	4.3.1	Raised Grain Frequency in Different Species	141
	4.3.2	Torn Grain Frequency in Different Species	143
	4.3.3	Fuzzy Grain Frequency in Different Species	144
	4.3.4	Chip Marks Frequency in Different Species	146
	4.3.5	Raised Grain Frequency in Different Depth of Cut	148
	4.3.6	Torn Grain Frequency in Different Depth of Cut	149
	4.3.7	Fuzzy Grain Frequency at Different Depths of Cut	151
	4.3.8	Chip Marks Frequency at Different Depth of Cut	153
	4.3.9	Raised Grain Frequency at Different Feed Rate	154
	4.5.10	Furner Crain Frequency at Different Feed Rate	150
	4.3.11	Fuzzy Grain Frequency as the Different Feed Rates	150
4.4	4.5.12 Effects	of Test Fastors on Surface Quality	139
4.4		Main Effect of the Easters with Normal	101
	4.4.1	Distribution on Surface defects	162
	112	Main Effect of the Eactors without Normal	102
	7.7.2	Distribution on types of defects	166
	443	Interaction Effect of Factors on types of defects	172
45	Relatio	nship Description of Yield Loss and the factors	172
1.5	combin	nations	176
	4.5.1	Depth of Cut and Feed Rate combinations on	170
		Rubberwood	178
	4.5.2	Depth of Cut and Feed Rate combinations on	
		Dark Red Meranti	180
	4.5.3	Depth of Cut and Feed Rate combinations on	
		Melunak	182
	4.5.4	Comparative Sanding Results for the Three	
		Wood Species	184

4

5	CON	ICLUSIONS AND FUTURE WORK	186
	5.1	Conclusion	186
	5.2	Future Work	189
RE A PI	FEREN(CES	191
BIODATA OF STUDENT		202 230	
LIS	T OF PU	UBLICATIONS	231

LIST OF TABLES

Table		Page
2.1	Machine – process classification	12
2.2	Differences characteristics between orthogonal and peripheral milling	25
2.3	Machine factors and tool wear	44
2.4	Mechanical and machining properties of Rubberwood	80
2.5	Mechanical and machining properties of Dark Red Meranti	85
2.6	Mechanical and machining properties of Melunak	92
3.1	Commercial names for the test wood species	100
3.2	Properties of the samples	103
3.3	The range of indicator weights	108
3.4	Machining condition for the planing	110
3.5	High Speed Steel tools composition	111
3.6	Technical information of moulder used in this research	116
3.7	Technical specifications of the sander used in this research	119
3.8	Data set showing scores given by researcher to the severity of defects on specimen's surface	130
4.1	Physical properties of the samples	134
4.2	Occurrence of planing defects on the samples	135
4.3	Relative freedom from defects	136
4.4	Occurrence of planing defects types in treatment components	138
4.5	Frequency of raised grain in different species	141
4.6	Frequency of torn grain in different species	143
4.7	Frequency of fuzzy grain in different species	144
4.8	Frequency of chip marks in different species	147

4.9	Frequency of raised grain in different depths of cut	148
4.10	Frequency of torn grain in different depths of cut	150
4.11	Frequency of fuzzy grain in different depths of cut	151
4.12	Frequency of chip marks in different depths of cut	153
4.13	Frequency of raised grain in different feed rates	155
4.14	Frequency of torn grain in different feed rates	156
4.15	Frequency of fuzzy grain in different feed rates	158
4.16	Frequency of chip marks in different feed rates	159
4.17	One-sample Kolmogorov-Smirnov test	161
4.18	Analysis variance results	162
4.19	Ranks of different wood species for type of defects	167
4.20	Ranks of different depths of cuts for type of defects	170
4.21	Ranks of different feed rates for type of defects	171
4.22	Means for combination of the feed rates and wood specie	173
4.23	Means for combination of depth of cuts and wood specie	173
4.24	Means for combination of depth of cuts and feed rates	174
4.25	Means for combination of depth of cuts, feed rates and wood species used in this research	175
4.26	The result of the sanding test	177
4.27	Average loss thickness in sanding process on Rubberwood samples	179
4.28	Average loss thickness in sanding process on Meranti samples	181
4.29	Average loss thickness in sanding process on Melunak samples	183

LIST OF FIGURES

Figur	ligure	
2.1	Approximate value increase of 1 board foot of lumber	11
2.2	Two basic forms of machining	12
2.3	Geometry of orthogonal cutting	14
2.4	Force nomenclature in orthogonal cutting	15
2.5	Actions of cutting tools in forming various types of chips in orthogonal cutting of wood	18
2.6	Terminology applicable to peripheral-milling cutterhead	23
2.7	Cutting with and against the grain	39
2.8	Cutting direction in wood machining	40
2.9	Basic tool geometry	42
2.10	Effect of rake angle on the planing quality of wood species	43
2.11	Rotary machining process	50
2.12	Effective factors on productivity in wood machining processes	54
2.13	Example of fuzzy grain	60
2.14	Example of raised grain	64
2.15	Example of chipped grain	67
2.16	Example of chip mark	69
2.17	Rubberwood (Hevea brasiliensis)	72
2.18	Hevea brasiliensis - Transverse section	77
2.19	Hevea brasiliensis - Radial section	78
2.20	Hevea brasiliensis - Tangential section	79
2.21	Dark Red Meranti (Shorea curtisii)	81

2.22	Shorea curtisii – Transverse section	84
2.23	Shorea curtisii – Tangential section	87
2.24	Shorea curtisii – Radial section	88
2.25	Melunak (Pentace triptera)	89
2.26	Pentace triptera - Transverse section	91
2.27	Pentace triptera - Tangential section	94
2.28	Pentace triptera - Radial section	94
3.1	Flow line for planing and sanding tests	98
3.2	Overview of research	99
3.3	Sample of the marking of sawn timber	102
3.4	Diagram for sawing Lumber samples into smaller samples for planing tests	104
3.5	Permissible number of cuts with depth of cut 0.8 on a 19 mm thickness board	106
3.6	Diagram for total number of samples for planing test	106
3.7	Planing the samples with bottom spindle	109
3.8	Planing samples randomly and continuously	111
3.9	Diagram to choose samples for sanding test	113
3.10	The grain belts configuration used in this study	114
3.11	Defect removing by sanding process	115
3.12	Conventional planing and moulding machine	117
3.13	Wide-belt Sander machine	118
3.14	Planing grades Nos. 1 and 5	121
3.15	Fuzzy grain in Rubberwood, grades Nos. 2, 3, and 4	122
3.16	Torn grain in Melunak, grades Nos. 2, 3, and 4	123
3.17	Chip mark in Dark Red Meranti, grades Nos. 2, 3, and 4	124

3.18	Raised grain in Rubberwood, grades Nos. 2, 3, and 4	125
3.19	A sample of data sheet to record planing test result	126
4.1	Effect of depth of cut and feed rate on percentage of defect-free samples	137
4.2	Averages of different types of defects	139
4.3	Percentage of types of defects in different treatment components	140
4.4	Various raised grain degrees in three wood species	142
4.5	Various raised grain degrees in three wood species	144
4.6	Various fuzzy grain degrees in three wood species	146
4.7	Various chip marks degrees in three wood species	147
4.8	Various raised grain degrees in three depths of cut	149
4.9	Various torn grain degrees in three depths of cut	150
4.10	Various fuzzy grain degrees in three depths of cut	152
4.11	Various chip marks degrees in three depths of cut	154
4.12	Various raised grain degrees in three feed rates	155
4.13	Various torn grain degrees in three feed rates	157
4.14	Various fuzzy grain degrees in three feed rates	159
4.15	Various chip marks degrees in three feed rates	160
4.16	Mean comparison of total error between different depths of cuts levels	164
4.17	Mean comparison of total error between different feed rates levels	164
4.18	Mean comparison of total error between different wood species	165
4.19	Fuzzy grain on Rubberwood a) before sanding, b) after sanding	179
4.20	Effect of depth of cut and feed rate on loss thickness for Rubberwood	180
4.21	Chip marks on Meranti a) before sanding, b) after sanding	182
4.22	Effect of depth of cut and feed rate on loss thickness for Meranti	182
4.23	Torn grain on Melunak a) before sanding, b) after sanding	184

4.24	Effect of depth of cut and feed rate on loss thickness for Melunak	184

4.25 Comparison of loss thickness on three wood species in planing process 185

LIST OF ABBREVIATIONS

2D	Two Dimensions
3D	Three Dimensions
ANOVA	Analysis of Variance
ASME	The American Society of Mechanical Engineers
ASTM	The American Society for Testing and Materials
CBP	Cement Bonded Particleboard
cm	Centimeter
CRD	Complete Randomized Design
DIN	The German Institute for Standardization
DMRT	Duncan Multiple Range Test
DRM	Dark Red Meranti
FSP	Fiber Saturation Point
HSS	High Speed Steel
ISO	The International Organization for Standardization
JIS	Japanese Industrial Standards
kg	Kilogram
KS	Kolmogorov-Smirnove
kW	Kilowatt
LDS	Laser Displacement Sensor
m	Meter
Mbf	One thousand board feet
MDF	Medium Density Fiber

min	Minute
mm	Millimeter
MOE	Modulus of Elasticity
MOR	Modulus of Rupture
MPa	Mega Pascal
MTC	Malaysian Timber Council
RPM	Revolutions Per Minute
Ν	Newton
S	Second
USD	The United States dollar
α	Rake Angle
α β	Rake Angle Sharpness Angle
α β γ	Rake Angle Sharpness Angle Clearance Angle

CHAPTER I

INTRODUCTION

Wood is one of the most versatile materials known to humans. Wood is used to produce a diverse range of products and services that the society relies upon for many activities. From building houses to manufacturing furniture to printing books, wood has become a key resource. In this context, the forestry and wood industry is still one of the major engines of the Malaysian economy. Wood industry exports in Malaysia during 2007 rose nearly 60% to USD6 billion, compared with the figures from 10 years ago. Furniture exports stood at USD1.9 billion, and the furniture were exported to more than 160 countries, with the largest market, the US, receiving about USD2 billion worth of exports (Pillay, 2008).

Wood machining processes have gained great importance in recent years due to the short supply of wood, and the increasing environmental awareness among users and manufacturers. Wood machining techniques that are in use emphasizes on the maximum utilization of wood, especially to produce finished products, which helps in reducing wastage. As the world becomes more attuned to the competing requirements of resource sustainability, industrial economics and the environment is better off with better utilization of wood resources. One of the keys to a more effective use of wood is the development of a vigorous secondary manufacturing, sometimes called value added industry, which results in finished products. The success of secondary manufacturing of wood products is dependent on effective machining processes.

Usually, the outcomes of wood machining processes are heavily influenced by workpiece surface quality considerations. Tool sharpness requirements as well as machine feed and speed parameters often influence the workpiece surface quality. Research on surface quality measurement technology is being aimed at identifying and quantifying defects associated with the machining processes. The degree of roughness of a surface often affects the way the material itself is used. In general, surface irregularities can cause misalignment and part malfunctions, excessive loading over small areas, friction and lubrication problems, general finish and reflectivity problems, as well as other catastrophic failures.

Although surface quality for wood products has been a key issue since woodworking first began, the level of precision required does not approach the level that is found in metal working. This has been due, in part, to wood's inherent dimensional instabilities. The other main reason is that many common uses for wood did not require exceptional surface finishes, as compared to many metal applications. The evaluation of surface irregularities in wood is, however, important to assure proper fit of machined parts for gluing, acceptable surface finish for furniture, and as a methodology to evaluate the accuracy of the manufacturing process.

The last reason has become even more important in recent years due to the increased cost of raw materials, the increased production costs, and the higher production speeds available. Any deviations in expected product quality can quickly cause significant economic losses. There has also been a trend toward tighter tolerances for many forest products industries. An example of this would be the lamination of wood, or wood-based products with plastic films or ultra thin veneers. Even the

slightest irregularity on the surface will show up through the top laminate (Lemaster, 2004).

In wood products manufacturing, the quality of the wood surface requires much more attention, since wood has several unique characteristics such as complex natural composites, visco-elastics, hygroscopic, anisotropic, fibrous, porous and inherent natural defects. These characteristics, combined with the machine variables, complicate the production of machined wood surface with an acceptable quality.

Planing and moulding is a complex and subtle machining process that has much in common with milling and grinding of metals. These metal machining processes, have however been widely studied. In contrast to the vast amount of research and publication for metal machining, the planing of wood has received little attention (Jackson et al., 2001).

Determination of surface quality of wood is a complex process influenced by the heterogeneous structure of the wood, kinematics of the cutting process, and machining conditions. Machining properties of woods are directly related to machining defects such as fuzzy grain, chip mark, raised grain, chipped grain, etc. (Davis, 1962; Hernandez et al., 2001; Malkocoglu et al., 2006). Wood materials exhibit a wide range of defects due to biological as well as machining-related causes. In some cases there is no clear distinction between biological causes of poor surface quality as opposed to machining related causes. An example of this is the phenomenon of raised grain; wherein the growth rings of the wood structure are elevated from the normal wood plane, creating a series of raised areas (lines) on the

