

UNIVERSITI PUTRA MALAYSIA

STUDIES ON MALAYSIAN ISOLATES OF ORF VIRUS

KARIM SADUN ALI AL-AJEELI

FPV 1995 5

STUDIES ON MALAYSIAN ISOLATES OF ORF VIRUS

By

KARIM SADUN ALI AL-AJEELI

Dissertation Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Veterinary Medicine and Animal Science Universiti Pertanian Malaysia

September 1995

Dedicated with love and gratitude to, my wife Suaad T.Ameen and my son Mohammad

ACKNOWLEDGEMENTS

I would like to express my utmost appreciation and gratitude to my chairman Professor Abdul Latif Ibrahim for his invaluable guidance, constructive comments, advice and suggestion that led to the completion of the study.

I would also like to express my thanks to Associate Professor Dr. Mohd. Zamri Saad and Associate Professor Dr. Fatimah Iskandar of the Faculty of Veterinary Medicine and Animal Science for being members of supervisory committee for this study. My thanks also go to Associate Professor Dr. Aini Ideris for being a member in the Board of Examiners of this study.

I am also greatly indebted to Professor Dr. Anthony E. Castro of the Pennsylvania State University, for his comments on this study during his visit to Malaysia from 1st November to 2nd December 1994.

I am grateful to Dr. H.W.Reid of Moredun Research Institute, Scotland for providing me with ORFII reference strain and the hyperimmune serum of orf virus. I also wish to express my sincere thanks to Dr. A.J.Robinson of Medical Research Council of New Zealand for kindly providing the NZ2 strain of orf virus.

My thanks also go to Associate Professor Dr. Rasedee Abdullah, Head Department of Veterinary Pathology and Microbiology; Dr. Mohd. Azmi Mohd. Lila; Dr. Roshidah Ismail; Dr. Siti Suri; En. Sharifuddin Mansor, Mrs.Josephine Low Lai Kim and Puan Jamilah Abdul Rahman for being helpful whenever I ran into difficulties.

I would like to offer my special thanks to the staff members of virology laboratory, Puan Rodiah Hussin, Puan Salina Mokhtar, En. Mohd. Kamarudin Awang, En. Abdul Rahim Othman and En.Raziman for always being so willing to render assistance throughout the course of my study.

My thanks go to Dr. Fauziah Othman, Mr. Ho Oi Kuan and Puan Aminah for permission and their kind assistance in using the facilities of electron microscope unit. Special thanks also go to En. Fauzi Che Yusof for his assistance and use of his experience to develop the photographs of this study.

I would also like to express my gratitude to the Malaysian Government and Public Service Department, Training Division and Universiti Pertanian Malaysia for financial assistance throughout the course of my study. My gratitude is also extended to Animal Biotechnology Working Group for providing the funds to support this project.

My thanks also go to all members of the Faculty who contributed in one way or another toward the completion of my study.

Last but not least, I wish to express my heartfelt appreciation to my wife Suaad and my son Mohammad for their love, support and understanding during the period of my study.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF PLATES	xiii
LIST OF ABBREVIATIONS	xx
ABSTRACT	xxiv
ABSTRAK	xxvi

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	8
	Historical Background	8
	Classification	10
	Morphology and Ultrastructure	11
	Chemical Composition and Physical Properties	12
	Cultivation and Assay	13
	Cell Culture	13
	Chorioallantoic Membrane	19
	Morphogenesis of Orf Virus	21
	Pathogenicity of Orf Virus	24
	In Animals	24
	In Humans	27

Page

Transmission	
Antigenic Relationships and Strain Variation of Orf Virus	28
Antigenic Relationship With The Viruses of Same Genus	28
Antigenic Relationship With Other Poxviruses	31
Strain Variation	33
DNA and Protein Analysis of Orf Virus	37
ISOLATION AND CHARACTERIZATION OF ORF VIRUS	42
Materials and Methods	44
Collection and Processing of Samples	44
Negative Contrast Electron Microscopy (NCEM)	45
Cell Culture Preparation	45
Samples Inoculation and Virus Isolation	48
Identification of Virus Isolates	50
Purification of Orf Virus Isolates	53
Hyperimmune Serum (HIS) Preparation	55
Ability of Orf Virus Isolates to Grow in Primary and Continuous Cell Cultures	56
Plaque Morphology	58
Ability of Orf Virus Isolates to Grow on Chorioallantoic Membrane (CAM)	59
Results	61
Discussion	

III

		Page
IV	CYTOPATHOGENICITY OF ORF VIRUS ISOLATES: A COMPARATIVE STUDY	82
	Materials and Methods	83
	Viruses	83
	Cell Cultures and Virus Inoculation	83
	Cytopathic Effect (CPE) in Stained Preparation	84
	Growth Curve Study	85
	Antigen Development in Cell Culture:- Immunoperoxidase and Immunofluorescent Studies	86
	Results	87
	CPE in Unstained Preparations	87
	CPE in H&E Stained Preparations	88
	AO Stained Preparations	90
	Growth Curve Study	91
	Development of Orf Virus Antigen(s)	91
	Discussion	105
v	MORPHOGENESIS OF ORF VIRUS ISOLATES IN CELL CULTURE: TRANSMISSION ELECTRON MICROSCOPIC COMPARATIVE STUDY	113
	Materials and Methods	114
	Viruses	114
	Cell Culture and Viruses Inoculation	115
	Preparation of Infected Cells for TEM	115
	Cell Staining with Uranyle Acetate and Lead Citrate	116
	Results	117
	Discussion	130

		Page
VI	SEROLOGIC AND ANTIGENIC PROPERTIES OF ORF VIRUS ISOLATES: AN <i>IN VITRO</i> COMPARATIVE STUDY	137
	Materials and Methods	139
	Viruses	139
	Propagation and Purification of Viruses	139
	Hyperimmune Sera (HIS)	139
	Serologic Properties	139
	Polypeptides Analysis	144
	Results	149
	Serological Tests	149
	AGPT	149
	SNT and ELISA	149
	Indirect Immunofluorescent and Immunoperoxidase Tests	151
	SDS-PAGE of Orf Virus Protein	151
	Western Blotting and Physical Staining	152
	Immunodetection Studies of Blotted Proteins	153
	Discussion	170
VII	DNA PROFILES OF THE MALAYSIAN ISOLATES OF ORF VIRUS	176
	Materials and Methods	178
	Viruses	178
	Virus Propagation	178
	Virus Purification	179
	DNA Extraction	179

	Page
DNA Digestion	181
Electrophoresis and Photography	182
Molecular Weight Estimation of Viral DNA Fragments	183
Results	184
DNA Digestion With Restriction Endonuclease Enzymes.	184
DNA Molecular Weight of Orf Viruses	187
Discussion	206
VIII GENERAL DISCUSSION AND CONCLUSION	
BIBLIOGRAPHY	
APPENDICES	
Appendix A: Media and Related Tissue Culture Solutions	242
Appendix B: Buffers, SDS-PAGE and DNA analysis Related Reagents	246
Appendix C: Stains and Staining Reagents	254
Appendix D: Fixatives and Embedding Media	258
Appendix E: Substrates	261
Appendix F: Miscellaneous	263
VITA	

LIST OF TABLES

Table		Page
1	Log 10 TCID ₅₀ /ml titers of orf virus isolates after five passages in LT and KT cell cultures	69
2	The titer of anti ORFII HIS that obtained from SNT against each orf virus isolate	69
3	Log 10 TCID ₅₀ /ml titers of adapted orf virus isol- ates for five passages in different cell cultures	70
4	Classification for Foot-and-Mouth Disease virus strain	143
5	Antibody titers of orf virus isolates HIS's as estim- ated by ELISA titration against homologous and heterologous orf viral antigens	157
6	The bilateral relationship (R) and dominance (D) between orf virus isolates as estimated from their HIS's titers in ELISA against homologous and heterologous orf viral antigens	158
7	Number and molecular weight of polypeptide bands generated by 10% PAGE of purified orf virus isolates and stained by silver stain	161
8	The differences between orf virus isolates in blo- tted ploypeptide bands that stained with India ink and India ink after amido black	163
9	The differences between orf virus isolates in blo- tted polypeptide bands immunologicaly detected by the use of GV1 HIS	. 166
10	The differences between orf virus isolates in blo- tted polypeptide bands immunologicaly detected by the use of GV3 HIS	166
11	The differences between orf virus isolates in blo- tted polypeptide bands immunologicaly detected by the use of ORFII HIS	169
12	The differences between orf virus isolates in blo- tted polypeptide bands immunologicaly detected by the use of NZ2 HIS	169

13	Molecular weight of the viral DNA samples esti- mated from the fragments that generated by the digestion with BstEII restriction endonuclease enzyme
14	Molecular weight of the viral DNA samples esti- mated from the fragments that generated by the digestion with KpnI restriction endonuclease enzyme
15	Molecular weight of the viral DNA samples esti- mated from the fragments that generated by the digestion with HindIII restriction endonuclease enzyme
16	Molecular weight of the viral DNA samples esti- mated from the fragments that generated by the double digestion with EcoRI + BamHI restrict- ion endonuclease enzymes
17	The common molecular weight fragments that app- eared between the DNA patterns of orf viruses when they were subjected to the digestion with HpaI restriction endonuclease enzyme
18	The common molecular weight fragments that app- eared between the DNA patterns of orf viruses when they were subjected to the digestion with EcoRI restriction endonuclease enzyme
19	The common molecular weight fragments that app- eared between the DNA patterns of orf viruses when they were subjected to the digestion with BamHI restriction endonuclease enzyme
20	The mean molecular weights of orf viruses DNA that estimated from the digestions with diff- erent restriction endonuclease enzymes
21	Restriction enzymes and their standard buffers that were used in orf virus DNA digestion
22	Antibody titers of HIS's against orf virus isolates estimated from SNT against homologous and het- erologous orf virus antigens
23	The bilateral relationship (R) and dominance (D) between orf virus isolates as estimated from their HIS's in SNT against homologous and heterologous orf viral antigens

LIST OF FIGURES

Figure

1	Growth curve of GV1 Malaysian orf virus isolate in KT cells
2	Growth curve of GV2 Malaysian orf virus isolate in KT cells
3	Growth curve of GV3 Malaysian orf virus isolate in KT cells
4	Growth curve of LBV Malaysian orf virus isolate in KT cells
5	Growth curve of ORFII reference strain of orf virus in KT cells
6	Growth curve of NZ2 reference strain of orf virus in KT cells

LIST OF PLATES

Plate		Page
1	Control KT cells monolayer	66
2	KT cells monolayer infected with orf virus shows rounding of some infected cells	66
3	KT cells monolayer infected with orf virus shows the formation of open plaque	67
4	Electronmicrograph of negatively stained GV1 pur- ified orf virus particles	67
5	Electronmicrograph of negatively stained LBV pur- ified orf virus particles	68
6	Plaque morphology of the orf virus isolates GV1 (A), GV2 (B) and GV3 (C) in FOM cells monolayer after 4 days of incubation at 37°C under methyl cellulose MEM overlay medium.	71
7	Plaque morphology of the orf virus isolates LBV (A), ORFII (B) and NZ2 (C) in FOM cells monolayer after 4 days of incubation at 37°C under methyl cellulose MEM overlay medium.	72
8	Control FOM cells monolayer that inoculated with sterile PBS instead of orf virus and incubated for 4 days at 37°C under methyl cellulose MEM overlay medium.	73
9	Infected CAM of chick embryo shows the appearance of patches of edematous lesions on the membrane 72 hrs PI of the 3rd passage	73
10	Section of infected CAM shows the erosion of the ectoderm and the formation of crater-like opening (arrow) in the 3rd passage 72 hrs PI (H&E staining, 200x)	74
11	Section of infected CAM shows ectodermal cells vacuolation in the 3rd passage 72hrs PI (H&E staining, 400x)	. 74
12	Section in control CAM shows the normal structure of the membrane (H&E staining, 200x)	75

13	Section in infected CAM that subjected to IIF test. The fluorescence appears clearly in ectodermal layer 75
14	Section in infected CAM that subjected to IIP test. Ectodermal cells appear with intracytoplasmic black precipitate as dots (arrow, 400x)
15	Section in control CAM shows only the non-specific back ground
16	Control KT cells monolayer that inoculated with sterile PBS instead of virus and stained with H&E (400x)
17	The inclusion body (I) appears rounded and granular 18 hrs PI (H&E 400x)
18	The inclusion body (I) appears as eosinophilic mass pressed on pycnotic nucleus (N) 24 hrs PI (H&E 1000x)
19	The cytoplasm appears highly vacuolated and many nuclei are pycnotic 24 hrs PI (H&E 1000x)
20	KT cell appears with shrunken nucleus and many cytoplasmic extensions that gave the spider appearance to the cell (H&E 1000x)
21	Holes were formed and lined with degenerated cells of deeply stained nuclei (200x)
22	Control KT cell monolayer that inoculated with sterile PBS and stained with AO (400x)
23	The intracytoplasmic yellowish-green fluorescence increased with the presence of rounded bodies at-tached to the long site of the nucleus (400x)
24	The intracytoplasmic yellowish-green masses increas- ed in size and pressed on pycnotic nucleus 24 hrs PI 97
25	Many pycnotic nuclei and rounded bodies appear in one yellowish-green stained cytoplasm 36 hrs PI
26	The intracytoplasmic blue black precipitate of IIP occupied large area of the cytoplasm around the pale nucleus 18 hrs PI
27	The fluorescence of IIF appeared clearly to occupy more area around the dark nucleus 18 hrs PI 102

Page

28	Control KT cells monolayer inoculated with sterile PBS instead of orf virus and subjected to IIP test	102
29	Control KT cells monolayer inoculated with sterile PBS instead of orf virus and subjected to IIF test	102
30	The black precipitate of IIP occupied the whole cytoplasm 36 hrs PI	103
31	An infected KT cell 36 hrs PI shows three black masses (M) adjacent to the pale nucleus (N)	103
32	The fluorescence of IIF appears more intense to occupy the whole cytoplasm 36 hrs PI	104
33	An infected KT cell from plate 32 shows presence of irregular fluorescence masses around the dark nucleus.	104
34	Electronmicrograph shows the normal structure of control KT cell (O.M.4,600x)	122
35	Attachment of 2 orf virions to the plasma membrane 1 hour PI (O.M. 23,500 x)	123
36	The electron-dense masses appeared in the cytoplasm near the nucleus 4-6 hours PI (Arrows)[O.M.6,000 x]	123
37	The crescent form of type 1 particles that were obs- erved in the cytoplasm 8 hours PI(O.M.60,000 x)	124
38	Different developmental stages of orf virus that obs- erved 12 hours PI. The predominant stage here is type 3 at early development (arrows) [O.M.16,500 x]	124
39	Different stages of orf virus development at 12 hrs PI. The late stage of type 3 is predominant (arrows) [O.M.46,000 x]	125
40	Shows the premature and mature stages of orf virus morphogenesis that observed 18 hours PI. (O.M.27,500x)	125
41	Many immature virus particles represented type 3 and 4 were migrated in vacuoles toward the plasma membrane during the process of dissemination (O.M. 27,500x)	126

42	Virus disseminated through the plasma membrane and gained an additional envelope (O.M.125,000 x)	126
43	Many electronlucent inclusions of different sizes at the periphery of the cytoplasm contained many virions (O.M.4,600 x)	127
44	Electronmicrograph shows three large inclusions (I) surrounding the lobulated nucleus in little bit of cytoplasm and surrounded from out side with a thin brim of the cytoplasm (O.M. 4,600 x)	127
45	KT cell 72 hours PI shows the massive destruction of cytoplasm in which a large empty spaces appeared while some virions are scattered through out the cytoplasmic strands (O.M. 6,000 x)	128
46	KT cell infected with LBV orf virus 24 hours PI shows the bundle of microfilaments (f) in the nucleus while the chromatin was highly condensed as electrondense masses (O.M. 21,500 x)	128
47	KT cell infected with ORFII reference virus 24 hours PI shows the nucleus with high lobulation, chromatin condensation and presence of microfilament bundle [O.M. 16,500 x].	129
48	Cross AGPT of goat and sheep orf virus isolates. Peripheral wells 1, 2, 3, 4, 5 and 6 are the HIS of GV1, GV2, GV3, LBV, ORFII and NZ2 respectively. A,B,C,D,E and F are the central wells containing the antigen(s) of GV1, GV2, GV3, LBV, ORFII and NZ2 orf viruses respectively. The arrow on D indi- cates additional precipitin line.	156
49	Cross AGPT of GV1 (A) and GV2 (B) orf virus iso- lates antigen(s). Wells 1, 2, 3, 4, 5 and 6 are conta- ined the HIS of GV1, GV2, GV3, LBV, ORFII and NZ2 orf viruses respectively. The central wells (A) and (B) are contained the antigens of GV1 and GV2 respectively. The arrows indicate the addit- ional 3 precipitin lines.	156
50	Comparison of silver stained protein profiles of goat and sheep orf virus isolates analyzed by 8% PAGE. HM (High m.w. markers); Lanes 1,2,3,4,5 and 6 are GV1, GV2, GV3, LBV, ORFII and NZ2 orf viruses respectively; LM (Low m.w. markers). The arrows indicate the polypeptide bands in which the isolates differed	159

51	Comparison of silver stained protein profiles of goat and sheep orf virus isolates analyzed by 10% PAGE. LM (Low m.w.markers); Lanes 1 and 2 are NZ2 and ORFII reference sheep orf virus strains respectively; Lanes 3,4,5 and 6 are LBV, GV3, GV2 and GV1 Malaysian isolates of orf virus respectively. HM (High m.w. markers). The arrows indicate the polypeptide bands in which the isolates differed	160
52	Comparison of Western blotted protein profiles of goat and sheep orf virus isolates subjected to India ink physical stain. Lane 1, molecular weight markers; Lanes 2,3 and 4 are GV1,GV2 and GV3; Lane 5 LBV; Lanes 6 and 7 are ORFII and NZ2 reference strains. The arrows indicate the main polypeptide bands in which the isolates differed.	162
 53	Comparison of Western blotted protein profiles of goat and sheep orf virus isolates subjected to India ink physical stain after amido black staining. Lane 1, high molecular weight markers; Lanes 2,3 and 4 are GV1, GV2 and GV3; Lane 5 LBV; Lanes 6 and 7 are ORFII and NZ2 reference virus strains. The arrows ind- icate the main polypeptide bands in which the isola- tes differed.	163
54	Western blot of protein profiles of goat and sheep orf virus isolates immunologically detected by hyperim- mune serum of GV1 local goat orf virus isolate	164
55	Western blot of protein profiles of goat and sheep orf virus isolates immunologically detected by hyperim- mune serum of GV3 local goat orf virus isolate	165
56	Western blot of protein profiles of goat and sheep orf virus isolates immunologically detected by hyperim- mune serum of ORFII reference virus	167
57	Western blot of protein profiles of goat and sheep orf virus isolates immunologically detected by hyperim- mune serum of NZ2 reference virus	168
58	DNA fragments patterns that generated by the dige- stion with BstEII R.E. enzyme and electrophorised in 0.7% agarose at 4v/cm for 5 hours. Lanes 1, 2, 3, 4 and 5 are ORFII, LBV, GV3, GV2 and GV1 orf vir- uses respectively; Lane 6 is the HindIII digest of Lambda DNA.	189

59	Fragments patterns that generated from the digestion of the DNA of NZ2 strain with 1(BamHI), 2(EcoRI), 4(KpnI), 5(HpaI), 6(BstEII) and 7(HindIII) R.E. enz- ymes. Lane 3 is EcoRI digest of Lambda DNA; Lane 8 is HindIII digest of Lambda DNA. The digests ele- ctrophorised in 0.7% agarose at 4v/cm for 5 hours 19	91
60	DNA fragments patterns that generated by the diges- tion with KpnI R.E. enzyme and electrophorised in 0.7% agarose at 4v/cm for 5 hours. Lane 1 is the HindIII digest of Lambda DNA; Lanes 2, 3, 4, 5 and 6 are ORFII, LBV, GV3, GV2 and GV1 orf viruses respectively	92
61	DNA fragments patterns that generated by the dig- estion with HindIII R.E. enzyme and electropho- rised in 0.7% agarose at 4v/cm for 5 hours. Lanes 1, 2, 3, 4 and 5 are ORFII, LBV, GV3, GV2 and GV1 orf viruses respectively; Lane 6 is the HindIII digest of Lambda DNA	94
62	DNA fragments patterns that generated by the do- uble digestion with EcoRI and BamHI R.E. enzyme and electrophorised in 0.5% agarose at 0.5v/cm for overnight. Lane 1 is the HindIII digest of Lambda DNA; Lanes 2, 3, 4, 5, 6 and 7 are NZ2, ORFII, LBV, GV3, GV2 and GV1 orf viruses respectively; Lane 8 is the EcoRI digest of Lambda DNA	96
63	DNA fragments patterns that generated by the dige- stion with HpaI R.E. enzyme and electrophorised in 0.7% agarose at 4v/cm for 5 hours. Lane 1 is the HindIII digest of Lambda DNA; Lanes 2, 3, 4, 5 and 6 are ORFII, LBV, GV3, GV2 and GV1 orf viruses respectively	98
64	DNA fragments patterns that generated by the dige- stion with EcoRI R.E. enzyme and electrophorised in 0.7% agarose at 4v/cm for 5 hours. Lane 1 is the HindIII digest of Lambda DNA; Lane 2 is und- igested Lamda DNA; Lanes 3, 4, 5, 6 and 7 are GV1, GV2, GV3, LBV and ORFII orf viruses respectively 19	99
65	DNA fragments patterns that generated by the dige- stion with BamHI R.E. enzyme and electrophorised in 0.7% agarose at 4v/cm for 5 hours. Lanes 1, 2, 3, 4 and 5 are the DNA of GV1, GV2, GV3, LBV and ORFII orf viruses respectively; Lane 6 is the HindIII digest of Lambda DNA; Lane 7 is undiges- ted Lamda DNA	201

Page

66	DNA fragments patterns that generated by the dige- stion with PstI (A) and XhoI (B) R.E. enzymes and electrophorised in 1% agarose at 4v/cm for 5 hours. Lane 1 is the HindIII digest of Lamda DNA; For A the lanes 2, 3, 4 and 5 are the DNA of LBV, GV3, GV2 and GV1 orf viruses respectively. For B the lanes 6, 7, 8 and 9 are the DNA of GV1, GV2, GV3 and LBV orf viruses respectively	202
67	DNA fragments patterns of ORFII and NZ2 reference strains that generated by the digestion with PstI (A) and XhoI (B) R.E. enzymes and electrophorised in 1% agarose at 4v/cm for 5 hours. Lane 1 is EcoRI digest of Lambda DNA; For A lanes 2 and 3 are the DNA of ORFII and NZ2 orf viruses respectively; For B lanes 4 and 5 are the DNA of ORFII and NZ2 viruses respectively; Lane 6 is the HindIII digest of Lambda DNA.	203
68	DNA fragments patterns of uncloned orf viruses that generated by the digestion with HindIII R.E. enzyme and electrophorised in 0.7% agarose at 0.5v/cm for overnight. Lanes 1, 2, 3, 4 and 5 are the DNA of ORFII, LBV, GV3, GV2 and GV1 orf viruses respec- tively; Lane 6 is undigested Lambda DNA; Lane 7 is the HindIII digest of Lambda DNA.	204

LIST OF ABBREVIATIONS

Ab	Antibody
ABTS	2,2-azino-bis(3-ethylbenzthiazoline-6-Sulfonic acid)
AGPT	Agar Gel Pricipitation Test
AO	Acridin Orange
ATI	A-Type Inclusion Body
ATV	Antibiotic Trypsin Versin
BEL	Bovine Embryonic Lung
ВНК-21	Baby Hamester Kidney-21
bp	Base Pairs
°C	Degree Celcius
CAM	Chorioallantoic Membrane
CEF	Chicken Embryo Fibroblast
cm	Centimeter
cm ²	Centimeter square
CO2	Carbon dioxide
CPE	Cytopatic Effect
DNA	Deoxyribonucleic Acid
Dr	Doctor
D.W.	Distilled Water
EDTA	Ethylene Diamine Tetra-acetate
ELISA	Enzyme Linked Immunosobent Assay
EM	Electron Microscope
FBS	Foetal Bovine Serum

FCS	Fetal Calf Serum
FOH	Fetal Ovine Heart
FOL	Fetal Ovine Lung
FOM	Fetal Ovine Muscle
FOS	Fetal Ovine Skin
g	Gram
H&E	Hematoxylin and Eosin
HeLa cell	Cervical Carcinoma Cell
HIS	Hyperimmune Serum
hrs	Hours
I	Inclusion body
IBRv	Infectious Bovine Rhinotrachitis virus
I.C.T.V.	International Committee on Taxonomy of Viruses
IgG	Immunoglobulin G
IIF	Indirect Immuofluorescent
IIP	Indirect Immunoperoxidase
i/m	Intramuscular
i/v	Intravenous
Kbp	Kilobase pairs
kD	Kilodalton
КК	Kid Kidney
KL	Kid Lung
КТ	Kid Testis
L cell	Adrnal Mouse Fibroblast
LK	Lamb Kidney

LT	Lamb Testis
Μ	Molar
MA104	Monkey kidney cell line
MDOK	Madin-Darby Ovine Kidney
MDBK	Madin-Darby Bovine Kidney
ME	Mercapto Ethanol
MEM	Minimum Essential Medium
mg	Miligram
MK2	Rhesus Macaque Kidney
mM	Milimolar
mm	Milimeter
m.w.	Molecula Weight
NCEM	Negative Contrast Electron Microscope
nm	nanometer
nm NZ2	nanometer New Zealand strain number 2 of orf virus
nm NZ2 NZ7	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus
nm NZ2 NZ7 OD	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density
nm NZ2 NZ7 OD OEL	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung
nm NZ2 NZ7 OD OEL O.M.	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung Original Magnification
nm NZ2 NZ7 OD OEL O.M. OT	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung Original Magnification Ovine Testis Cell Line
nm NZ2 NZ7 OD OEL O.M. OT PAGE	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung Original Magnification Ovine Testis Cell Line Polyacrylamid Gel Electrophoresis
nm NZ2 NZ7 OD OEL O.M. OT PAGE PBS	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung Original Magnification Ovine Testis Cell Line Polyacrylamid Gel Electrophoresis Phosphate Buffer Saline
nm NZ2 NZ7 OD OEL O.M. OT PAGE PBS	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung Original Magnification Ovine Testis Cell Line Polyacrylamid Gel Electrophoresis Phosphate Buffer Saline
nm NZ2 NZ7 OD OEL O.M. OT PAGE PBS pH	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung Original Magnification Ovine Testis Cell Line Polyacrylamid Gel Electrophoresis Phosphate Buffer Saline Hydrogen-ion concentration Post Inoculation
nm NZ2 NZ7 OD OEL O.M. OT PAGE PBS pH PI	nanometer New Zealand strain number 2 of orf virus New Zealand strain number 7 of orf virus Optical Density Ovine Embryonic Lung Original Magnification Ovine Testis Cell Line Polyacrylamid Gel Electrophoresis Phosphate Buffer Saline Hydrogen-ion concentration Post Inoculation

RK13	Rabbit Kidney
rpm	Revolution per minute
SDS	Sodium Dodecyl Sulphate
SNT	Serum Neutralization Test
SPF	Specific Pathogen Free
SVP	Cell line derived from kidney of swine
TBS	Tween Buffer Saline
TC	Tissue Culture
TCID ₅₀	Fifty percent tissue culture infective dose
TE	Tris-EDTA
TEM	Transmission Electron Microscope
TEN	Tris-EDTA-NaCl
TPB	Tryptose Phosphate Broth
ug	Microgram
ul	Microliter
uM	Micron
UPM	Universiti Pertanian Malaysia
UV	Ultraviolet
v/v	Volume/Volume
Vero	Cell line derived from kidney tissue of green African
	monkey
w/v	Weight/Volume
w/w	Weight/Weight
xg	Relative Centrifugal Force
%	Percent

Abstract of dissertation submitted to the Senate of Universiti Pertanian Malaysia in fulfilment of the requirements for the degree of the Doctor of Philosophy.

STUDIES ON MALAYSIAN ISOLATES OF ORF VIRUS

By

KARIM SADUN ALI AL-AJEELI

Chairman : Professor Abdul Latif Ibrahim, Ph.D.Faculty : Veterinary Medicine and Animal Science

This study was conducted to isolate and characterize several orf viruses infecting sheep and goats in Malaysia. The isolates and two reference strains of orf virus were then compared with respect to biological properties, serological properties, protein profile and also DNA profile.

Three orf viruses were isolated from infected goats and one from infected sheep. They were identified as orf viruses by means of electron microscope and three serologic tests namely, serum neutralization, immunoperoxidase and immunofluorescent tests. The isolates grew well in cell cultures prepared from goat and sheep, and on chorioallantoic membrane of hen eggs but not in several tested continuous cell lines.

Compared to the other two established orf virus strains, cytopathic effect induced by these isolates in kid testis cell culture differed with respect to the time