

UNIVERSITI PUTRA MALAYSIA

IN VITRO SELECTION IN WHEAT TO RECOVER MUTANTS WHICH OVERPRODUCE LYSINE AND THREONINE

MIHDZAR ABDUL KADIR

FPV 1991 6

IN VITRO SELECTION IN WHEAT TO RECOVER

MUTANTS WHICH OVERPRODUCE

LYSINE AND THREONINE

By

MIHDZAR ABDUL KADIR

Bachelor of Science Louisiana State University Baton Rouge, Louisana 1980

Master of Science Louisiana State University Baton Rouge, Louisiana 1982

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfilment of the requirement for the Degree of DOCTOR OF PHILOSOPHY December, 1991

ACKNOWLEDGEMENTS

I wish to express my deep appreciation to my major adviser, Dr. Arron C. Guenzi for his skillful guidance, invaluable advice and help throughout the course of my study. Appreciation is also extended to Dr. Charles M. Taliaferro, Dr. Becky C. Johnson and Dr. Robert A. Gonzales for their time, helpful suggestions and assistance as members of my graduate committee. I would also like to thank Dr. David Porter for his expertise in electrophoresis and Dr. Mike Anderson and Dr. Bjorn Martin for the use of their research equipment.

I would like to thanks my mother Rugaiyah, and brother Abdul Aziz for their encourgement, my beloved wife Aminah for her continued support and assistance, my daughter Farahiyah and my son Wafiq for their patience and understanding.

My special thanks are also extended to my firends Troy, Mark, John, Don, Jackie, Dave, Mohammad, Hirut and Kristi for their assistance.

Finally I wish to thanks my sponsors, University of Agriculture Malaysia, Public Service Department of Malaysia and Oklahoma State University for their financial support during my study.

TABLE OF CONTENTS

Chapter P	age
INTRODUCTION	1
I. THE EFFECT OF LYSINE, THREONINE OR METHIONINE ON SEED DEVELOPMENT IN WHEAT SPIKE CULTURE	3
Abstract	4
Introduction	5
Material and Methods	7
Spike culture Analysis of total amino acids Analysis of free amino acids	
Results	10
Spike culture Total amino acid concentration of seed Free amino acid concentration of seed	10 10 20
Discussion	30
Literature cited	33
II. IN <u>VITRO</u> SELECTION IN WHEAT TO RECOVER MUTANTS WHICH OVERPRODUCE LYSINE AND THREONINE	36
Abstract	37
Introduction	39
Material and Methods	44

	Effect of lysine and threonine (LT) on wheat callus growth Recovery of mutants resistant to LT Analysis of free amino acids in calli Analysis of total amino acids in seed Analysis of free amino acids in seed Seedling bioassay with lysine plus threonine	44 45 47 48 49 49
Resu	Its Effect of lysine and threonine on wheat	51
	callus growth	51
	In vitro selection for resistant to LT	53
	Free amino acids in resistant calli	59
	Total amino acid concentration in R ₂ seed	59
	Free amino acid concentration in R ₂ seed	63 68
	Total amino acid concentration in R ₃ seed Free amino acid concentration in R ₃ seed	71
	Total amino acid concentration in R_1 seed	74
	Free amino acid concentration in R ₁ seed	77
	ussion	80
LITERATURE CITED)	88
APPENDIXES		92
APPENDIX	1 - Free amino acid concentration in resistant calli	93
APPENDIX	2 - Mole percentages of free amino acids in resistant calli	96
APPENDIX	3 - Free amino acid concentration in R ₁ seed	99
APPENDIX	4 - Mole percentages of free amino acids in $\rm R_1$ seed	102
APPENDIX	5 - Total amino acid concentration in R_1 seed	105
APPENDIX	6 - Mole percentages of total amino acids in R_1 seed	108
APPENDIX	7 - Total amino acid concentration in R ₂ seed	111
APPENDIX	8 - Mole percentages of total amino acids in R ₂ seed	118

APPENDIX 9 - Free amino acid concentration in R ₂ seed 125
APPENDIX 10 - Mole percentages of free amino acids in R_2 seed 132
APPENDIX 11 - Total amino acid concentration in R ₃ seed 139
APPENDIX 12 - Mole percentages of total amino acids in R ₃ seed 142
APPENDIX 13 - Free amino acid concentration in R ₃ seed 145
APPENDIX 14 - Mole percentages of free amino acids in R ₃ seed 148

LIST OF TABLES

	Chapter I	
1.	Combined data for seed per spike, seed weight and protein percentage for spike cultured in media supplemented with lysine, threonine or methionine	11
2.	Combined analysis of variance for total free amino acids	12
3.	Combined analysis of variance for total amino acid mole percentages	14
4.	Total amino acid concentration of seed	16
5.	Combined analysis of variance for free amino acids	21
6.	Combined analysis of variance for free amino acid mole percentages	23
7.	Free pool amino acid concentration of seed	26
	Chapter II	
1.	Relative growth rates of callus grown on varying concentrations of lysine and threonine for seven transfer periods	51
2.	Least square means of callus relative growth rates for direct in <u>vitro</u> selection strategy	53
3.	Regenerated plants recovered from callus tolerant to lysine plus threonine	56
4.	Relative growth rates of selected callus from step-wise in vitro	

Table

Table

5.	Free amino acid concentration for aspartate family amino acids for resistance callus capable of plant regeneration	60
6.	Free histidine, leucine, and valine concentration of callus tissue capable of regenerating plants	61
7.	Concentration of aspartate family amino acids in R_2 seed	62
8.	Concentration of other essential amino acids histidine, leucine, valine in R ₂ seed	64
9.	Average seed weight, protein concentration and total amino acid (AA) concentration of R ₂ seed	65
10.	Aspartate family of free amino acids in R ₂ seed	66
11.	Free histidine, leucine, and valine concentration of R ₂ seed	67
12.	Aspartate family of total amino acids in R ₃ seed	69
13.	Total histidine, leucine, and valine concentration of R_3 seed	70
14.	Average seed weight, protein concentration and total amino acid (AA) concentration of R ₃ seed	71
15.	Aspartate family of free amino acids in R ₃ seed	72
16.	Free histidine, leucine, and valine concentration of R ₃ seed	73
17.	Aspartate family of total amino acids in R ₁ seed from step-wise selection strategy	75
18.	Total histidine, leucine, and valine concentration of R_1 seed	76
19.	Average seed weight, protein concentration and total amino acid (AA) concentration of R ₁ seed	77
20.	Aspartate family of free amino acids in R ₁ seed	78

Table

-

21.	Free pool histidine, leucine, and valine concentration of R ₁ seed	79
22.	Regenerated plants family histories	81

LIST OF FIGURES

Chapter II

Figure

1.	Aspartate family of amino acids and regulatory enzymes involve in lysine and threonine biosynthesis	40
2.	Mean relative growth rate and standard error of calli growing on 0, 1, 2, 4 and 8 mM lysine plus threonine during transfer 1 (21 d)	52
3.	Histograms of relative growth rates of calli from direct selection strategy	54
4.	Histograms of relative growth rates of calli for step-wise selection	58

INTRODUCTION

₩ ×

Each chapter in this thesis is a manuscript to be submitted for publication in <u>Crop Science</u>, a Crop Science Society of America publication.

CHAPTER I

THE EFFECT OF LYSINE, THREONINE OR METHIONINE

ON SEED DEVELOPMENT IN WHEAT

SPIKE CULTURE

The Effect of Lysine, Threonine or Methionine on Seed Development in Wheat Spike Culture

Mihdzar A. Kadir, and Arron C. Guenzi*

M.A. Kadir, A.C. Guenzi, Dep. of Agronomy, Oklahoma State Univ., Stillwater, OK 74078.

Contribution of the Oklahoma Agric. Exp. Stn., Journal No.

. Received _____, 1991. * Corresponding Author.

ABSTRACT

Lysine and threonine cause feedback inhibition to aspartokinase, dihydropicolinate synthase, and homoserine dehydrogenase which result in growth inhibition due to lack of methionine. This research was conducted to study the effect of lysine, threonine and methionine on wheat seed development and amino acid content. Wheat spikes were grown in liquid media with three different concentrations of lysine, threonine or methionine. Concentrations used were 1 mM lysine and threonine (LT), 1 mM lysine, threonine and methionine (LTM) and without lysine, threonine or methionine (0 LTM). Spikes were cultured from anthesis for a period of 6 wk. Seed number per spike, seed weight and amino acid composition were analyzed. No significant effects on seed number per spike and seed weight were observed for spikes cultured in 1 mM LT medium. Spikes cultured in 1 mM LT medium had a significant reduction in total concentration of ten amino acids. The reductions in the 10 amino acids lead to a significant 13% reduction in protein percentage. Inclusion of methionine with lysine and threonine overcame the inhibitory effect of lysine and threonine on accumulation of 7 amino acids. Addition of lysine, threonine and methionine also enhanced grain development by increasing seed number per spike. Inclusion of methionine does not overcome the significant reduction in total alanine, glutamate and glycine. It did improve the concentration of cysteine, isoleucine and valine when compared to the control.

INTRODUCTION

Wheat spike culture is a useful tool in studying grain development. Spike are easily cultured in liquid medium consisting of basic nutrients and other elements of interest. Spike culture has been used to study the effects of various treatments on grain development. Wheat spike culture medium containing sucrose, amino acids, salts and minor organic elements was first developed by Donovan and Lee (1977). Their study indicated that media deficient in sucrose or amino acids lead to slow accumulation of dry weight. They also observed that radioactively labelled amino acids supplemented in the liquid media are rapidly incorporated into protein. The use of spike culture for studying grain development is very promising. Singh and Jenner (1983) found that wheat spikes can be cultured in liquid media from anthesis until grain maturity.

Amstrong et al. (1987) performed wheat spike culture in Murashige and Skoog media with 3% sucrose from anthesis for a period of 10 d. They reported a 3 fold increase in distal floret seed number of cultured spikes as compared to the intact control. Spike culture has also been used in barley to study protein and carbohydrate accumulation in normal and high-lysine barley (Manther and Giese, 1984). Corke and Atsmon (1988) used spike culture to study the effect of nitrogen nutrition on endosperm protein synthesis in wild and cultivated barley.

The inhibitory effect of lysine and threonine (LT) on the growth of callus

5

tissue and regulatory enzymes for the aspartate family of amino acids has been well documented (Furuhashi and Yatazawa, 1970; Wong and Dennis, 1973; Green and Phillips, 1974; Sakano and Komamine, 1978; Bright et al., 1978). However, to date no work has been conducted to study the effect of lysine and threonine on seed development. Therefore, this research was conducted to study the effect of lysine, threonine and methionine on seed development and their effect on the amino acid composition of the seed by utilization of spike culture.

MATERIALS AND METHODS

7

Spike Culture

'Bobwhite' wheat was used for this study. Plants were grown in the greenhouse at 20°C with a 14 h photoperiod. The procedure employed was similar to the one described by Armstrong et al. (1987). After anthesis, spikes were removed from the plant by cutting the stem underwater just above the flag leaf. The peduncle portion of the spike was surface sterilize in 30% (v/v) clorox with 60 ul L⁻¹ Triton-X. One cm from the base of the peduncle was cutoff under sterilized water after sterilization. The basic medium consisted of Murashige and Skoog (MS) inorganic salts (Murashige and Skoog, 1962), Gamborg B5 vitamins (Gamborg and Eveleigh, 1968), 3% sucrose, 0.15 g L¹ Lasparagine, and 0.25 g L¹ each of benlate, ampicillin and streptomycin. Three treatments of combinations of lysine, threonine or methionine were used for this study. The treatments were: 1) control without lysine, threonine or methionine (0LTM), 2) 1 mM lysine plus threonine (LT), and 3) 1 mM lysine, threonine and methionine (LTM). Each spike was cultured in 100 ml of medium in a 125 ml Erlenmeyer flask. It was held in place by a sterilized split foam plug. Each flask was considered a replication. Two experiments were conducted. In the first experiment each treatment was replicated 6 times while in the second experiment each treatment was replicated 5 times. Every 2 wk the spike was transferred into similar fresh medium. Spikes were cultured for a period of 6 wk. After 6 wk spikes were harvested and seed yield, seed spike⁻¹

and average seed weight were determined. Data were analyzed by analysis of variance.

Analysis of total amino acids

One-tenth gm wheat meal from each seed sample was placed in a 6 x 50 mm pyrex disposable culture tube. One thousand nmol norleucine was added as an internal standard to each sample. Samples were hydrolysed with 6 N HCl for 24 h at 100°C under nitrogen. After hydrolysis, samples were dried by vacuum centrifugation. Samples were redissolved with 3 washes of 500 ul of deionized water and filtered with a 0.45 um nylon filter. Further preparation and derivatization steps were adapted from the Pico-Tag[™] procedures (Cohen et al., 1984). Amino acid derivatives were separated and quantified by reverse-phase high performance liquid chromatography (Heinrikson and Meredith, 1984). Two determinations were performed for each sample.

Analysis of free amino acids

Twenty seeds from each spike of the same treatment were pooled and ground by mortar and pestle. Experiments 1 and 2 were analyzed separately. Approximately 0.1 gram meal from each seed sample was place in a 5 ml tube. An internal standard of 50 nmol norleucine was added into each tube. Amino acids were extracted with 12:15:3 (v/v/v) methanol, chloroform and water (Bieleski and Turner, 1966). From each sample, 2.5 ml of methanol-water phase (top layer) was removed and transferred to a 5 ml cryotube. The

samples were then dried by vacuum centrifugation (Speed-Vac, Savant Instruments). Samples were then subjected to mild acid hydrolysis with 2 N HCl at 100°C for 2 h to convert asparagine and glutamine to aspartic and glutamic acid, respectively. After acid hydrolysis samples were dried by vacuum centrifugation. The sample was then resuspend in 400 ul of 2:1 water:methanol (v/v) and then transferred to a 10,000 m.w. ultrafiltration device (Millipore Inc.). One hundred ul of the filtrate was sampled and dried. Other preparation and derivatization procedures were similar to those described above for total amino acids analysis. Two determinations were conducted for each sample.

RESULTS

Spike culture

Spikes cultured in media containing 1 mM LTM showed significant increases in seed number spike⁻¹ when compared to the control (Table 1). However there was no significant difference between the control and 1 mM LT for seed spike⁻¹. For average seed weight, no significant differences were observed between treatments and the control.

Total amino acid concentration of seed

An analysis of variance on combined data from experiment 1 and 2 showed significant treatment by experiment interactions for total amino acids (Table 2) and mole percentage (mol%) (Table 3), therefore each experiment was analyzed separately.

Experiment 1. Total amino acid concentration of seed (Table 4) from spikes cultured on 1 mM LT had a significant reduction in aspartate, cysteine, glutamate, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, tyrosine, valine and total amino acid concentration when compared to the control. For mol%, significant reductions in cysteine and lysine were noted, while significant increases in mol% for alanine, leucine, phenylalanine, proline and threonine were observed.

For spikes cultured on 1 mM lysine, threonine and methionine (LTM) significant increases in alanine, aspartate, isoleucine, leucine, lysine,

Table 1. Combined data for seeds per spike, seed weight and protein
percentage for spikes cultured in media supplemented with
lysine, threonine or methionine.

Treatment	Seed spike ⁻¹	Seed wt.	Protein	Total AA		
		-gm-	-%-	-nmol mg ⁻¹ -		
Control	30.0	0.0178	21.5	1705.1		
1 mM LT	33.0	0.0174	18.6*	1477.3*		
1 mM LTM	41.0*	0.0180	21.6	1720.6		
LSD (0.05)	6.9	NS	1.2	90.0		

* Significantly higher or lower than control at $P \le 0.05$

Source		Amino Acid								
	d.f.	Ala	Arg	Asx	Cys	Glx	Gly	His	lle	Leu
Treatment (Trt)	2	**	NS	*	*	*	**	NS	**	**
Experiment (Exp)	1	NS	NS	NS	NS	NS	*	NS	*	NS
Determination (Exp)	2	NS	NS	NS	NS	NS	NS	NS	NS	NS
Trt *Exp	2	**	NS	NS	**	**	**	NS	**	**
Error	4	-	-	-	-	-		-	-	-

*, ** Significant at $P \le 0.05$ and $P \le 0.01$, respectively NS P > 0.05

*

Source		Amino Acid								
	d.f.	Lys	Met	Phe	Pro	Ser	Thr	Tyr	Val	Tota
Treatment (Trt)	2	NS	*	NS	*	NS	*	NS	**	**
Experiment (Exp)	1	**	NS	NS	**	NS	NS	NS	**	**
Determination (Exp)	2	NS	NS	NS	NS	NS	NS	NS	NS	NS
Trt *Exp	2	**	*	**	**	NS	**	*	**	**
Error	4	-	-	-	-	-	-	-	-	-

.

*, ** Significant at $P \le 0.05$ and $P \le 0.01$, respectively NS P > 0.05

