

UNIVERSITI PUTRA MALAYSIA

VACCINATION OF VILLAGE CHICKENS AGAINST NEWCASTLE DISEASE

AINI IDERIS

FPV 1989 5

VACCINATION OF VILLAGE CHICKENS AGAINST NEWCASTLE DISEASE

bу

AINI IDERIS

Thesis Submitted in Partial Fulfilment of the
Requirements for the Degree of Doctor of Philosophy
in the Faculty of Veterinary Medicine
and Animal Science
Universiti Pertanian Malaysia

June 1989

DEDICATED TO MY HUSBAND,
OUR FOUR SONS AND OUR PARENTS

ACKNOWLEDGEMENTS

I wish to express my deep appreciation and gratitude to my supervisor, Professor Dr. Abdul Latif Ibrahim, for his invaluable guidance, support and encouragement throughout the course of this study. I am very much indebted to him for always 'being there' providing help of all kinds, patiently guiding me till the completion of this thesis.

I am also indebted to Professor P.B. Spradbrow and Dr. Janeen Samuel, University of Queensland, Australia, for spending their valuable time reading my thesis and giving valuable constructive criticisms and suggestions.

The project would not have been possible without the active cooperation of many people, namely:

Village Heads and farmers in the project areas,

Extension officers, Centre of Continuing Education and Extension, Universiti Pertanian Malaysia,

State Veterinary Directors and Staff of the Department of Veterinary Services in Kelantan, Negeri Sembilan and Selangor, Malaysia, and

Staff of Virology and Bacteriology Laboratories, Faculty of Veterinary Medicine and Animal Science, Universiti Pertanian Malaysia.

I am also very grateful to the Director General of Veterinary Services Malaysia for his permission to carry out the studies in various states.

I have also been very fortunate in receiving assistance from a number of people whom I would like to thank, in particular:

Dr. Fauziah Othman, Dr. Jasmi Yahya, Dr. Jah Hussein and Ms. Rahmah A. Wahid, for their excellent technical assistance,

Dr. Nadzri Salim for helping me with the statistical analysis,

Dr. Ch'ng Hung Seng and his technical staff, School of Pharmacy, Universiti Sains Malaysia, for helping me to prepare the first few batches of the vaccine in their laboratory,

Dean, School of Pharmacy, Universiti Sains Malaysia, for allowing me to use their facilities,

Ms. Jamilah Rahman for typing the initial draft of the thesis.

Mr. Suhaimi Abdullah for his technical assistance, and all friends who have helped me in one way or another.

I wish to thank the Australian Centre for International Agricultural Research (ACIAR), for funding the project and Universiti Pertanian Malaysia for allowing me to pursue my Ph.D degree.

Last but not least, to my husband, Dr. Md. Ishak Ismail, who has not only given me encouragement, moral and loving support throughout the course of my studies but also has been very patient in taking care of our four young sons whenever I needed to be alone. My gratitude and thanks are also due to my parents and parents-in-law for their encouragements.

TABLE OF CONTENTS

		Page
ACKNOWLEDG	EMENTS	iii
LIST OF TA	BLES	ix
LIST OF FI	GURES	xii
LIST OF PL	ATES	xiv
LIST OF AB	BREVIATIONS	xvii
ABSTRACT		xix
ABSTRAK		xxi
CHAPTERS		
1	GENERAL INTRODUCTION	1
	Economic Importance	2
	Historical Background	3
	Control of ND	5
	Objectives of the Study	11
2	LITERATURE REVIEW	21
	The Control of Newcastle Disease	21
	Newcastle Disease Virus	47
	Forms of ND	52
	Avirulent Strains of Newcastle Disease Virus	56
	V4 Newcastle Disease Virus	58
	Indigenous Chicken Production in South East Asia	73
	The Importance of Newcastle Disease in Indigenous Chickens	84

CHAPTERS		Page
3	DEVELOPMENT OF FOOD PELLET NEWCASTLE DISEASE VACCINE	91
	Introduction	91
	Materials and Methods	93
	Results	110
	Discussion	114
	Summary	118
4	EFFICACY OF FOOD PELLET NEWCASTLE DISEASE VACCINE. LABORATORY AND SIMULATED VILLAGE EXPERIMENTS	134
	Introduction	134
	Materials and Methods	135
	Results	143
	Discussion	150
	Summary	157
5	FIELD TRIALS OF FOOD PELLET NEWCASTLE	
	DISEASE VACCINE AND TRANSFER OF TECHNOLOGY	172
	Introduction	172
	Materials and Methods	173
	Results	178
	Discussion	186
		102

CHAPTERS		Page
6	APPLICATION OF FOOD PELLET VACCINE AS A BOOSTER FOLLOWING VACCINATION WITH	
	F STRAIN	205
	Introduction	205
	Materials and Methods	208
	Results	213
	Discussion	216
	Summary	220
7	GENERAL DISCUSSION AND CONCLUSION	234
BIBLIOGRA	PHY	243
APPENDICES		266
VITA		280
PUBLICATIO	DNS	281

LIST OF TABLES

Tables		Pages
1	Presence, Incidence and the Control of Newcastle Disease in Developing Countries.	12
2	The Presence, Incidence and Control of Newcastle Disease in Developed Countries.	13
3	Newcastle Disease Vaccination Programme in Malaysia for Broiler and Layer Chickens.	14
4	Characteristics of Strains of Newcastle Disease Virus.	46
5	Classification of Strains of Newcastle Disease Virus	55
6	Estimated Numbers and Production of Indigenous Chickens in South East Asia.	89
7	Stability of Haemagglutinins of the V4 and V4-UPM Variant of Newcastle Disease Virus at 56°C.	119
8	Thermostability of Infectivity of V4 and V4-UPM Variant of Newcastle Disease Virus at 56°C.	120
9	Stability of V4 Virus in Different Stabilisers at Room Temperature (20-25°C) and at 4°C.	121
10	Survival Function for Vaccine Titres Above 10 ⁵ EID ₅₀ for Vaccine Batches Stored at Two Storage Temperatures.	122
11	Results of Viability Test of Food Pellet Vaccine Sent to Sri Lanka.	123
12	Feed Intake Per Bird Against Time.	123

13	Vaccination with Heat Resistant V4-UPM Newcastle Disease Virus Vaccine and Challenged with a Viscerotropic Velogenic Strain of Newcastle Disease Virus at Various Ages.	158
14	Distribution of HI Antibody Titres at Time of Challenge in Chickens Vaccinated Orally at 21 and 42 Days Old.	159
15	Results of Newcastle Disease Virus Challenge in Chickens Vaccinated Orally at 21 and 42 Days Old.	160
16	Distribution of HI Antibody Titres at the Time of Challenge in Chickens Vaccinated at 21 and 42 Days Old Orally, by Contact or by Intranasal Route.	161
17	Response of Chickens to Oral, Intranasal and Contact Vaccination with V4-UPM Newcastle Disease Virus Vaccine at 21 and 42 Days of Age and Challenged with a Viscerotropic Velogenic Strain of Newcastle Disease Virus at 8 or 10 weeks of Age.	162
18	Distribution of HI Antibody Titres at the Times of Challenge (8 and 10 Weeks Old) in Non-Vaccinated Chickens and Chickens Vaccinated at 21 and 42 Days Old with Various Doses of Food Pellet Vaccine.	163
19	Results of Newcastle Disease Virus Challenge in Chickens Vaccinated at 21 and 42 Days Old with Food Pellet Vaccine.	164
20	Distribution of HI Antibody Titres at the Time of Challenge in Indigenous Chickens Vaccinated Twice at 3 Weeks Interval and Challenged 2 Weeks After the Second Vaccination.	165
21	Results of Indigenous Chickens Vaccinated Twice at 3 Weeks Interval with Food Pellet Vaccine and Challenged with	166

22	number of Farmers and Chickens Involved in the Field Trial.	194
23	HI Distribution of Indigenous Chickens Bled at the Start of the Field Trial.	195
24	HI Distribution of Indigenous Chickens Bled Before Challenge.	195
25	Results of Newcastle Disease Challenge of Indigenous Chicken Vaccinated Twice at an Interval of Three Weeks and Challenged Three Weeks After Second Vaccination.	196
26	Results of Newcastle Disease Virus Challenge at 8 Weeks in Chickens Vaccinated at 3 and 6 Weeks Old.	221
27	Distribution of HI Antibody Titres at Time of Challenge (8 Weeks Old) in Chickens Vaccinated at 3 and 6 Weeks Old.	222
28	Results of Newcastle Disease Virus Challenge at 8 Weeks in Chickens Vaccinated at 3 Weeks Only and at 3 and 6 Weeks Old.	223
29	Distribution of HI Antibody Titres at Time of Challenge (8 Weeks Old) in Chickens Vaccinated at 3 Weeks Only, and at 3 and 6 Weeks Old.	224
30	Results of Newcastle Disease Virus Challenge at 8 Weeks Old in Chickens Vaccinated Intranasally at 1 Week Old with UPM-ACI Vaccine and at 3 and 6 Weeks Old with Food Pellet Vaccine.	225
31	Distribution of HI Antibody Titres at Time of Challenge (8 Weeks Old) in Chickens Vaccinated Intranasally at 1 Week Old with UPM-ACI Vaccine and at 3 and 6 Weeks Old with Food Pellet Vaccine.	226
	· · · · · · · · · · · · · · · · · · ·	

LIST OF FIGURES

Figures		Page
1	Distribution of Indigenous Chickens in Peninsular Malaysia	90
2	Selection of Heat-Resistant V4-UPM	124
3	Stability of Haemagglutinin of V4 and V4-UPM Viruses	125
4	Thermostability of Infectivity of V4 and V4-UPM Newcastle Disease Virus at 56°C	126
5	Distribution of Titre of Food Pellet Vaccine Kept at 4°C	127
6	Distribution of Titres of Food Pellet Vaccine Kept at 20°-25°C	128
7	Survival Curve of Vaccine Above 10 ⁵ EID ₅₀ for Vaccine Storage at Two Different Temperatures	129
8	HI Response of Chickens Vaccinated with Food-Pellet Newcastle Disease Vaccine and Non-Vaccinated Chickens	130
9	HI Response of Chickens Vaccinated with V4-ND Food Pellet Vaccine at 21 and 42 Days Old	167
10	HI Response of Chickens Vaccinated with V4-UPM Newcastle Disease Vaccine at 21 and 42 Days, and Non-Vaccinated Chickens	168
11	Map of Peninsular Malaysia Showing the Three States Involved in the Field Trial	197
12	Process of Development and Transfer	100

13	Geometric Mean Titre of Chickens Vaccinated with UPM-AC1 at 3 Weeks Old and Boostered with Food Pellet Vaccine at 6 Weeks Old	227
14	Geometric Mean Titre of Chickens Vaccinated with Two Intranasal Doses of UPM-AC1 Vaccine, Compared to One Intranasal and Boostered with Food Pellet Vaccine	228
15	Geometric Mean Titre of Chickens Vaccinated Once Only as Compared to Chickens Vaccinated Twice, at 3 and 6 Weeks Old	229
16	Geometric Mean Titre of Chickens Reared Under Simulated Smallholder Conditions and Vaccinated with UPM-AC1 at 3 Weeks Old and V4-UPM Food Pellet Vaccine at 6 Weeks Old	230
17	Geometric Mean Titre of Chickens Vaccinated with UPM-ACl at 1 Week Old Intranasally and V4-UPM Food Pellet Vaccine at 3 and 6 Weeks Old	231

LIST OF PLATES

Plates		Page
1	ND Causing Very High Mortality	15
2	Open Type of Housing in Tropical Areas	15
3	A Commercial Broiler Farm	16
4	A Commercial Broiler Farm - Brooding Stage	16
5	A Smallholder Broiler Farm, 200 Birds per Batch	17
6	A Smallholder Broiler Farm 500 Birds per Batch	17
7	Poultry Sheds for Backyard Farms	18
8	Indigenous Chickens Reared Under Backyard Farm Conditions	18
9	Indigenous Chickens Scavenge for Food	19
10	Conventional Intramuscular Vaccination - Vaccinators Go From House to House	19
11	Newcastle Disease Vaccine in the Form of Feed	20
12	The Food Pellet Vaccine is Easily Fed to Chickens	20
13	Intranasal Vaccination	131
14	Aerosol Vaccination Using Turbair Vaccine Apparatus in Commercial Broilers	131
15	Open Shed for Village Chickens	132
16	Small Open Shed for Village Chickens	132
17	Uni-Glatt Machine for Coating Vaccine	1 2 3

18	vaccine Packed in Clear Plastic Bags	133
19	A Shed for Simulated Village Experiment	169
20	Each shed is Enclosed Within a Fence	169
21	Haemorrhages in the Proventriculus	170
22	Necrosis and Haemorrhages in the Intestine	170
23	Necrosis and Haemorrhages in the Caeca	171
24	Necrosis and Haemorrhages in the Caecal Tonsils	171
25	Experimental Unit for Demonstration to Farmers - Simulated Village Conditions	199
26	Farmers Entering the Experimental Unit	199
27	Farmers Listening to Briefing at the Experimental Unit	200
28	Briefing on ND and Food Pellet Vaccine in a Village Community Hall	200
29	Briefing on ND and Food Pellet Vaccine to a Farmer in a Village	201
30	Briefing to Farmers Using Poster Presentations	201
31	Tagging Village Chickens at the Start of Field Trial	202
32	Bleeding of Chickens for ND-HI Antibody Level	202
33	Briefing to Farmers at the Experimental Unit	203
34	Demonstration of Administering Food Pellet Vaccine	203
35	A Farmer Vaccinating the Chickens at the Experimental Unit	204
36	Battery Cages Made of Wood and	222

37	Troughs Made of Bamboo	232
38	Brooding Stage - Smallholder Broiler Farm. Feed and Water Troughs Made of Plastic	233

LIST OF ABBREVIATIONS

ACD - acid citrate dextrose

ACIAR - Australian Centre for International

Agricultural Research

0

C - degrees centrigrade

EID - embryo infective dose

ELD - embryo lethal dose

g - grams

G - centrifugal force

GMT - geometric mean titre

•

HA - Haemagglutination

HBSS - Hank's Balanced Salt Solution

HI - Haemagglutination inhibition

i/c - in-contact

i.e. - that is

i/m - intramuscular

i/n - intranasal

k - rate constant

kg - kilogram

ml - millilitre

M\$ - Malaysian ringgit

ND - Newcastle disease

NDV - Newcastle disease virus

PBS - phosphate buffered saline

pH - <u>puissance</u> <u>hydrogene</u> (hydrogen-ion

concentration)

P\$ - Philippines pesos

psi - pound per square inch

PVP - polyvinyl-pyrrolidoine

SEA - South East Asia

rpm - revolution per minute

S\$ - Singapore dollars

SPF - specific pathogen free

sq. cm - square centimetre

sq. m - square metre

u - micron

ug - microgram

UPM - Universiti Pertanian Malaysia

US\$ - American dollars

VVNDV - velogenic viscerotropic Newcastle Disease

virus

Abstract of the thesis presented to the Senate of Universiti Pertanian Malaysia in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

VACCINATION OF VILLAGE CHICKENS AGAINST NEWCASTLE DISEASE

Ву

AINI IDERIS

JUNE, 1989

Supervisor : Professor Dr. Abdul Latif Ibrahim
Faculty : Veterinary Medicine and Animal Science

The village poultry is an important component of the poultry industry in South East Asia. However, Newcastle disease is always a threat to them. While the disease is usually adequately controlled by repeated applications of suitable vaccines in commercial poultry, it has not been successfully controlled in village chickens. A new method of vaccine production and administration for the village chickens needs to be developed. The objective of this study was to select an avirulent Newcastle disease virus which is immunogenic, heat resistant and transmissible among chickens and to incorporate the virus in feed that can be offered to chickens.

The vaccine was prepared by coating an immunogenic and heat tolerant substrain of V4 virus onto food pellets. A nominal chicken dose of vaccine was 10 g of pellets containing 10° 50% egg infectious doses of vaccine virus. Studies on

laboratory chickens showed that two doses of vaccine were required to induce immunity and protection against virulent Newcastle disease virus. A similar vaccine regime has been applied to village chickens kept under simulated village conditions. They were substantially resistant to challenge while unvaccinated control chickens, were fully susceptible. Trials were then undertaken in 21 villages, which were supplied with food pellet vaccine about once each month. The efficacy of the vaccine was monitored by observing the natural incidence of Newcastle disease and by buying vaccinated chickens for artificial challenge. Some 60% of village chickens resisted artificial challenge and outbreaks of Newcastle disease were not recorded in the villages during the two year observation period. The oral vaccine has also been proved as an effective booster vaccine for commercial poultry under smallholder conditions.

This study has established that a heat resistant Newcastle disease virus incorporated in feed pellets provides a method of vaccinating village chickens against Newcastle disease in tropical countries. This is the first report of such a vaccine being used in village chickens in Malaysia and probably in Asia. The breakthrough of delivering the vaccine in food has stimulated interest in other South East Asian countries to develop a similar vaccination procedures for trials in village chickens.

Ringkasan tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia bagi memenuhi sebahagian keperluan Ijazah Doktor Falsafah.

PEMVAKSINAN TERHADAP PENYAKIT NEWCASTLE BAGI AYAM KAMPUNG

Oleh

AINI IDERIS

JUN, 1989

Penyelia: Professor Dr. Abdul Latif Ibrahim

Fakulti: Kedoktoran Veterinar dan Sains Peternakan

Ayam kampung adalah satu komponen penting dalam industri ayam di Asia Tenggara. Walau bagaimanapun, ayam-ayam ini selalu menghadapi bahaya penyakit Newcastle (penyakit sampar). Penyakit ini selalunya dapat dikawal dengan baik bagi ayam komersial, iaitu dengan pemberian vaksin yang sesuai secara berulang kali, tetapi bagi ayam kampung cara yang lazim ini tidak berjaya mengawal penyakit tersebut. Satu cara baru bagi pengeluaran dan pemberian vaksin untuk ayam kampung harus diusahakan. Objektif kajian ini adalah untuk memilih virus penyakit sampar yang tidak virulen, tetapi bersifat imunogen, tahan haba dan dapat berpindah antara ayam serta dapat dicampurkan dalam makanan yang boleh diberikan pada ayam.

Vaksin ini disediakan dengan cara menyalut gentir makanan dengan substrain virus V4 yang imunogen dan tahan haba. Dos vaksin yang nominal bagi ayam ialah 10 gram gentir makanan yang

mengandungi 10° 50% dos jangkitan telur daripada virus vaksin. Kajian makmal pada ayam menunjukkan bahawa dua dos vaksin diperlukan untuk mengaruh keimunan dan ketahanan terhadap virus Newcastle yang virulen. Satu rejim pemvaksinan yang serupa telah dijalankan bagi ayam kampung yang dipelihara di bawah keadaan yang menyerupai keadaan di kampung. Ayam-ayam tersebut didapati tahan terhadap penyakit Newcastle apabila diuji, sementara ayam-ayam yang tidak diberi vaksin didapati rentan sepenuhnya.

Seterusnya percubaan lapangan dijalankan di 21 buah kampung, di mana vaksin jenis gentir makanan diberi setiap bulan. Efikasi vaksin diawasi dengan memerhatikan insidens penyakit Newcastle yang terjadi secara semulajadi dan dengan membeli ayam-ayam yang sudah diberi vaksin untuk ujian makmal. Lebih kurang 60% ayam kampung didapati tahan terhadap ujian makmal dan tidak terdapat kejadian penyakit Newcastle di kampung-kampung tersebut selama dua tahun dalam pengawasan. Vaksin secara oral ini juga telah terbukti sebagai vaksin tambahan yang berkesan bagi ayam-ayam komersial yang dipelihara secara penternakan kecil.

Kajian ini menunjukkan bahawa apabila virus Newcastle yang tahan haba dicampurkan dalam gentir makanan, ia boleh dijadikan satu cara pemvaksinan bagi ayam kampung terhadap penyakit Newcastle di negara tropik. Ini merupakan laporan yang pertama mengenai vaksin secara oral yang digunakan bagi ayam kampung di Malaysia dan mungkin juga di Asia. Kejayaan pemberian vaksin dalam makanan ini telah menimbulkan minat di negara lain di Asia Tenggara untuk mengembangkan cara pemvaksinan yang serupa untuk tujuan percubaan lapangan bagi ayam kampung di negaranegara tersebut.

xxiii

CHAPTER 1

GENERAL INTRODUCTION

Newcastle disease (ND) is a highly infectious viral disease mainly of chickens but also infecting other poultry and many wild and cage birds. The disease has been reported in most countries in the world as summarised in Tables 1 and 2 (Anon., 1985), although in some countries such as Australia and Northern Ireland the strains of virus present are particularly avirulent (Simmons, 1967; McFerran et al., 1968). More than one third of the countries of Asia and about one fifth of the countries of the world acknowledge the presence of velogenic strains of ND virus (NDV) (Spradbrow, 1988a). However, the countries of Oceania are relatively free from ND. Freedom from infection in some countries is apparently a result of effective quarantine and geographical isolation, such as isolation for many islands. Eighteen out of 45 member countries of the Commission for the Study of Avian Diseases of the Office International des Epizooties reported that ND was their most economically serious poultry disease (Lancaster, Economic loss may be related to the endemic or the epidemic characteristics of ND. Endemic ND causes continual losses and the epidemic form causes very heavy loss whenever the disease strikes.

