

UNIVERSITI PUTRA MALAYSIA

QUANTITATIVE OBSERVATIONS ON THE PULMONARY ANATOMY OF THE DOMESTIC FOWL AND OTHER GROUND-DWELLING BIRDS

M. K. VIDYADARAN

FPV 1987 2

QUANTITATIVE OBSERVATIONS ON THE PULMONARY ANATOMY OF THE DOMESTIC FOWL AND OTHER GROUND-DWELLING BIRDS

by

M. K. Vidyadaran

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Veterinary Medicine and Animal Science, University Pertanian Malaysia.

February 1987

This thesis is dedicated to my parents

Mr. M. P. K. Menon

and

Mrs. Lakshmi Menon

ACKNOWLEDGEMENTS

Many people have helped me by a wide spectrum of assistance in carrying out this project. In particular, I am indebted to Professor A. S. King for advice, efforts and encouragement and unfailing support at all stages, right from introducing me to quantitative biology to supervision of this thesis. I also wish to thank Dr. Kassim bin Hamid for his advice and encouragement throughout the period of my work at Universiti Pertanian Malaysia.

I would like to express my gratitute to Mr. P. Ganesamurthi who provided able technical assistance at Universiti Pertanian Malaysia. I am appreciative of the valuable assistance, comments and advice by Mrs. D. Z. King, Dr. Lai Choo May, Mrs. J. Henry and Mr. Ho Ooi Kuan on transmission electron microscopy. I am grateful to Dr. J.N. Maina for his kindness and for the stimulating discussions on many aspects of quantitative biology.

I also wish to thank Mr. G. Settle and Dr. R. J. Bansali of University of Liverpool, Dr. N. T. James of University of Sheffield, and Dr. Mak Tian Kwan of Universiti Pertanian Malaysia, for valuable help on statistical analysis.

I am especially appreciative of the help provided by the Department of Wildlife and National Parks for supplying Red Jungle Fowls for the experiment.

The financial support for much of the work came from Universiti Pertanian Malaysia, to which I am much grateful. I am also grateful to CICHE and Association of Commonwealth Universities for providing grants which enabled me to visit the Departments of Veterinary Anatomy in Liverpool and Nairobi for training and discussions on electron microscopy and stereology.

To my wife, Shamala and my daughters, Shamini and Sharmili, I am indebted for their love, forebearance and support throughout the period of studies.

"I often say that when you can measure what you are speaking about and express it in numbers you know something about it; but when you cannot express it in numbers your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage of science".

Lord Kelvin, 1883 (cited by Dunnill, 1968)

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENI'S	iii
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xv
ABSTRACT	xvii
INTRODUCTION	1
Lung-Air Sac System of Birds: General Aspects	1
Morphogenesis	1
Structure of the Adult Lung	3
Function of the Adult Lung	9
LITERATURE REVIEW	14
Stereological Studies of the Adult Avian Lung	14
Domestic fowl(Gallus gallus var domesticus)	14
Red Jungle Fowl (Gallus gallus)	17
White-breasted Water-Hen (Amaurornis	
phoenicurus)	18
Muscovy Duck (Cairina moschata)	18
Stereological Studies of the Juvenile avian lung	19
OBJECTIVES.	21

MATERIALS AND METHODS.,	23
Animals	23
Fixation of Lungs	26
Estimation of Lung Volume	26
Sampling Procedure	28
Tissue Processing for Microscopy	30
Light Microscopy	30
Transmission Electron Microscopy	31
Scanning Electron Microscopy	31
Stereological Analysis of Histological Sections and Electron Micrographs	33
Histological Sections	33
Electron Micrographs	34
Stereology	41
Volume Density	42
Surface Area and Surface Density	43
Harmonic Mean Thickness	46
Arithmetic Mean Thickness	49
Pulmonary Diffusing Capacity	50
Carcass Evaluation Procedure	54
Statistical Analysis	56
RESULTS	58
Qualitative Observations	58
Gross morphology	58
(i) Adult lung	58
(ii) Juvenile lung	58

Histological Characteristics	59
(i) Adult lung	59
(ii) Juvenile lung	60
Transmission Electron Microscopy	60
(i) Adult lung	60
(ii) Juvenile lung	64
Scanning Electron Microscopy	64
Quantitative Observations	76
Body weight, lung volume, and lung volume per unit body weight	77
Analysis of the relative volume and the absolute volume of the main components of the lung	80
Volume per unit body weight of the main component of the lung	82
Volume densities and the absolute volumes of the main components of the exchange area	84
Volume per unit body weight of the main components of the exchange tissue	86
Analysis of the distribution of air and $bl \infty d$ in the lung	89
Analysis of the surface areas and surface area per unit body weight of the resistance barriers of the air-haemoglobin pathway of the lung	94
Analysis of the surface area of the blood-gas barrier per unit volume of the exchange tissue (St/Vx), and volume of capillary blood per unit surface area of the blood-gas barrier(Vc/St)	96
Analysis of the absolute volumes of erythrocytes, erythrocyte nucleus, erythrocyte cytoplasm, and the percentage volume of pulmonary capillary haematocrit	99

Analysis of the thickness of the blood-gas (tissue) barrier and the plasma layer	101
Analysis of the pulmonary diffusing capacities of the resistance barriers of the air-haemoglobin pathways	104
Carcass Evaluation	111
DISCUSSION	113
Critique of the Methodology	113
Errors due to sample size and interval	113
Errors due to perfusion, fixation, osmolarity and tissue processing	114
Errors due to estimation of lung volume by Scherle's method	117
Errors due to stereological methods	117
Errors to possible genetic impurity of the Red Jungle Fowl	121
Pulmonary Stereology of the Adult Female Domestic Fowl	123
Pulmonary Stereology of the Adult Female Red Jungle Fowl	138
Pulmonary Stereology of the Adult Female White-breasted Water-Hen	148
Pulmonary Stereology of the Adult Female Muscovy Duck	158
Pulmonary Stereology of the Developing Lung	168
SUMMARY	176

CONCLUSIONS	181
BIBLIOGRAPHY	197
APPENDICES	211

LIST OF TABLES

Tab	le	Page		
Ι	Number of animals used for various investigations			
II	Body weight and lung volume			
III	Relative and Absolute volumes of the main components of the lung	81		
IV	Absolute volume per unit body weight of the main components of the lung			
Va	Relative and Absolute volumes of the main components of the exchange tissue of the lung	85		
Vb	Absolute volume per unit body weight of the main components of the exchange tissue	87		
VIa	Analysis of the volume distribution of the air in the lung	90		
VIb	Analysis of the volume distribution of the blood in the lung	92		
VIc	The relative proportions of the lung formed by air and blood			
VII	The surface areas of the resistance barriers of the air-haemoglobin pathway of the lung			
VIIIa	IIa Specific surface areas and surface to volume ratios of the resistance barriers of the gas exchange tissue			
VIIIb	Absolute volume of the erythrocyte components: Pulmonary and Venous haematocrits	100		
IX	Thickness of the blood-gas (tissue) barrier and the plasma layer	102		
Xa	Anatomical pulmonary diffusing capacities of the resistance barriers of the air-haemoglobin pathway for oxygen	105		

Xb	Anatomical pulmonary diffusing capacities of the resistance barriers of the air- haemoglobin pathway for oxygen	107
XI	Comparisons of pulmonary parameters of the domestic fowl and the Red Jungle Fowl	110
XII	Allometric functions of the volume of lung with body weight, dressing percentage and carcass components	112

LIST OF FIGURES

Figur	e	Page
1.	Semidiagrammatic medial view of the right lung of Gallus	4
2.	Medial view of the right lung of Gallus	6
3.	Systematic stratified sampling procedure	29
4.	An electron micrograph superimposed with a quadratic lattice grid	35
5.	An electron micrograph superimposed with a random short line test grid	37
6.	Principles used in estimating surface area and harmonic mean thickness of the resistance barriers	39
7.	Scanning electron micrograph of the lung of the White-breasted Water-Hen (<u>Amaurornis phoenicurus</u>)	69
8a.	Scanning electron micrographs of the parabronchi of the lung. a. Adult domestic fowl, b. Adult Red Jungle Fowl	70
8b.	Scanning electron micrographs of the parabronchi of the lung. a. Muscovy Duck, b. Adult White-breasted Water-Hen	71
9.	Scanning electron micrograph of the exchange tissue of the lung of the White- breasted Water-Hen (Amaurorn <u>is phoenicurus</u>)	73
10a.	Scanning electron micrograph (Latex Cast) of the air capillaries of the exchange tissue of domestic fowl (Gallus gallus var domesticus)	74
10b.	Scanning electron micrograph (Latex Cast) of the blood capillaries of the exchange tissue of the domestic fowl	75
lla.	Transmission electron micrographs of the exchange tissue of the Adult lung. a.Domestic fowl, b. Red Jungle Fowl	61

11b.	Transmission electron micrographs of the exchange tissue of the adult lung. c.Muscovy Duck, d. White-breasted Water-Hen	62
12a.	Transmission electron micrograph of the exchange tissue of the lung of the domestic fowl at day l	65
12b.	Transmission electron micrograph of the exchange tissue of the lung of the domestic fowl at day 7	66
12c.	Transmission electron micrograph of the exchange tissue of the lung of the domestic fowl at day 30	67

LIST OF ABBREVIATIONS

Deo 2	oxygen diffusing capacity (conductance) of erythrocytes
DLo 2	total anatomical pulmonary diffusing capacity for oxygen
Dmo 2	oxygen diffusing capacity of the membrane for oxygen
Dpo 2	oxygen diffusing capacity of the plasma for oxygen
Dto 2	oxygen diffusing capacity of the blood-gas (tissue) barrier for oxygen
Нс	pulmonary capillary haematocrit
Не	venous haematocrit
r	correlation coefficient
Sa	surface area of the air capillary epithelium
Sc	surface area of the blood capillary epithelium
s.d.	standard deviation
Se	surface area of the capillary erythrocytes
Sp	surface area of the plasma layer
St	surface area of the blood-gas (tissue) barrier
Va	volume of the lumen of the air capillaries
٧b	volume of the wall and lumen of the blood
	vessels larger than capillaries
Vc	volume of the lumen of the blood capillaries
Ve	volume of the pulmonary capillary erythrocytes
Vec	volume of the cytoplasm of the pulmonary capillary erythrocytes
Ven	volume of the nucleus of the pulmonary capillary erythrocytes

- VL volume of the fixed lung (left lung x 2)
- Vlb volume of the lumina of parabronchi and secondary bronchi (including atria)
- Vp volume of the wall and lumen of the primary bronchus
- Vt volume of the blood-gas (tissue) barrier
- Vtn volume of the tissue not involved in gaseous exchange
- Vx volume of the exchange tissue of the lung
- W body weight
- thp harmonic mean thickness of the plasma
- tht harmonic mean thickness of the blood-gas
 (tissue) barrier
- tt arithmetic mean thickness of the blood-gas
 (tissue) barrier

Specific values are those standardized against body weight; for example, St/W means the specific surface area of the tissue barrier.

In the text and Tables, all lung values are totals for the left and right lungs together.

The <u>anatomical terminology</u> adopted in this thesis is that used by the International Committee on Avian Anatomical Nomenclature (I.C.A.A.N.) and published in the Nomina Anatomica Avium (King, 1979).

The taxonomic nomenclature follows Gruson, (1976).

An abstract of the thesis presented to the Senate of Universiti Pertanian Malaysia in partial fulfilment of the requirements for the Degree of Doctor of Philosophy

QUANTITATIVE OBSERVATIONS ON THE PULMONARY ANATOMY OF THE DOMESTIC FOWL AND OTHER GROUND-DWELLING BIRDS

by

M. K. Vidyadaran

June, 1986

Supervisor	:	Associate Professor Dr. Kassim bin Hamid
Faculty	:	Veterinary Medicine and Animal Science, Universiti Pertanian Malaysia, Malaysia
Co-supervisor	:	Professor Dr. A.S. King
Department	:	Veterinary Anatomy, University of Liverpool, England

The pulmonary stereology of the adult domestic fowl (<u>Gallus gallus</u> variant <u>domesticus</u>), the Red Jungle Fowl (<u>Gallus gallus</u>), the Muscovy Duck (<u>Cairina moschata</u>), the White-breasted Water-Hen (<u>Amaurornis phoenicurus</u>), and the juveniles of the domestic fowl and Red Jungle Fowl were investigated. The lung of the domestic fowl was compared with that of the Red Jungle Fowl at day 1, day 7, and day 30.

A multistage sampling technique was used for pulmonary stereology. Standard stereological procedures of point counting, intersection counting, and measurement of intercept

length, were employed for estimating volume density, surface area, and harmonic mean thickness respectively. The anatomical diffusing capacity was estimated from Weibel's model.

The pulmonary stereological characteristics of the Red Jungle Fowl are broadly similar to those of the domestic fowl, but the Red Jungle Fowl has a higher specific volume of the lung and a thinner blood-gas (tissue) barrier, with a higher specific diffusing capacity of the barrier for oxygen than the domestic fowl.

The lung of the White-breasted Water-Hen, a grounddwelling bird, has stereological characteristics similar to some flying birds (non-passerine), thus showing that not all ground-dwelling birds have inferior pulmonary stereological characteristics.

The domestic Muscovy Duck has pulmonary characteristics which are broadly similar to those reported for other <u>Anseriformes</u>, except for a greater thickness of the blood-gas (tissue) barrier. The specific oxygen diffusing capacity of the blood-gas (tissue) barrier was well below that of other anseriforms and birds in general.

The juvenile of both the domestic fowl and the Red Jungle Fowl has a thicker blood-gas (tissue) barrier than the adult. In each age group examined, the blood-gas (tissue) barrier was thicker in the domestic fowl than in the Red Jungle Fowl.

xviii

At day 7 the pulmonary stereology of the domestic fowl is vastly inferior to that of the Red Jungle Fowl. It is suggested that lung development has not been adequate to meet the rapid increase in body weight.

The pathophysiological effects of the stereological values of some of the parameters are discussed. Surface to volume and volume to volume relationships suggest a possible greater total length of blood capillaries in the exchange tissue of the domestic fowl than in the Red Jungle Fowl, with the possibility of greater resistance to pulmonary blood flow.

Scanning electron microscopy showed that both the blood and air capillaries were tortuous. The air capillaries resembled irregular chambers connected by small tubes, while the blood capillaries formed a network of tubes of uniform diameter.

Carcass evaluation indicated that although muscle, bone, etc. were highly correlated with volume of lung, body weight is still the best comparator.

Abstrak tesis yang dikemukakan kepada Senat Universiti Pertanian Malaysia sebagai sebahagian daripada keperluan untuk Ijazah Doktor Falsafah

QUANTITATIVE OBSERVATIONS ON THE PULMONARY ANATOMY OF THE DOMESTIC FOWL AND OTHER GROUND-DWELLING BIRDS

by

M. K. Vidyadaran

June,1986

Ketua penyelia	:	Profesor Madya Dr. Kassim bin Hamid
Fakulti	:	Kedoktoran Veterinar dan Sains Perternakan, Universiti Pertanian Malaysia, Malaysia
Penyelia	:	Profesor Dr. A. S. King
Department	:	Veterinary Anatomy, University of Liverpool, England

Stereologi pulmonari ayam peliharaan (<u>Gallus gallus</u> variant <u>domesticus</u>), ayam hutan merah (<u>Gallus gallus</u>), itik Muskovi (<u>Cairina moschata</u>) burung Uak-uak (<u>Amaurornis</u> <u>phoenicurus</u>) dewasa, dan anak-anak ayam peliharaan dan ayam hutan merah telah diselidiki. Perbandingan antara paru-paru ayam peliharaan dengan ayam hutan merah pada umur 1, 7 dan 30 hari dilakukan.

Teknik persampelan pelbagai lapisan telah digunakan untuk stereologi pulmonari. Prosedur stereologi yang biasa untuk pengiraan-pengiraan titik, antara bahagian, dan ukuran bagi jarak intersep, telah digunakan untuk anggaran

ketumpatan volum, luas permukaan dan min harmonik ketebalan. Keupayaan difusi anatomi adalah dianggarkan mengikut contoh Weibel.

Sifat-sifat stereologi pulmonari ayam hutan merah pada keseluruhannya adalah sama dengan ayam peliharaan, tetapi ayam hutan merah mempunyai volum paru-paru spesifik yang lebih tinggi dan rintangan darah gas yang lebih nipis, dengan keupayaan difusi spesifik oleh rintangan yang lebih tinggi untuk oksigen daripada ayam peliharaan.

Paru-paru burung Uak-uak, yang amnya menetap di atas tanah, mempunyai sifat stereologi yang sama dengan setengah burung yang terbang (bukan paserine), menunjukkan bukan semua burung jenis di atas tanah mempunyai sifat stereologi pulmonari yang bermutu rendah (inferior).

Itik Muskovi peliharaan mempunyai sifat-sifat pulmonari yang banyak persamaan dengan yang dilaporkan bagi Anseriformes yang lain, kecuali ketebalan rintangan darah-gas (tisu). Keupayaan difusi oksigen spesifik bagi rintangan darah-gas (tisu) adalah rendah daripada jenis **ans**eriformes yang lain dan burung-burung amnya.

Kedua-dua anak ayam peliharaan dan ayam hutan merah mempunyai rintangan darah-gas (tisu) lebih tebal daripada yang dewasa. Di dalam sekumpulan umur yang diperiksa, rintangan darah-gas (tisu) adalah lebih tebal bagi ayam peliharaan daripada ayam hutan merah.

xxi