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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirement for the degree of doctor of philosophy 

POWER AMPLIFIERS LINEARIZATION BASED ON COMPLEX GAIN 
MEMORY PREDISTORTION 

By 

POORIA VARAHRAM 

January 2010 

Chair: Mohd Nizar B. Hamidon, PhD 

Faculty: Engineering 

Power Amplifiers (PAs) are important components in communication systems and are 

nonlinear. The nonlinearity creates out of band distortion beyond the signal 

bandwidth, which interferes with adjacent channels. It also causes distortions within 

the signal bandwidth, which decreases the bit error rate at the receiver. Digital 

predistortion is one of the most cost effective ways among all linearization techniques 

to compensate for these nonlinearities. 

In this thesis a novel technique for compensating memory effects and out of band 

distortions is proposed and is called Complex Gain Memory Predistortion (CGMP). 

The main advantage of the CGMP technique as compared to the memory polynomial 

technique is the ability of this technique to compensate all the memory effects inside 

the PA. Two structures of the CGMP technique are proposed. The CGMP technique is 

examined using two approaches, simulation and experiment. Power amplifiers are 
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modeled with memory polynomial technique to examine the effects of the memory 

that causes increment in Adjacent Channel Leakage Ratio (ACLR). To implement this 

method, the complex divider is required. This complex divider is then designed and 

implemented in Field Programmable Gate Array (FPGA) and combined with other 

parts to make the predistortion block. The CGMP is implemented in Virtex 5 FPGA 

and simulated using Xilinx blocks in Matlab. In the experimental approach the CGMP 

is examined with the actual power amplifier ZVE-8G from Mini Circuit. Finally the 

CGMP technique is compared with memory polynomial method and validated using a 

1 .9 GHz 60W LOMOS power amplifier that is designed in simulation and various 

signals such as 2-carrier WCDMA with 1 0  MHz carrier spacing and Mobile WiMAX 

with 1 0  MHz bandwidth. The simulations results showed between 25 to 30 dB 

improvement in ACLR and almost 5 dB improvement as compared to the memory 

polynomial method. The experimental results also show around 1 0  dB reduction in 

ACLR with applying QPSK signal with 1 MHz bandwidth. The improvement of 7 

percent in Power Added Efficiency (P AE) is also achieved. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah doktor falsafah 

PELELURUSAN PENGUAT KUASA BERDASARKAN PRAHEROTAN 
INGATAN GANDAAN KOMPLEKS 

Oleh 

POORIA V ARAHRAM 

Januari 2010 

Pengerusi: Mohd Nizar B. Hamidon, PhD 

Fakulti: Kejuruteran 

Penguat Kuasa (PAs) merupakan komponen yang penting dalam sistem komunikasi 

dan ia tidak linear. Ketaklinearan ini menghasilkan herotan di luar kelebaran jalur 

isyarat. Ia juga menyebabkan herotan di dalam lebar jalur isyarat yang mengakibatkan 

kesalahan kadar bit pada penerima. Praherotan digital merupakan kaedah yang paling 

efektif dikalangan teknik pelinearan yang ada untuk mengatasi masalah ketaklinearan 

lDl. 

Dalam tesis ini, satu teknik novel untuk mengatasi masalah ingatan memori dan 

herotan di Iuar kelebaran jalur menggantikan kesan-kesan sedemikian dicadangkan. Ia 

dinamakan praherotan ingatan gandaan kompleks (CGMP). Kelebihan teknik CGMP 

ini dibandingkan dengan teknik memori polynomial adalah kebolehannya untuk 

menandingi semua kesan memori yang terdapat dalam P A. OIeh itu, dua struktur 

CGMP adalah dicadangkan. 
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Teknik COMP ini diuji menggunakan teknik simulasi dan eksperimen. Penguat kuasa 

dimodelkan bersama teknik memori polinomial untuk menguji kesan ingatan yang 

menyebabkan peningkatan kepada kadar kebocoran saluran bersebelahan (ACLR). 

Untuk melaksanakan kaedah ini, pembahagi kompleks diperlukan. Ia direkabentuk 

dan di-hasilkan menggunakan tatasusunan get boleh program (FPOA) dan 

digabungkan bersama komponen lain untuk menghasilkan blok praherotan. Teknik 

COMP dilaksanakan pada Virtex 5 FPOA dan disimulasi menggunakan biok Xilinx 

yang terdapat pada Matlab. Eksperimen COMP ini diuji menggunakan penguat kuasa 

sebenar ZVE-80 daripada Mini Circuit. Seterusnya, teknik ini dibandingkan dengan 

teknik memori polinomial dan diuji menggunakan 1 .9 OHz 60W LDMOS penguat 

kuasa dan pelbagai saluran seperti pembawa 2 WCDMA dengan pembawa jarak 1 0  

MHz dan Mobile WiMAX dengan jalur lebar 1 0  MHz lebar jalur. Hasil simulasi 

menunjukkan peningkatan 25-30 dB dalam ACLR dan peningkatan hampir 5 dB jika 

dibandingkan dengan teknik memori polinomial. Hasil kajian ini juga menunjukkan 

pengurangan hampir 1 0  dB dalam ACLR dengan menggunakan 1 MHz lebar jalur 

saluran QPSK. Peningkatan sebanyak 7 peratus untuk kuasa tambahan (P AE) turut 

tercapai. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Power Amplifiers (PAs) are necessary components in communication systems and 

they are nonlinear in a certain operation region. The nonlinearity generates spectral 

regrowth, which leads to Adjacent Channel Interference (ACI) and violations of the 

out of band emission. To reduce the nonlinearity, the power amplifier can be backed 

off to operate within the linear portion of its operating curve. However, transmission 

formats such as Wideband Code Division Multiple Access (WCDMA) and 

Orthogonal Frequency Division Multiplexing (OFDM), have high Peak to Average 

Power Ratios (P APR), it means the large fluctuations in their signal envelopes. This 

means that the power amplifier needs to be backed off far from its saturation point, 

which results in very low efficiencies, typically less than 1 0% (Wright, 2002), more 

than 90% of the dc power is lost and turns into heat. With increasing the number of 

the base stations and then the number of power amplifiers improvement in efficiency 

of the power amplifier reduce the cost of the system. To improve the power amplifier 

efficiency without compromising its linearity, power amplifier linearization is 

essential. 

Another important fact is with the increasing the number of users, greater amount of 

bandwidth is required. One of the effective ways to increase the bandwidth is to use 

diversity techniques, which have been applied in most of the 3G (Third Generation) 

standards specifications (Vuolvei, 2003). But, with each additional antenna, an 

additional transceiver is required which can significantly increase the system cost. 



Another method is the Digital Predistortion (DP) technique. The DP technique 

overcomes the linearity problem of PAs, enabling the use of non-linear PAs that are 

cheaper, so reducing the cost of the overall system (Kenington, 2000). Digital 

predistortion among all linearization techniques is the one that is low cost and with 

high efficiency and also high flexibility. By applying digital predistortion which is 

implemented in baseband of the communication systems the nonlinearity of the 

power amplifier is reduced and it allows the use of high power amplifier with high 

efficiency in the systems. 

Another important fact in studying PA is the memory effects that are the main issue 

of this research. The focus here is on the short term memory effects which cause the 

characteristics of P A to vary with time. This effect is more important where the high 

bandwidth signals are applied. The memory effects cause an increase in Adjacent 

Channel Leakage Ratio (ACLR) and also Error Vector Magnitude (EVM) which will 

be explained in Chapter 2. The other factor which might cause problem to the 

performance of the predistortion is the effect of the noise. Noise here can be result of 

the analog part such as DAC, mixer and so on which in this thesis are not considered, 

because the predistortion here is implemented in base band. The other noise source 

also can be from power amplifier which will be under memory effects and with the 

feedback that is in the adaptive predistortion that noise will be cancelled. In this 

thesis the linearization techniques of the power amplifiers mainly class AB are 

investigated, then digital predistortion technique is chosen as it is the most cost 

effective and most efficient among all the linearization techniques. The class AB 

power amplifier is chosen because of the more linearity of it as compare to other 

classes. A new technique has been developed, simulated and experimentally 
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measured to validate this new technique. Finally the simulation and experimental 

results are compared together. 

1 .2 Problem Statement 

The main problem of this research is the out of band distortions or spectral regrowth 

that cause increment in ACLR. The reason that this happens is because of the 

nonlinearity of the power amplifier that should be reduced to overcome the loss of 

energy and also the adjacent channel interference. 

The other problem is the power amplifier memory effects that cause the 

characteristics of power amplifier to change especially dynamic AM-AM (Amplitude 

Modulation to Amplitude Modulation) and AM-PM (Amplitude Modulation to Phase 

Modulation) (Ding, 2004). These effects should be considered also in this thesis and 

the method for overcoming these problems are investigated. The main impact of the 

memory effects is dynamic AM-AM and AM-PM which is discussed in this thesis. 

The technique that is introduced as the contribution of this thesis overcomes the 

problem of the memory effects. The other main problem while implementing the new 

predistortion technique is in calculating the inverse of the input signal which should 

be done by a divider. This function is not available in FPGAs and needs to be 

constructed by other blocks. This will be addressed in this thesis. The new method 

for complex division is introduced which has many advantages from the other 

dividers (Ercegovac, 2003 ; Agrawal, 2006). There are some other problems that are 

not very critical but need to be investigated specially the effects of gain factor on the 

convergence rate of the predistortion and also the effects of the hardware resources. 

Here the concentration is on these problems and study them. There are some 
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