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Growing concern on environmental issues has prompted house owners and industries 

to consider use of roof top ventilators, as a passive form of quality air circulation and 

comfort using only wind energy. However, many of these ventilators have evolved 

through trial and error and the flow physics associated with these ventilators is barely 

understood. 

This study presents prediction of airflow using Computational Fluid Dynamics 

(CFD) technique code, FLUENT, so as to visualize the flow behavior around and 

within turbine ventilator in addition to determining the aerodynamic forces acting on 

a turbine ventilator during operation and comparing the simulated results to available 
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experimental data. The prototype used for this investigation is a wind driven 

ventilator from Edmonds Company with a rotor diameter of 330 mm and base 

diameter of 1 50 mm. The free stream velocities in visualization of flow are set to be 

7 and 20 m.s-l when, for determining the aerodynamic forces are considered to be 7, 

1 0, 1 4, 20 and 25 m.s-l corresponding to experiment. The simulated prototype is 

placed in a control volume with the same dimensions as open circuit wind tunnel 

used in experimental investigation. Also the operating pressure and fluid properties 

are set to be the same as experiment. Standard k-E, Realizable k-E, SST k-w and 

RSM turbulence models are used by taking advantage of moving mesh method to 

simulate the rotation of turbine ventilator and the consequent results are obtained 

through the sequential process which ensures accuracy of the computations. 

The results demonstrated that, the RSM turbulence model shows the best 

performance on flow visualization and predicting the aerodynamic forces acting on a 

turbine ventilator. Results from this study, besides ensuring the reliability of utilizing 

the CFD method in design process of future turbine ventilators, would lead us to a 

conspicuous progress on increasing the efficiency at reduced cost of wind driven 

ventilators and similar devices. 
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Pengerusi: NOR MARIAH BT ADAM, PhD 

Fakulti: Kejuruteraan 

Kesedaran manusia tentang isu alam sekitar pemilik rumah dan industri telah 

mendorong mengguna turbin pengalihudaraan bumbung, sebagai mekanisme pasif 

yang hanya memerlukan tenaga angin bagi menjamin mutu pengalihudaraan dan 

keselesaan. Namun demikian, kebanyakan pengudaraan ini berevolusi secara cuba-

cuba (trial and error) dan kajian terhadapnya kurang difahami. 

Kajian ini mengetengahkan simulasi pergerakan udara menggunakan kaedah dinamik 

bendalir berkomputer (CFD) bagi memperlihatkan mekanisme aliran di sekeliling 

dan di dalam turbin pengudaraan semasa operasi dan membandingkan hasil simulasi 

dengan data kajian sedia ada. Prototaip yang digunakan di dalam kajian ini ialah 

dengan diameter rotor berukuran 330 mm dan diameter tapak berukuran 1 50 mm 
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daripada Syarikat Edmonds. Aliran bebas digarnbarkan dalarn halaju yang ditetapkan 

pada 7 dan 20 m.s-1 apabila, untuk menentukan daya aerodinarniknya 

dipertimbangkan pada 7, 1 0, 14, 20 dan 20 m.s-1 merujuk kepada eksperimen. 

Simulasi prototaip ini diletakkan dalarn volum kawalan yang mempunyai dimensi 

yang sarna dengan terowong arus tiupan terbuka yang digunakan di dalarn kajian 

ujian. Sifat-sifat tekanan dan bendalir kendalian juga ditetapkan sarna seperti 

eksperimen. Model gelora standard k-e, k-e, k-w SST dan RSM digunakan dengan 

mengarnbil kira kaedah jaringan bergerak untuk mensimulasikan putaran turbin 

pengudaraan dan hasilnya diperoleh melalui proses berurutan bagi memastikan 

ketepatan pengiraan. 

Keputusan menunjukkan kaedah model gel ora RSM memberikan prestasi terbaik 

dari segi menggarnbarkan aliran dan merarnal daya aerodinarnik yang bertindak 

terhadap turbin pengudaraan. Hasil daripada kajian ini, selain daripada memastikan 

kebolehpercayaan penggunaan kaedah CFD dalarn reka bentuk turbin pengudaraan 

masa depan, juga membawa kepada peningkatan tahap kecekapan pada kos yang 

lebih rendah untuk pengudaraan arus tiupan angin dan peranti yang serupa. 
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1.1 Overview 

CHAPTER 1 

INTRODUCTION 

The diminution of greenhouse gases is required for the developed countries. 

However, it can be predicted that developing countries including Malaysia will be 

demanded to adhere to the Kyoto Protocol in the near future. Therefore, it is 

important to consider the energy saving means in developing countries in the course 

of its economic growth. The emissions produced from the use of air-conditioners in 

residential areas could be effectively performed through energy saving efforts by 

maximizing the use of passive cooling techniques or by means of natural ventilation. 

Consequently, the importance of natural ventilation has been increasingly reassessed 

partly due to the recent needs of energy saving. 

1.2 Passive cooling techniques for hot-humid climates 

The term "passive cooling" is referred to as a building design method that not only 

avoids outdoor heat, but also transfers indoor heat to natural heat sinks. Complete 

reviews in passive cooling study can be found in Cook (1 989) and Abram ( 1 986), 

where passive cooling techniques are categorized as follow: 

1 .  Heat avoidance 

2. Radiative cooling 

3. Evaporative cooling 



4. Earth coupling 

5. Ventilation 

1 .2.1 Heat avoidance 

Heat avoidance technique consists of the use of shading devices, suitable building 

orientation and the use of local vegetation as a simple means of reducing heat gain, 

(Balaras, 1 996). 

1.2.2 Radiative cooling 

Radiative cooling method, as explained in Cook (1 989), is the process whereby heat 

is absorbed by buildings in the daytime, and then radiated later to the cooler, night 

sky as infrared radiation. This technique works best in arid climates where diurnal 

temperature swings are significant. For hot-humid regions, high humidity and cloud 

cover usually slows the rate of night time radiative heat transfer, thus trapping heat 

inside the buildings that would have otherwise radiated to the night sky. 

1.2.3 Evaporative cooling 

Evaporative cooling is another technique that is currently used in passively cooled 

buildings in hot-arid regions. Unfortunately for hot-humid regions, high humidity 

prevents evaporative cooling from being effective. As described by Cook ( 1 989), 

"Evaporative cooling works when the sensible heat in an air stream is exchanged for 

the latent heat of water droplets or wetted surfaces." However, in hot-humid climates 

like Malaysia, cooling with outdoor air without first removing moisture (such as with 
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a desiccant cooler) causes the indoor air to be too humid or even to condense on 

surfaces, and thus causes mold and mildew to form. 

1 .2.4 Earth coupling 

Regarding earth coupling techniques, Cook ( 1 989) has summarized that in earth

coupled buildings, the interior space is thermally coupled to the subsoil by 

conduction-convection through the building slab. This requires that the ground 

temperature be within the comfort zone (i.e., 20 - 26/oC) so that the ground can act 

as a heat sink. This technique is useful in temperate climates where the average 

ground temperature is within the comfort zone. 

1.2.5 Ventilation 

In ventilation, as mentioned in Abram ( 1 986), a cooling effect occurs by means of 

convection by using surrounding air as a heat sink. A lack of ventilation can cause 

too much humidity, condensation, overheating and creation of odours, smokes and 

pollutants. In commercial and industrial buildings ventilation is a part of HV AC 

(heating, ventilation and air-conditioning) systems which are very energy intensive; 

usually including of large fans, air-conditioning and heating components. In 

domestic buildings the most important ventilation technique is renewable in the form 

of air infiltration and natural ventilation through windows and openings. 

1.3 Natural form of ventilation 

Natural ventilation uses the natural forces of wind pressure and stack effects to 

redirect the movement of air through dwellings. Wind incident on a building facade 
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produces a positive pressure on the windward side and a relative negative pressure on 

behind. This pressure difference beside the pressure differences inside the building 

will cause airflow to move. Stack effects are due to the temperature differences 

between the inside and outside of buildings. As long as the inside building 

temperature is more than the outside, warm indoor air will rise and exit then being 

replaced by cooler, denser air from a lower height. The stack effect is foremost 

during periods of low wind speed and reduces in summer periods when temperature 

differences are negligible. Natural ventilation is now one of the main methods in the 

energy efficient design of buildings. 

Various wind driven ventilation techniques are used in energy efficient building 

design, (Khan, 2008), and they are classified as: 

1 .  passive wind driven ventilation 

2. directed passive wind driven ventilation 

3 .  active wind driven ventilation 

1.3.1 Passive wind driven ventilation 

Devices and methods in this category are passive in nature and mainly using wind

induced effects as drive forces for providing ventilation. Some examples of these 

devices and methods are; window openings, atria and courtyards, wing walls, 

chimney cowls, wind towers, wind catchers, wind floor and air inlets, (Khan, 2008). 
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