

UNIVERSITI PUTRA MALAYSIA

REMOVAL OF COLOUR FROM PULP AND PAPER MILLS EFFLUENT USING ENZYMATIC TREATMENT AND ADVANCED OXIDATION PROCESSES

SAMANEH KARIMI MAZRAEHSHAHI

FK 2009 68

REMOVAL OF COLOUR FROM PULP AND PAPER MILLS EFFLUENT USING ENZYMATIC TREATMENT AND ADVANCED OXIDATION PROCESSES

By

SAMANEH KARIMI MAZRAEHSHAHI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2009

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

REMOVAL OF COLOUR FROM PULP AND PAPER MILLS EFFLUENT USING ENZYMATIC TREATMENT AND ADVANCED OXIDATION PROCESSES

By

SAMANEH KARIMI MAZRAEHSHAHI

January 2009

Chair: Associate Professor Abdul Halim B. Ghazali, PhD

Faculty: Engineering

This research is investigated the efficiency of Advanced Oxidation Processes (AOP) (Fenton and photo-Fenton processes), enzymatic treatment, and combined enzymatic/AOP sequences on colour removal of soda and Chemical Mechanical Pulping (CMP) effluent samples from two major pulp and paper mills in Iran. In addition, the effect of AOP as a pre-treatment unit and post-treatment unit in conjuction with biological treatment, in the combined treatment system, were investigated.

Results indicated that, under all circumstances, Fenton process using UV irradiation (photo-Fenton) was found to be more efficient in the degradation of effluent components, compared to the dark reaction.

Regarding the enzymatic treatment, two kinds of fungal enzymes; Laccase (EC: 1.10.3.2) from *Terametes Versicolour* and Versatile Peroxidase (EC: 1.11.1.7) from *Bjerkandera adusta* were selected and used. In order to determine the effect of enzyme dosage on the overall efficiency of decolourization, experiments were carried out at 2 dosages (1 mg & 2 mg) for each enzyme. To evaluate the effect of external mediator on the enzyme based degradations, each enzyme was applied on the effluent samples, one with the presence of external mediator, and the other, without it, while the other conditions were the same.

It was found that both VP from Bjerkandera adusta and Laccase from Terametes versicolour decolourized the deep brown effluent to a clear light yellow solution. Findings indicated that, an increase in the amount of enzymes (for both VP and Laccase) does not considerably affect the lignin degradation, and resulting in a decrease in the decolourization yield.

In the Laccase treatment process, the decolourization rates of both effluents were enhanced in the presence of ABTS (2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)), while, in case of VP, Mn (Π) decreased the efficiency of the treatment.

In combined treatment, biological-chemical sequences (VP/L/Photo-Fenton, VP/L (ABTS) /Photo-Fenton) and, chemical-biological sequences (Photo-Fenton/VP/L, Photo-Fenton/VP/L (ABTS)) were applied.

It has been found that, concomitant use of enzymes and photo-Fenton process produces a considerable effect on colour remediation. The data analysis of sequence treatment indicated that, chemical treatment after the enzymatic stage (photo-Fenton as a post treatment unit) yield a better performance for the CMP effluent; on the contrary, the reverse order (photo-Fenton as a pre-treatment unit) is found to be more efficient for soda effluent.

Keywords:

Advanced Oxidation Processes (AOPs), Colour removal, Enzymatic treatment, Fenton and photo-Fenton processes, Laccase, Pulp and paper mill effluent, Versatile Peroxidase.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGHILANGAN WARNA DARIPADA EFLUEN KILANG PULPA DAN KERTAS MENGGUNAKAN RAWATAN ENZIM DAN PROSES PENGOKSIDAAN TERMAJU

Oleh

SAMANEH KARIMI MAZRAEHSHAHI

January 2009

Pengerusi: Professor Madya Abdul Halim B. Ghazali, PhD

Fakulti: Kejuruteraan

Penyelidikan ini mengkaji keberkesanan bagi Proses Pengoksidaan Termaju (AOP) (proses Fenton dan photo-Fenton), rawatan enzim, dan gabungan turutan enzim/AOP ke atas penghapusan warna bagi sampel efluen soda dan pempulpaan kimia mekanikal (CMP) daripada dua kilang pulpa dan kertas utama di Iran. Selanjutnya, kesan AOP sebagai unit pra-rawatan dan unit pasca rawatan di dalam rawatan gabungan juga dikaji.

Keputusan menunjukkan bahawa, dalam semua keadaan, proses Fenton yang menggunakan pancaran UV (photo-Fenton) didapati lebih berkesan dalam mendegradasi komponen efluen, dibandingkan dengan tindakbalas gelap. Mengenai rawatan enzim, dua jenis enzim, iaitu Laccase (EC: 1.10.3.2) daripada *Terametes Versicolour* dan Versatile Peroxidase (EC: 1.11.1.7) daripada *Bjerkandera adusta* telah dipilih dan digunakan. Untuk mengetahui kesan pengedosan ke atas keberkesanan mengenyahwarna secara keseluruhan, kajian telah dilakukan pada dua dos (1 mg dan 2 mg) bagi setiap enzim. Untuk menilai kesan mediator luaran ke atas pendegradasi yang berasaskan enzim, setiap enzim digunakan ke atas sampel, satu dengan kewujudan mediator, dan satu lagi tanpa mediator, sementara keadaan lain adalah sama.

Didapati bahawa kedua-dua VP daripada B*jerkandera adusta* dan Laccase daripada *Terametes versicolour* menukarkan warna efluen daripada cokelat pekat kepada satu larutan kuning terang. Hasil kajian menunjukkan bahawa, pertambahan kuantiti enzim (bagi kedua-dua VP dan Laccase) tidak begitu menjejaskan pendegradasi lignin, dan pengurangan dalam mengenyah warna. Di dalam proses rawatan Laccase, kadar pengurangan warna bagi kedua-dua efluen ditingkatkan dengan kewujudan ABTS (2, 2'-azino-bis (3ethylbenzthiazoline-6-sulfonic acid)), sementara, dalam kes VP, Mn (Π) telah mengurangkan keberkesanan rawatan.

Dalam rawatan gabungan, turutan biologi-kimia (VP/L/Photo-Fenton, VP/L (ABTS) /Photo-Fenton) dan, turutan kimia-biologi (Photo-Fenton/VP/L, Photo-Fenton/VP/L (ABTS)) telah digunakan. Didapati bahawa, penggunaan kedua-dua proses enzim dan photo-Fenton secara beriringan menghasilkan kesan ketara ke atas penghilangan warna. Analisis data rawatan berturutan menunjukkan bahawa, rawatan kimia selepas tahap enzim (sebagai unit pasca rawatan photo-Fenton) menghasilkan prestasi yang lebih baik bagi efluen CMP; sebaliknya, turutan berlawanan (photo-Fenton sebagai unit pra-rawatan) didapati lebih berkesan bagi efluen soda.

Katakunci:

Efluen pulpa dan kertas, Laccase, Penghilangan warna, Proses Fenton dan photo-Fenton, Proses Pengoksidaan Termaju (AOP), Rawatan Enzim, Versatile Peroxidase,

DEDICATION

This dissertation is dedicated

to my dear...dear uncle which I cannot find any word in this world to express my

sincerest appreciation to him

to my parents for their love and patience

to Arash & Lida, Afshin & Maryam and to lovely Ramona

....your essence is in everything I accomplish

ACKNOWLEDGEMENT

My prayerful thanks to my Merciful God, source of all knowledge and wisdom, who gives me every thing I have. You have made my life more bountiful. May your name be exalted, honored, and glorified.

It is a pleasure to thank the people who made this thesis possible. First of all, I would like to express my deepest sense of gratitude to my dear supervisor Dr. Abdul Halim B. Ghazali for his patient guidance, encouragement and continuous support throughout this study. He has been everything that one could want in an advisor. Special thanks go to my co-supervisor Dr. Fakhru`L-Razi Ahmadun for his invaluable comments, recommendations, kindness and contribution. I am also grateful to Dr. Ali Karimi Associate professor and Head of Natural Recourses Faculty-University of Tehran- Iran for his valuable assistance.

I would like to give special thanks to Engineer Ali Abdolkhani who is PhD student of Tehran University. He showed me the passion in the search for meaningful ways to better promote science in engineering practice. His extensive knowledge, vision and creative thinking have been the source of inspiration for me to accomplish the work. Without his help I would not have had the opportunity to work on such a challenging and valuable project.

Lots and lots of thanks to all the members of the Civil Engineering, and also Chemical Engineering Departments-Faculty of Engineering-Universiti Putra Malaysia, including staffs and students.

Also thanks extended to all the members and staffs of Wood and Paper Science and Technology Department-Faculty of Natural Resources-University of Tehran.

Thanks to dear examiners, which I do not know them, but I want to send my lots and lots of thanks and respects, for their invaluable time that they allocate to evaluate this research.

I have spent nice moments in my second country, Malaysia, country of people from different cultures and religions who live together in peace. I would like to thank people of Malaysia, whom I have learned a lot from them.

Thanks are also extended to Atefeh, Sara, Sanaz and Nooshin, which are the best of friends that any one can ask for. They were my great classmates which gave me positive energy, love and inspiration during this research.

I would like to thank my great brothers and their wives, for their support and understanding during the good and bad times.

I also would like to mention about the most wonderful part of my life, my beloved uncle, for his no matter what love, encouragement and positive attitudes. You are my best counselor in my life. I owe my maturity and so much more to you. I love you and I always proud of you.

Last but not the least, I must give special thanks to my parents who have taught me to succeed, and for their constant love, patience, calmness, encouragement and believing me in all these years.

TABLE OF CONTENTS

ABSTRAC	Т					ii
ABSTRAK						v
DEDICAT	ION					viii
ACKNOW	LED	GMEN	TS			ix
APPROVA	L					xii
DECLARA	TIO	N				xiv
LIST OF TABLES				xvii		
LIST OF FIGURES				xviii		
LIST OF ABBREVIATIONS				xx		
CHAPTER						1
1	INT	RODU	CTION	1		1
	1.1	Backg	round			1
	1.2	Impor	tance of	Research	1	1
	1.3	Proble	m State	ment		3
	1.4	Scope	of Study	v		4
	1.5	Object	ives of I	Research		5
2	LIT	ERATL	JRE RE	VIEW		6
	2.1	Pulp a	nd pape	er mills a	nd their effluent	6
		2.1.1	Why th	e effluen	ts from pulp and paper mills	13
		212	Enviro	omental c	concerns	21
	22	Pulp a	nd pape	er mills ef	ffluent treatment	21
		221	Enzvm	atic treat	ment	24
		2.2.1	White I	Rot Fung	i (WRF)	28
		223	Lignin	Modifvir	g Enzymes (LME)	32
			2.2.3.1	Lignin p	eroxidases	35
				2.2.3.1.1	Lignin peroxidase (LiP)	37
				2.2.3.1.2	Manganese peroxidase	40
				2.2.3.1.3	Versatile Peroxidase	42
			2.2.3.2	Laccases		46
	2.3	Advar	nced Ox	idation P	rocesses (AOPs)	50

	2.4 Combination of enzymatic treatment and AOPs	57
3	MATERIALS AND METHODS	60
	3.1 Effluents sources and sampling	60
	3.2 Reagents	63
	3.3 Equipments	64
	3.4 Experimental procedure	65
	3.4.1 Fenton process unit	65
	3.4.2 Photo-Fenton process unit	66
	3.4.3 Enzymatic treatment unit	67
	3.4.3.1 Treatment by Versatile Peroxidase	
	(EC: 1.11.1.7)	68
	3.4.3.2 Treatment by Laccase (EC: 1.10.3.2)	70
	3.4.3.3 Treatment by both Versatile Peroxidas and Laccase	e 71
	3.4.4 Combined treatment unit	72
	3.5 Analysis	73
4	RESULTS AND DISSCUTION	76
	4.1 Chemical treatment (Fenton and photo-Fenton proce	sses
		76
	4.2 Versatile Peroxidase (VP)	84
	4.3 Laccase	94
	4.4 Sequence treatment	101
5	SUMMARY, CONCLUSION AND RECOMMENDATION	ONS
	FOR FUTURE STUDIES	112
	5.1 Summary	112
	5.2 Conclusion	114
	5.3 Recommendations for future research	116
REFERENC	ES	119
APPENDIC	ES	140
BIODATA OF STUDENT		

LIST OF TABLES

Table		Page
2.1	Characteristics of wastewater (mg/l) at various pulp and paper	15
	process	15
2.2	Pollutants from pulp and paper mills	22
2.3	Comparison of actual emission from pulp mills	23
2.4	Various technologies for wastewater treatment	25
2.5	Cultures used for decolourization of pulp effluents	26
2.6	Performance of fungal treatment	31
2.7	Potential biotechnological applications of ligninolytic fungi and	
	their enzymes	33
2.8	Examples of environmental pollutants oxidized by lignin degradi	ing
	fungi	34
2.9	Standard potential of some common oxidants (T=25° C)	50

LIST OF FIGURES

Figure	I	Page
2.1	Simplified Flow Diagram: Integrated pulp and paper Mill	7
2.2	Pollutants from various processes of pulping and papermakinges	16
2.3	Some proposed chromophoric structure	18
2.4	Structural model of lignin	20
2.5	White Rot Fungi	29
2.6	Generic scheme of the catalytic cycle of peroxidases	37
2.7	Catalytic cycle of Lignin peroxidase	40
2.8	Catalytic cycle of MnP	42
2.9	Catalytic cycle of Versatile Peroxidese	45
2.10	The catalytic cycle of Laccases	49
2.11	Strategy for wastewater treatment processing	59
3.1 9	Sampling point	62
3.2	Raw effluent samples	63
3.3	Incubator shaker	64
3.4	pH meter (HANNA pH211)	65
3.5	Centrifuge (HERMEL 20,000 rpm)	65
3.6	Schematic diagram of experimental stages	67
3.7	UV-visible spectrometry (Cintara 40)	73
4.1	Effect of Fenton and photo-Fenton treatment on light absorbance o CMP effluent	f 77
4.2	Effect of Fenton and photo-Fenton treatment on light absorbance o soda effluent	of 77
4.3	Colour removal phases of soda effluent during Fenton and photo-Fenton treatments	79
4.4	Colour removal phases of CMP effluent during Fenton and photo-Fenton treatments	79
4.5	HPLC chromatogram of CMP effluent degradation during Fenton and photo-Fenton treatment	82
4.6	HPLC chromatogram of soda effluent degradation during Fenton and photo-Fenton treatment	83
4.7	Effects of Versatile Peroxidase in the different conditions on the so effluent	da 87
4.8	Effect of Versatile Peroxidase in the different conditions on the CM effluent	IP 88
4.9	HPLC chromatogram of the soda effluent degradation during the	VP

treatment	90
4.10 HPLC chromatogram of the CMP effluent degradation during the treatment	VP 91
4.11 Effect of Laccase treatment in different conditions on soda effluent	95
4.12 Effect of Laccase treatment in different conditions on CMP effluent	96
4.13 HPLC chromatogram of soda effluent degradation during Laccase treatment	99
4.14 HPLC chromatogram of CMP effluent degradation during Laccase treatment	100
4.15 Effect of biological-chemical sequence treatment with peroxidase, Laccase and photo-Fenton treatments on light absorbency of CMP and soda effluents	104
4.16 Effect of chemical-biological sequence treatment with peroxidase,	
Laccase and Fenton treatments on light absorbency of CMP and so effluent	da 104
4.17 HPLC chromatogram of CMP effluent degradation during combin peroxidase and Laccase enzyme treatments	ed 105
4.18 HPLC chromatogram of soda effluent degradation during combine	ed
peroxidase and Laccase enzyme treatments	106
4.19 HPLC chromatogram of soda effluent degradation during	
enzyme- chemical treatments	107
4.20 HPLC chromatogram of soda effluent degradation during chemi biological-treatments	cal- 108
4.21 HPLC chromatogram of CMP effluent degradation during	
enzyme- chemical treatments	109
4.22 HPLC chromatogram of CMP effluent degradation during chemica biological treatments	al- 110

LIST OF ABBREVIATIONS

Abbreviations	Meaning
ABTS	2,2´-azinobis(3-ethylbenzthiazoline-6- sulphonate)
Abs	Absorbance
AOX	Adsorbable Organic Halogen
AOP	Advanced Oxidation Process
BOD	Biological Oxygen Demand
B. adusta	Bjerkandera adusta
СМР	Chemical Mechanical Pulping
COD	Chemical Oxygen Demand
СТМР	Chemi-Thermo Mechanical Pulping
CU	Colour Unit
ECF	Elemental Chlorine Free
EPA	Environmental Protection Agency
F	Fenton
GPC	Gel Permeation Chromatography
	Hhigh Performance Liquid
HPLC	Chromatography
kDa	kiloDalton
L	Laccase
LME	Lignin Modifying Enzymes
LiP	Lignin Peroxidase

MnP	Manganese Peroxidase
MVR	Mechanical Vapor Recompression
NB	None Biodegradable
NHE	Normal hydrogen Electrode
P. chrysosporium	Phanerochate Crysosporium
Ph	photo-Fenton
Pt-Co	Platinum Cobalt
РАС	Poly Aluminum Chloride
РАН	Poly Aromatic Hydrocarbons
RB	Ready Biodegradable
SS	Suspended Solid
T. versicolour	Terametes versicolour
ТМР	Thermo Mechanical Pulping
TSS	Total Suspended Solid
TCF	Totally Chlorine Free
UV	ultra Violet
VA	Veratryl Alcohol
VP	Versatile Peroxidase
VOC	Volatile Organic Compound
WRF	White Rot Fungi

CHAPTER 1

INTRODUCTION

1.1 Background

The pulp and paper industry is the third largest water consuming industry in the world. This industry generates a crucial perplexity in terms of environmental pollution as a consequence of its black liquor effluent. Until recently, colour was not considered to be a major problem, being classified as a non-conventional pollutant (Ali and Sreekrishnan, 2001). Even so, it has now, been known that the discharge of coloured effluent from pulp and paper mills is not only a serious aesthetic problem, but also has other critical problems.

This industry generates a high coloured effluent, as a result of several stages in processing of wood and pulp which include wood digesting, washing, bleaching and drying of pulp. This colour is mainly attributed to the complex compounds derived from lignin degradation products (Kreetachat et al. 2006).

1.2 Importance of Research

At the present time one of the pivotal concerns of science is water pollution control and wastewater treatment. In this aspect treatment of colouredeffluents remains a problem. As Lucas and Peres (2005) reported, coloured wastewaters are a large problem for conventional treatment plants in all part of the world. Based on this, decolourization of industrial effluents is one of the major scientific interests in recent years.

Colour is the most visible contaminant in the wastewater. Just a little amount of colour in water (10-50 mg/L) is highly unpleasant and deteriorates aesthetic aspects, glassiness and gas solubility of water bodies (Wong and Yu 1999). In addition, colourant compounds are responsible for problems such as mutagenic and carcinogenic activities (Chung and Stevens 1992). The other critical problem associated with colour is reduction in the photic depth of the receiving water, on the other hand, decreasing in the penetration of solar radiation. It causes a marked change in the natural photosynthesis process of water bodies, adverse effect on aquatic eco-system and its productivity (Ramanathan, 1989; Sahoo and Gupta 2004).

Colour removal from wastewater is often more consequential than the removal of soluble colourless organic substances which usually contribute the major fraction of chemical or biologicall oxygen demand (Banat et al. 1996).

1.3 Problem Statement

The volumetric load of industrial effluent discharge to neighboring water bodies has an ascending rate. It brings serious health concerns to environmental regulatory agencies. Therefore, several countries have imposed specific colour levels for discharging effluent by means of strict environmental legislation. Nevertheless, up to now no economically sound process has been found.

Aerated lagoons and activated sludge plants are the most common systems used in pulp and paper wastewater treatment. By means of such conventional systems appreciable reduction in biological oxygen demand (BOD), total suspended solids (TSS), and critical toxicity could be achieved, but in terms of colour reduction are not effective. As indicated in all literatures these systems are not functional for treating colourful effluents.

Rana et al., (2004) stated that; the most widely used biological treatment system is activated sludge process; however, it also is ineffective in colour removal of the effuents. Joyce and Petke (1983) reported that; commonly aerated lagoons or activated sludge units can eliminate conventional pollutants such as BOD and COD at efficiencies of up to 95%, while these biological systems are capable of colour reductions of only 0-30% (Rush and Shannon, 1976, and Obiaga and Ganczarczyk, 1974). This resistance of colour bodies to biological treatment is largely due to the inability of the microbial

