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Abstract of thesis presented to the Senate ofUniversiti Putra Malaysia in fulfilment of 
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By 
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November 2006 

Chairman: Professor Abdel Magid S. Hamouda, PhD 

Faculty: Engineering 

The use of finite element simulation in the development of bulge fonning procedures is 

becoming more important as it provides a cheap and efficient way to determine 

important process parameters. Further improvements to the bulge forming method will 

be realized with the use of simulation and the design of advanced tooling. One major 

area where tube hydro forming is applied is in automotive structures. 

In this current research, numerical analysis was conducted using the explicit finite 

element code ANSYS 2D. One-fourth model of the whole geometry consisting of the 

tube and the dies was adopted in consideration for symmetric property of the tube 

defonnation. The model of metal tube is assumed as a bilinear isotropic model 

approximating the characteristics of annealed mild steel was adopted as the material for 

the tube. The final model contains 630 nodes and 560 elements included 19 contact 

elements between die and tube. The interface between the die and the tube was 

modeled using an automatic node to surface contact. 
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The effects of friction, geometric parameters; tube thickness, tube length , die comer 

radius and diameter of bulge width and varying internal pressures only and with axial 

load were evaluated in bulge hydrofonning. Furthennore, two types of metal were 

tested, namely, mild steel tube and copper. 

Numerical results were verified with available experimental values obtained from the 

literature were carried out and the percentage error is about 4.5%. 

Finite element analysis showed that for a particular amount of wall thinning there is an 

increase of around 5.23% in bulge height for combined internal pressure with axial 

force. Results of this study indicate that tube hydrofonning with combined internal 

pressure with axial force can increase expansion with less von Mises stress (8.32%) i.e. 

more difficult parts can be designed and manufactured. Furthennore, the minimum 

(optimum) friction coefficient displayed the highest value of bulging with the lowest 

value of decreasing of wall thickness was recorded for friction coefficient 0..1) 0. 1 5. 

Also the tube bulging increases with increasing die corner radius and bulge width. It 

also decreases with increasing initial tube length and initial thickness of the tube 

material. All these parameters are crucial to the success of the hydrofonning operation. 
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SALEEM NA'MI 

November 2006 

Pengerusi: Profesor Abdel Magid S. Hamouda, PhD 

Fakulti: Kejuruteraan 

Penggunaan simulasi unsur terhingga dalam pembangunan prosedur-prosedur 

pembentukan bonjol telah menjadi semakin penting kerana simulasi ini memberikan 

satu cara yang murah lagi cekap untuk menentukan parameter-parameter proses yang 

penting. Peningkatan selanjutnya dalam kaedah pembentukan bonjol akan 

direalisasikan dengan penggunaan simulasi yang cekap dan reka bentuk alat yang lebih 

maju. Satu bidang utama di mana pembentukan tiub secara hidro digunakan adalah 

dalam pembuatan struktur-struktur automotif. 

Dalam kajian terkini ini, analisis kaedah berangka telah dijalankan dengan 

menggunakan kod tak tersirat elemen unsur terhingga iaitu ANSYS 2D. Satu per empat 

model daripada keseluruhan geometri mengandungi tiub dan acuannya telah diubah 

dengan mengambil kira sifat simetri bagi pembentukan tiub. Model tiub keluli ini 

dianggap sebagai satu model isotropi bilinear yang menyerupai sifat keluli lembut 

sepuh lindap yang telah dipilih sebagai bahan bagi tiub ini. Model terakhir 

mengandungi 630 nod and 560 unsur termasuk 19 unsur yang bersentuhan di antara 
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acuan dan tiub. Pennukaan di antara acuan dan tiub telah dimodelkan dengan 

menggunakan nod automatik kepada sentuhan pennukaan. 

Kesan daripada geseran, parameter-parameter geometri, ketebalan tiub, panjang tiub, 

jejari bucu acuan dan diameter bagi lebar bonjol serta tekanan dalaman yang berlainan 

dan dengan paksi beban telah diuji dalam pembonjolan hidraulik. Selain itu, kajian 

perbandingan antara sifat-sifat bahan bagi tiub keluli lembut dan kuprum juga telah 

dilaksanakan. 

Keputusan berangka yang diperolehi telah dibandingkan dengan hasil keputusan 

eksperimen dari kajian ilmiah yang lain. Keputusan menunjukkan peratusan ralat 

adalah sebanyak 4.5%. 

Analisis unsur terhingga menunjukkan peningkatan ketinggian bonjolan sebanyak 8% 

bagi amaun penipisan dinding tiub yang tertentu untuk kombinasi di antara tekanan 

dalam tiub bersama daya paksi. Keputusan kajian ini menunjukkan pembentukan tiub 

secara hidro dengan kombinasi di antara tekanan dalam tiub bersama daya paksi akan 

meningkatkan amaun pengembangan dengan tekanan yang lebih rendah pada tiub 

tersebut. Oleh itu bahagian produk yang lebih kompleks dapat direka dan dihasilkan. 

Tambahan lagi, koefisien geseran minimum (optimum) yang menunjukkan ganjakan 

yang tertinggi dengan nilai terendah bagi pengurangan ketebalan dinding telah tercatat 

pada koefisien geseran (jJ) 0.15. Ganjakan tiub juga bertambah dengan pertambahan 

jejari penjuru acuan dan lebar ganjak. Ia juga berkurangan dengan pertambahan 

panjang tiub awal dan ketebalan awal bahan tiub. Kesemua parameter berkenaan 

adalah amat genting dalam menjayakan operasi hidro digunakan 
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1.1 Introduction 

CHAPTER I 

INTRODUCTION 

Hydrofonning is one kind of plasticity working or metal fonning process, which can be 

used to increase the diameter, to change the geometry, or to expand the outer walls of a 

cylindrical shell or tube. This process is very important, especially for industrial 

products of light weight and high strength. 

In the past several years tube hydrofonning technology has proved itself as a vital metal 

forming process for manufacturing variety tubular parts, e.g. household piping 

components, fittings, complex automotive parts such as exhaust pipes and structural 

components. 

The rapid growth of this technology has been due to the advantages Tube hydrofonning 

(THF) offers compared to conventional manufacturing via stamping and welding, 

namely (a) part consolidation; (b) weight reduction through more efficient section design 

and tailoring of the wall thickness in structural components;(c) improved structural 

strength and stiffness via optimized section geometry; (d) lower tooling costs due to 

fewer parts; (e )fewer secondary operations (less welding and punching of holes during 

hydrofonning); (f) tighter tolerances and reduced spring-back that facilitates assembly 
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and (g) reduced scrap since trimming of excess material is far less in THF than in 

stamping . The development of this process for automotive industries is relative new and 

many process variables have been studied, like: friction, material properties, pressures 

and displacement path during the process. The simulation is a very important method to 

help to develop this process. Using finite element method many researches have been 

studying the influence of these variables in the process and they are applying forming 

limit expressions to define whether the material will resist to the deformation or not. 

Successful tube hydroforming process requires proper combination of part design, 

material selection, and application of internal pressure and axial feeding. By using Finite 

Element Analysis methods, process parameters can be determined before manufacturing 

the dies and starting die try-out and process development. 

The development of hydroformed parts for series production necessitate efficient 

methods to meet the requirements of short development times, high part quality with an 

optimized process chain. An important factor in achieving these short development lead 

times is process simulation exploiting the potential of finite element analysis (FEA). 

1.2 Methods 

The bulge forming of tubular components is accomplished by the application of 

hydrostatic pressure to tube blanks either in free expansion mode or using a die bearing 

the shape of the component to be formed. The pressure is transmitted via a medium such 

as a liquid (e.g. hydraulic fluid or water), an elastomer (e.g. rubber or polyurethane), or a 

22 



soft metal (e.g. lead or a lead alloy). Bulge fonning using pure internal pressure has a 

major limitation for producing excessive thinning of the tube wall which lead to the 

rupture of the tube for only moderate expansions. However, if a compressive axial load 

is applied to the ends of the tube simultaneously with the internal pressure, metal can be 

fed into the deformation zone during forming enabling more expansion and less 

thinning. 

In tube hydroforming THF, compressive stresses occur in regions where the tube 

material is axially fed, and tensile stresses occur in expansion regions. The main failure 

modes are buckling, wrinkling (excessively high compressive stress) and bursting 

(excessively high tensile stress). It is clear that only an appropriate relationship between 

internal pressure and axial load, guarantees a successful THF process without any of the 

failures. Hence, it is imperative to establish a systematic way for determining loading 

paths and using fmite element analysis (FEA) is one possible way. Internal pressure and 

axial load are then applied simultaneously to form the tube to fill the die cavity. To 

obtain a successful part, coordination of the pressurization and axial feeding is required. 

High internal pressure without end feeding will result in bursting of tube blank. On the 

other hand, large end feeding with insufficient internal pressure will lead to the 

development of wrinkles on the tube wall. 

Effective classifications of hydro formed tubular parts are necessary for development of 

THF part design and process systematically. Finite element analysis (FEA) simulations 

can be used as a tool to extensively analyze THF. Design of the process parameters are 

normally selected through time-consuming, trial-and-error iterative FEA simulations. 
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FEA simulation enhanced with optimization schemes can greatly reduce the lead-time 

spent in the process development. 

1.3 Benefit and Limitations 

Tube hydro forming has been identified as a new technology to manufacture parts. Tube 

hydroforming has many advantages in comparison with conventional manufacturing via 

stamping and Welding. It can reduce the weight of the component, retain and even 

improve the strength and stiffness, reduce tooling cost due to fewer parts and tube 

hydroforming requires fewer secondary operations. 

With the aid of FEA simulation, the part quality control, and the design of the tube 

hydroforming process can be easily implemented and monitored. FEA simulations 

provide insights on the necessary process parameters internal pressure and axial load, 

part geometry, and part formability by analyzing the thinning, thickening, and strain 

distribution in the deformed tube. 

In all metal forming processes, part and process design is an essential step in successful 

manufacturing of any products. Tube hydroforming (THF) process demands a lot of 

engineering knowledge starting from the part design which is constrained by part 

functionality and geometry, to the process design where appropriate combination of 

internal pressure and axial feed need to be determined. It has always been of a primary 

concern in the industry to reduce the lead time in part and process design developments 
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