

UNIVERSITI PUTRA MALAYSIA

COST COMPARISON BETWEEN STONE MASTIC ASPAHLT (SMA) AND ASPHALT CONCRETE WEARING COURSE (ACW20)

ROHIMAH KHOIRIYAH BT. MOHD. ARIFIN HARAHAP

FK 2005 14

COST COMPARISON BETWEEN STONE MASTIC ASPAHLT (SMA) AND ASPHALT CONCRETE WEARING COURSE (ACW20)

By ROHIMAH KHOIRIYAH BT. MOHD. ARIFIN HARAHAP

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science November 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

COST COMPARISON BETWEEN STONE MASTIC ASPAHLT (SMA) AND ASPHALT CONCRETE WEARING COURSE (ACW20)

By

ROHIMAH KHOIRIYAH BT MOHD. ARIFIN HARAHAP

November 2005

Chairman: Ir. Salihudin Hassim

Faculty: Engineering

Stone Mastic Asphalt (SMA) technology has been introduced to Malaysian construction industry since the 1990s. Since then, several trial lay projects were carried out to study the performance of the mix. However the acceptability of SMA among local road agency is quite discouraging due to previous reports on the high cost of SMA. However a Malaysian study reported that the construction cost of SMA is actually 10 % to 15% less than the conventional mix. Hence, the study aims to clarify this matter by comparing the construction cost of SMA and ACW20 by using significant cost elements identified by a multiple regression analysis. The analysis covered 27 SMA and ACW20 projects in Selangor. Cost data was collected via a standardized questionnaire. The result indicates that the construction cost of SMA can be comparable to ACW20 if the material cost does not exceed RM 102/ton and the thickness does not exceed 35 mm. Finally, the study revealed that the construction cost of a thinner SMA layer can be made compatible with the conventional mix. Furthermore a thin SMA layer performs much better than thicker asphalt concrete surfacing as indicated by various local and overseas studies.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERBANDINGAN KOS DI ANTARA STONE MASTIC ASPAHLT (SMA) DAN ASPHALT CONCRETE WEARING COURSE (ACW20)

Oleh

ROHIMAH KHOIRIYAH BT MOHD. ARIFIN HARAHAP Disember 2005

Penaerusi: Ir. Salihudin Hassim

Fakulti: Kejuruteraan

Teknologi Stone Mastic Asphalt (SMA) telah diperkenalkan dalam industri pembinaan Malaysia semenjak tahun 1990an. Namun ia kurang mendapat sambutan daripada pihak berkuasa tempatan disebabkan banyak kajian menyatakan harga kosnya sangat tinggi. Namun satu kajian di Malaysia melaporan bahawa kos pembinaan SMA adalah 10% ke 15% lebih rendah daripada premix konvensional. Maka tujuan utama kajian ini adalah untuk membandingkan semula kos pembinaan SMA dengan ACW20. Ini dilakukan dengan mengambilkira kos signifikan yang dikenalpasti melalui satu analisa regresi berganda. Sebanyak 27 maklumat kos SMA dan ACW20 telah berjaya diperolehi daripada kuari-kuari yang menghasilkan bahan ini di Selangor. Data dikutip melalui temuduga persendirian menggunakan borang soalselidik yang seragam. Hasil kajian menunjukkan kos pembinaan SMA adalah setanding dengan ACW20 sekiranya kos bahan mentahnya tidak melelebihi RM 102/ton dan ketebalan lapisannya tidak melebihi 35 mm.

Akhir sekali kajian ini mendapati kos pembinaan bagi lapisan SMA yang nipis adalah setanding dengan kos pembinaan asphalt konkrit biasa. Malah banyak kajian terdahulu menyatakan bahawa keupayaan lapisan SMA yang nipis adalah jauh lebih baik daripan lapisan konvensional yang tebal.

ACKNOWLEDGEMENT

Alhamdulillah Hi Rabbil Alamin I am greatful to Allah S.W.T. for allowing me to complete this thesis.

A million thanks to my main supervisors, Ir. Salihudin Hassim and Mr Ratnasamy Muniady for their guidance, advice and ideas throughout my study in UPM. My sincere gratitude is also extended to the co-supervisors who are Prof. Madya Dr. Ir. Mohd. Razali b. Abdul Kadir and Dr. Ahmad Rodhi b. Mahmud.

Aside from that, I would like to thank all the respondents in this study, who are the professionals involved in the quarrying industry as well as road agencies' personnel from JKR, HPU, LLM and Kumpulan Ikram.

Thank you also to the lecturers, staffs, colleagues, students and friends in UPM for their help and assistance.

Finally, I would like to thank my family for their support, unconditional love and do'a.

May ALLAH bless all of us. Amin, Ya Rabbal 'Alamin.

v

TABLE OF CONTENTS

Page

CHAPTER

1

1	INTE	RODUCT	ION	
	1.1	Proble	m Statement	1
	1.2	Signific	cant of Study	3
	1.3	Resea	rch Questions	5
	1.4	Resea	rch Objectives	6
	1.5	Scope	and Limitation	7
	1.6	Conce	ptual Framework	9
	1.7	Thesis	Overview	11
2	LITE	RATURE	EREVIEW	
	2.1	Introdu	uction	14
	2.2	Aspha	It Wearing Course	14
		2.2.1	Definition of Surfacing, Wearing Course &	15
			Binder Course	
		2.2.2	History of Surfacing	16
		2.2.3	Functions of Surfacing	18
		2.2.4	Types of Wearing Course	18
			2.1.4.1 Conventional Mixes	19
			2.1.4.2 Alternative Mixes	23
		2.2.5	Past Studies on Performance Comparison	28
	23	Cost	Delween Sivia & ACVVC	20
	2.5	231	Definition of Cost	30
		2.3.1	Basic Concent of Cost	21
		2.0.2	2 3 2 1 Cost Unit	21
			2.3.2.1 Cost Centre	21
			2.3.2.2 Obst Centre 2.3.2.3 Opportunity Cost	22
		223	Classification of Cost	32
		2.0.0	2.3.3.1 Behaviour	33
				38
			2333 Cost Units	38
			2.3.3.4 Function	20
			2335 Controllability	J9 11
			2.3.3.6 Normality	4 I 14
				41

		2.3.3.7 Time When Computed	42
		2.3.3.8 Summary on Cost Classification	42
	2.3.4	Cost Components	44
		2.3.4.1 Analysis on Thick Flexible Pavement	47
		2.3.4.2 Analysis on Wearing Course	49
	2.3.5	Past Studies on Cost Comparison Between	51
		SMA and ACWC	
2.4	Life Cv	vcle Cost	52
	241	Definition of the Life Cycle Cost of Pavement	52
	242	Basic Concept for the Life Cycle Cost Analysis	53
	2.4.2	Process for the Life Cycle Cost Analysis	54
	2.4.3	Post Studios on LCC Comparison Botwoon	55
	2.4.4	SMA and ACINIC	55
25	Cont		50
2.3			50
	2.5.1	Definition of Cost Model	57
	2.5.2	Purpose of Cost Model	58
	2.5.3	Process of Cost Modelling	60
	2.5.4	Basic Principles of Cost Modelling	62
	2.5.5	Classification of Cost Model	63
		2.5.5.1 Deterministic Model	63
		2.5.5.2 Probabilistic Model	65
	2.5.6	Past Studies on Cost Model of Highway	73
		Construction Cost	
2.6	Summ	ary	78
RES	EARCH	METHODOLOGY	
3.1	Introdu	Jction	79
3.2	Data C	Collection	81
	3.2.1	Preliminary Data Collection	81
	3.2.2	Variables Determination	83
	3.2.3	Questionnaire Design	85
	3.2.4	Sampling Design	89
33	Data A	Analysis	92
	331	Frequency Distribution Analysis	96
	332	Exploratory Data Analysis (EDA)	08
	222	Multiple Linear Regression Analysis (MLR)	101
3 1	Dovela	manuple Linear Negression Analysis (MLN)	101
3.4	Summ		100
5.5	Summ	lai y	111
RES	ULT ANI	D DISCUSSION	440
4.1	INTrodu	JCIION	112
4.2	Result	and Discussion on the Data Collection	112
4.3	Result	and Discussion on the Data Analysis	117
	4.3.1	Frequency Distribution Analysis	117
		4.3.1.1 Background of Respondent	118
		4.3.1.2 Background of Quarry	126
		4.3.1.3 Conclusion of the Frequency Analysis	130
	4,3.2	Exploratory Data Analysis (EDA)	131
		4 3 2.1 General Observation and Pattern	131
			101

			4.3.2.2 Descriptor for the Direct Cost of SMA and ACW20	133
			4.3.2.3 Assessing the Normality Assumption	137
			4.3.2.4 Assessing the Homogeneity of Variance Assumption	140
			4 3 2 5 Shape and Variability of Distribution	143
			4 3 2 6 Conclusion of FDA	144
		433	Multiple Linear Regression Analysis (MLR)	146
		4.0.0	4.3.3.1 Determination of Significant Predictors for TDCPT (SMA)	148
			4.3.3.2 Determination of Significant Predictors for TDCPT (ACW20)	159
			4.3.3.3 Conclusion of MLR Analysis	169
	4.4	Result a	and Discussion on the Decision-Making	171
		Guidelir	ne	
		4.4.1	Finalization on the Significant Cost Element	171
		4.4.2	A Concise Calculation of the Significant Construction Cost	173
		4.4.3	Determination of the Decision-Making	178
	4.5 Su	ummary		180
F				
5		JECISIU	IN-IMANING GUIDELINE	101
	5.1	Guidalir	-p-by -Step Flocedure for the Decision-Making	101
	5.2	Summa	iry	196
6	CONC		1	107
0	6 1	Strongt	N ha of the Decision Making Guideline	200
	0.1	Mookpo	ns of the Decision Making Guideline	200
	0.Z 6.3	Pocom	mondation	201
	0.5	Recom		202
REFER	ENCE	S/BIBLIC	OGRAPHY	203
APPEN	DICES	;		207
BIODAT		THE AU	THOR	223

LIST OF TABLES

Table		Page
2.1	Analysis on the Cost Components of Asphalt Concrete	48
	Pavement (Source: JKR, 1995).	
2.2	Summary of Past Studies on Cost Model of Highway	77
	Construction Cost.	
3.1	The Variables Involved in the Analysis	84
4.1	Cost Elements, Total Direct cost of Premix and Variable	113
	Categorization.	
4.2	Structure of the Standardized Questionnaire	114
4.2	Frequency Distribution Table for Position of Pospondent	110
4.3		119
4.4	Frequency Distribution Table or Highest Qualification of	121
	Respondent	
4.5	Frequency Distribution Table for Academic Discipline of	123
	Respondent	
4.6	Frequency Distribution Table for Respondent Experience	125
	in the Premix Industry	
4.7	Frequency Distribution for Location of Quarry	127
4.8	Frequency Distribution Table for Quarry Experience in	129
	the Premix Industry	
4.9	Percentiles Table	132
4.10	Descriptives Table	135
4.11	Test of Normality Table	138
4.12	Test of Homogeneity of Variance	141

4.13	Power Transformation Table	142
4.14	Collinearity Diagnostics Table for TDCPT (SMA)	150
4.15	ANOVA Table for TDCPT (SMA)	154
4.16	Model Summary Table for TDCPT (SMA)	155
4.17	Coefficients Table for TDCPT (SMA)	158
4.18	Collinearity Diagnostics Table for TDCPT (ACW20)	160
4.19	ANOVA Table for TDCPT (ACW20)	164
4.20	Model Summary Table for TDCPT (ACW20)	166
4.21	Coefficients Table for TDCPT (ACW20)	168
4.22	The Significant Cost Elements in Predicting Construction	172
	Cost of SMA and ACW20.	
4.23	Descriptives Table for Material Cost/ton of SMA and	174
	ACW20	
4.24	Three Factors Used to Calculate Construction Cost of	176
	SMA and ACW20	
4.25	The Concise Calculation of Significant Construction Cost	177
	for SMA and ACW20	

.

LIST OF FIGURES

Figure		Page
1.1	Conceptual Framework of the Study	10
1.2	Diagram of Thesis Layout	13
2.1	Cross Section of a Typical Thick Flexible Pavement	15
	(Source: JKR, 1994)	
2.2	Fixed Cost Diagram	34
2.3	A Variable Cost Diagram	35
2.4	A Semi-Variable or Semi-Fixed cost Diagram	36
2.5	A Step Cost Diagram	37
2.6	Seven Purposes of Cost Classification	43
2.7	Work Breakdown Structure of a Project Cost or a Tender	44
	Price	
	(Source: Hergazy, 2002)	
2.8	Cross Section of a Typical Thick Flexible Pavement (Source:	47
	JKR, 1994)	
2.9	Work Breakdown Structure of a Premix Tender Price	50
2.10	Cost Modeling Process (Ashworth, 1995)	61
3.1	The Research Methodology Process	80
3.2	Basic Content of the Questionnaire	87
3.3	Location Plan Quarries in Selangor for year 2004 (Source:	90
	JMG, 2004).	
3.4	Determination of the Population Frame for the Study	92
3.5	Flow Chart of Data Analysis Process	95

3.6	The Two MLR Analyses of the Study	106
3.7	Decision-Making Guideline Development	110
4.1	Pie Chart for Position of Respondent	119
4.2	Pie Chart for Highest Qualification of Respondent	121
4.3	Pie Chart for Academic Discipline of Respondent	123
4.4	Pie Chart for Respondent Experience in the Premix Industry	125
4.5	Pie Chart for Location of Quarry	127
4.6	Pie Chart for Quarry Experience in the Premix Industry	129
4.7	Histogram for TDCPT (ACW20)	136
4.8	Histogram for TDCPT (SMA)	136
4.9	Histogram for TDCPMS (ACW20)	136
4.10	Histogram for TDCPMS (SMA)	136
4.11	Normal Q-Q Plot for TDCPT (ACW20)	139
4.12	Normal Q-Q Plot for TDCPT (SMA)	139
4.13	Normal Q-Q Plot for TDCPMS (ACW20)	139
4.14	Normal Q-Q Plot for TDCPMS (SMA)	139
4.15	Spread vs Level Plot for TDCPT of ACW20 & SMA	142
4.16	Spread vs Level Plot for TDCPMS of ACW20 & SMA	142
4.17	Boxplot of TDCPT (ACW20) & TDCPT (SMA)	144
4.18	Boxplot of TDCPMS (ACW20) & TDCPT (SMA)	144
4.19	Normal P-P Plot of Regression Standardized Residual for	151
	TDCPT (SMA)	
4.20	Scatterplot of Studentized Deleted Residual vs Standardized	152

4.21	Scatterplot of Standardized Predicted Values vs Observed	153
	for TDCPT (SMA)	
4.22	Normal P-P Plot of Regression Standardized Residual for	161
	TDCPT (ACW20)	
4.23	Scatterplot of Studentized Deleted Residual vs Standardized	162
	Predicted Values for TDCPT (ACW20)	
4.24	Scatterplot of Standardized Predicted Values vs Observed	163
	for TDCPT (ACW20)	
4.25	Construction Cost vs Thickness Chart for SMA & ACW20	179
5.1	The Decision-Making Guideline Process	182
5.2	An Example of a Completed Data View Form	184
5.3	An Example of a Completed Value Labels Box	185
5.4	An Example of a Completed Variables View Form	186
5.5	An Example of a Completed Explore Dialogue Box	187
5.6	An Example of a Completed Datasheet in MS Powerpoint	191
57	An Example of a Completed Chart Ontions-Titles Box	102
0.7		192
5.8	An Example of a Completed Chart Options-Gridlines Box	193

LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS

ACB28	Asphalt Concrete Binder Course
	(28 mm nominal aggregate size)
ACWC	Asphalt Concrete Wearing Course
ACW20	Asphalt Concrete Wearing Course
	(20 mm nominal aggregate size)
CIMA	Chartered Institute of Management
EDA	Exploratory Data Analysis
LCC	Life Cycle Cost
LCCA	Life Cycle Cost Analysis
MLR	Multiple Linear Regression
PC	Personal Computer
SMA	Stone Mastic Asphalt
SPSS	Statistical Package for Social Science
TDCPMS	Total Direct Cost per Meter Square
TDCPT	Total Direct Cost per Ton
WBS	Work Breakdown Structure

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The concept of Stone Mastic Asphalt (SMA) has been introduced to Malaysia road authorities as early as the 1990's. Since then, several trial lay projects had been initiated for purpose of studying the durability and stability of SMA in Malaysian traffic condition (UPM, 2000). However up until today, the acceptability of SMA is quite discouraging among the road authorities. As a result Malaysia road authorities have yet to publish any standard specification for the design mix of SMA.

The main reason why SMA is not accepted in Malaysia is probably due to the high cost of the mix. A United States study reported that the initial cost of SMA is 20% to 25% more than the conventional mix (Yu, 2000). This statement is also supported by a local researcher that the cost of a German-mix SMA constructed in Malaysia is 20% higher than the conventional mix (RSRC, 2000). However, researchers of Auburn University believed that the extra cost of SMA is providing good performance in high volume traffic roads (Brown et. al., 1997).

The claims on high cost of SMA contradicted with a Malaysian study conducted by University Putra Malaysia (2000). According to UPM their SMA's design mix is able to reduce the construction cost by 10% to 15%. This is due to the reduction in the overlay thickness by 12% to 37% as compared to the conventional overlay (Marzita Abdullah, 2000).

Previous US study also recorded that the user cost of conventional surfacing with design life of 7.5 years, is more expensive than its SMA counterpart of 10 years design life (Yu, 2000). In other words, SMA surfacing gives an extended life of 2.5 years as well as cost saving in road user and maintenance costs. This claim is also supported by UPM which reported that SMA surfacing is able to extend pavement to 1.5 times longer than the normal mix. The US study also reported that the maintenance cost of a 15 years SMA road is particularly low at US\$ 41,410 per mile (Yu, 2000). Thus in term of life cycle cost analysis, SMA pavements need to last only 2 years longer than the conventional pavements in order to pay for themselves (Yu, 2000).

From the discussion above, it is clear that the ambiguous cost of SMA must be resolved through scientific research.

1.2 Significance of Study

The cost of maintaining road has increased over the years. In year 2003 alone, the Public Works Department of Malaysia (JKR) reported a road maintenance expenditure of ^{*}RM 585, 440,400 (Mohamad Razali and Zulakmal, 2004). Aside from that, the road sector has to compete with other economic sector for adequate funds. In addition to the budget constraint, increased public expectations have encouraged the road authorities to delicately balance the functional and structural requirement of roads (Mohamad Razali and Zulakmal, 2004).

Furthermore, 77.1% (or 66,190 kilometers) of Malaysian roads are paved making it the major transportation route for economic activities of the country (JKR, 1999). Hence it is just logical to provide a high performance road surfacing material that maintains the durability, riding comfort as well as safety to the road user.

Most importantly, one of the strategies of the 8th Malaysian Plan (2001 to 2005) for the infrastructure development aims to improve the road service quality through thorough checking on the performance and the technical specification as well as the implementation of new or modified road technology (Abdullah Badawi, 2004). Another important strategy is to develop reliable and affordable road networks.

[•] US\$ 1.00 is approximately equivalent to RM 3.80

Aside from that, the 8th Malaysian Plan also stressed on increasing the quality and the safety aspects of road network. Hence, the government planned to allocate an amount of RM 5.1 billion for building new roads and an amount of *RM 8.9 billion for maintaining and upgrading existing road network (Abdullah Badawi, 2004). A bigger budget will be allocated for road maintenance in order to increase road safety, riding comfort, travel time as well as constructing new motorist lane on selected dangerous road.

In short there is an increase of more than RM 1.7 billion in the development budget for year 2001 to 2005 where RM 14 billion or approximately 51.9% of the total infrastructure development will be spend on constructing and maintaining road network (Abdullah Badawi, 2004). Thus, it is just right to reconsider the application of new surfacing technology such as Stone Mastic Asphalt for upgrading and maintaining the tropical road pavement in Malaysia.

1.3 Research Questions

In order to generate the research objectives, it is best to brainstorm all the possible questions and doubts arise from the earlier discussion in Section 1.1 and 1.2.

Thus, the main research question asked is: 'Why the construction cost of SMA surface course is more expensive than the conventional ACW20?', as claimed by previous Stone Mastic Asphalt studies recorded by Yu (2000).

Other questions and issues generated by this research are as follows:

- i. What are the significant cost elements, which can represent the construction cost of SMA and ACW20?
- ii. How to estimate the construction cost of SMA and ACW20 using the significant cost elements?
- iii. In terms of economy, when is the best time to implement SMA instead of the conventional mix?
- iv. Who should be interested in the prediction of the construction cost of SMA and ACW20?

1.4 Research Objective

This study was initiated for purpose of comparing the cost of SMA with a conventional surface course mix. Hence, the dominant objectives of this research are:

- i. To compare the construction cost of Stone Mastic Asphalt (SMA) with the conventional asphalt concrete wearing course (ACW20).
- To identify the significant cost elements for estimating the prime cost of the two comparable premixes.
- To propose a decision-making guideline for the selection of SMA over the conventional mix.

1.5 Scope and Limitation

The scope and limitation in the study of cost analysis of SMA and ACW20 are as follows:

- i. The design mixes studied for cost comparison purpose are Stone Mastic Asphalt (SMA) with and without fiber stabilizer and Asphalt Concrete Wearing Course (ACW20) with aggregate nominal size of 20mm. These materials are chosen because SMA is the alternative premix to be studied while ACW20 is the conventional mix used in Malaysia (JKR, 1994). Aside from that, both of these materials are applicable in high speed expressway making them viable for comparison.
- The study focused on the wearing course and not other pavement layers such as base course, road base, sub base and sub grade.
 The significance behind this is because the price of the wearing course layer varies based on the type of material used (JKR, 1995) while the prices of other pavement layers are usually constant as there is less variation in the types of material available.

