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An experimental and finite element investigation of glass fiber/epoxy composite tubes were 

carried out under axial compressive and radial loading. A filament winding equipment has 

been used for the fabrication process of the specimens. These composite tubes were fabricated 

with 2, 4, 6 and 8 layers, keeping the fiber orientation angle of 90°, the tubes inner diameter is 

50mm and the height is 1 00mm for all the specimens. Steel cones, of semi cone angle of 10, 

20, 30 and 40 degrees were used to develop the axial and radial-loading cases. In addition, flat 

plate was used for pure axial crushing cases. The Volume fraction of glass fiber and matrix 

used was 70% and 30% respectively. The required properties for the composite used were 

obtained from a tensile test specimens and used for the theoretical part of this study to 

calculate the first crushing loads. The experimental tests for all the crushing tests of the 

composite tubes and the tensile specimens tests were performed at room temperature of 20° C . 
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Three composite tubes were fabricated and tested for each number of layers and each loading 

case. Tests were carried out at a crushing speed of 2.5mm1min using a digital Instron testing 

machine of 250 kN capacity. 

The results obtained from this study include the experimental results of the load-displacement 

relations, the first crushing load, average crushing load, crushing load gradient and the energy 

absorption. On the other hand, only the buckling load has been obtained from the finite 

element part of this study. 

The experimental results show that the first crushing load and the energy absorption increase 

when the number of layers increases for the same loading mode. They also increase as the 

loading cone semi cone angle increases, for each number of layers. This was applicable for the 

change in the average load values. Furthermore, it has been observed that the increase of the 

loading cone semi angle would decrease the crushing gradient for each set of composite tubes 

of the same number of layers. 

For the first crushing load, the change from two to eight layers for the different semi cone 

angles shows an increase of 53.3% to 64.9% load. While, the average load increases by 51.0% 

to 63.4%. Furthermore, the energy absorption increases by 52.2% to 59.3% as the number of 

layers increases from two to eight layers for all the cases studied. On the other hand, crushing 

gradient decreases by 89.5% to 73.8% as the semi cone angle increases from 10
° 

to 90
°
. For 

tubes loaded using flat plate, first crushing load increase by 60.8% when the number of layers 

increase from two to eight layers. 
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The main factors affecting the first crushing load and the energy absorption are the number of 

layers, semi cone angle and the fiber to matrix ratio. 

In addition, the finite element analysis has been carried out for similar composite tubes 

implementing the buckling analysis. The buckling load evaluated then compared to the 

average first crushing load for each three similar experimental tests for all the cases. From the 

comparison, it was found that the percentage difference was in the range between 18.13% to 

37.72%. 
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Experimen dan kajian unsur terhingga bagi tiub 'fiber glass' dan komposit telah dijalankan 

dibawah beban mampatan dan beban radial. Alat filamen telah digunakan untuk proses 

pembikinan spesimen. Tiub komposit yang dibikin mempunyai 2, 4, 6 dan 8 lapisan, sudut 

pusingan 'fiber' adalah sudut 90
°
, diameter dalam silinder ialah 50mm dan tinggi silinder ialah 

100mm untuk semua spesimen. Kun besi yang mempunyai sudut separuh kun 10
°
, 20

°
, 30

° 
dan 

40
° 

sudut telah digunakan untuk menjalankan kajian bebanan 'axial' dan 'radial. 

Plat datar digunakan untuk kes hancuran paksi. Pecahan isipadu gelas 'fiber' dan matrik yang 

digunakan masing-masing adalah 70% dan 30%. Ciri-ciri yang diperlukan untuk komposit 

adalah diperolehi daripada ujian ttegangan spesimen dan digunakan untuk bahagian teori 

dalam kajian ini untuk mengira 'crushing load' pertama. Ujian bagi semua ujian 'crushing' 

untuk tiub komposit dan ujian ttegangan spesimen dijalankan pada suhu bilik 20
°
C. 
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Tiga tiub komposit telah dibina dan diuji bagi setiap lapisan dan setiap kes bebanan. Ujian 

dijalankan pada kelajuan hancuran 2.5mmJmin dengan menggunakan mesin ujian Instron 

berdigital muatan 250 kN. Keputusan yang diperolehi daripada kajian ini merangkumi 

keputusan eksperimen bagi hubungan beban-anjakan, beban hancuran pertarna, purata beban 

hancuran, cerun beban hancuran dan tenaga serapan. Hanya beban lengkukan (buckling), 

diperolehi daripada hasil kajian keadah unsure terhingga. 

Keputusan eksperimen menunjukkan beban hancuran pertarna dan tenaga terserap meningkat 

apabila jumlah bilangan lapisan bertarnbah bagi mod bebanan yang sarna. Ianya juga 

meningkat apabila sudut separuh kon meningkat bagi setiap lapisan. lni adalah munasabah 

bagi perubahan didalarn nilai purata beban. 

Selain itu, adalah diperhatikan bahawa peningkatan beban sudut separuh kon akan 

menurunkan cerun hancuran bagi setiap set tiub komposit yang mempunyai bilangan lapisan 

yang sarna. Pada beban hancur pertama, perubahan dari dua kepada lapan lapisan bagi sudut 

separuh kon yang berlainan menunjukkan peningkatan 53.3% kepada 64.9% 'load'. 

Diperhatikan juga bahawa purata 'load' meningkat dari 51.0% kepada 63.4%. Tenaga serapan 

meningkat dari 52.2% kepada 59.3% bila bilangan lapisan meningkat dari dua kepada lapan 

lapisan bagi semua kes kajian. 

Manakala, cerun hancuran menurun dari 89.5% kepada 73.8% apabila sudut separuh kun 

meningkat daripada 10
0 

kepada 90
0
• Bagi tiub, dibeban menggunakan plat rata, beban hancur 

pertarna meningkat sehingga 60.8% apabila bilangan lapisan meningkat daripada dua kepada 

VI 



lapan lapisan. Factor utama yang memberi kesan kepada be ban hancur pertama dan tenaga 

serapan adalah bilangan lapisan, sudut separuh kun dan 'fiber' kepada nisbah matrik. Analisis 

unsure terhingga telah dijalankan untuk tiub komposit menggunakan analisis lengkuk 

(buckling). Beban lengkuk yang ditentukan kemudian di sebandingkan dengan purata beban 

hancur pertama bagi setiap tiga ujian eksperimen yang serupa untuk setiap kes. perbandigan 

menunjukkan peratus perbezaan adalah di antara 18.13% hingga 37.72%. 
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1.1 General 

CHAPTER ONE 

INTRODUCTION 

Among the major developments in materials in recent years are the modem composite 

materials. In fact, composites are now one of the most important classes of engineered 

materials, as they offer several outstanding properties as compared to conventional 

materials. 

Composite materials are made by combining two or more materials, on microscopic 

scale, to form a useful material. Composite materials are in general not isotropic as 

compared to the conventional materials such as metals. Structures made of such materials 

are called composite structure. Some properties are improved in this way that could be 

important depending on the use of these materials such as strength, stiffness, corrosion 

and wear resistance, fatigue life and thermal insulations. Because of the advantages such 

as weight, strength, wear and corrosion resistance, composite materials  have a wide range 

of applications from simple parts, automobile parts to aircraft body and parts. 

One of the interesting aspects of composite material is the freedom to select the precise 

form of the material to suit the application. Along with this freedom is the responsibility 

of making design decisions on the material aspect. 

Recently, the development of the finite element analysis (FEA) software has made the 

quantitative analysis of composite materials possible and convenient to be used. 
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Therefore, this FEA has been seen, as the necessity for a vigorous prediction needed for 

comparison with the experimental results to improve the mechanical characteristics of 

composite components. 

Composite materials are made at least of two materials; a reinforcement material and 

matrix material. The reinforcement may be in the form of particles, short fibers 

(whiskers) or continuous fibers. The matrix can consist of metal, ceramic, glass, concrete, 

gypsum or resins and the reinforcement can be metal rods or filaments, whiskers of 

silicon carbide or nitride, carbon fiber, boron fiber and various types of glass asbestos and 

cellulose fiber. The matrix is generally of lower density, stiffness and strength than the 

fibers or whiskers. 

In practical design engineering, the analysis of composite materials is usually done on 

some typical structures and specimens having the shape of plane, ring, tube, cone and 

sphere. 

Usually the relations of micromechanics are intended first and foremost for initial 

estimates and qualitative analysis of the effect of micro structural parameters on the 

composite material properties. Such estimates are necessary for the solution of various 

problems of materials science associated with property modification and development of 

new materials. 
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1.2 Types of composite materials 

Composite materials could be classified as; Particulate composite, which are composite 

of particles in a matrix, fibrous composites, which consist of fibers in a matrix and 

laminated composites, which consist of layers of various materials. In a particulate 

composite, particles are added to a matrix. Particles can have various effects on a matrix 

depending on the properties of the two constituents. Ductile particles added to a brittle 

matrix increase the toughness as cracks have difficulty passing through the particles. The 

rubber-modified polystyrene is a common example for particulate composite type. 

Particles of hard and stiff (high E) material added to a ductile matrix increase its strength 

and stiffness. An example for that type is the carbon black added to rubber. As might be 

expected, hard particles generally decrease the fracture toughness of a ductile matrix and 

this limits the usefulness of some composites of this type. In the fibrous composites, 

fibers of different length mostly stronger than the matrix are used. Fibers are used in 

composites because they are of a lightweight, stiff and stronger. Fibers are stronger than 

the bulk material that constitutes the fibers. This is because of the preferential orientation 

of molecules along the fiber direction and because of the reduced number of defects 

present in a fiber compared to the bulk material. The most common fibers used in 

composites are glass, carbon and organic (Kevlar), Boron, Silicon carbide (Sic), alumina 

and other fibers are used in specialized applications. 

The fibers carry most of the stress, whereas the matrix holds them in place and in shape. 

Good adhesion between fibers and matrix is important as this allows the matrix to carry 

the stress from one fiber to another at the point where a fiber breaks or where one fiber 
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