

UNIVERSITI PUTRA MALAYSIA

AXIAL AND RADIAL LOADING EFFECTS ON QUASI-STATIC CRUSHING OF GLASS/EPOXY COMPOSITE TUBES

HAIFAA AZIZ AMEEN

FK 2003 60

AXIAL AND RADIAL LOADING EFFECTS ON QUASI-STATIC CRUSHING OF GLASS/EPOXY COMPOSITE TUBES

By HAIFAA AZIZ AMEEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Partial Requirements for the Degree of Master of Science

August 2003

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the partial requirements for the degree of Master of Science

AXIAL AND RADIAL LOADING EFFECTS ON QUASI-STATIC CRUSHING OF GLASS/EPOXY COMPOSITE TUBES

By

HAIFAA AZIZ AMEEN

August 2003

Chairman: Professor Ir. Barkawi Bin Sahari, Ph.D.

Faculty: Engineering

An experimental and finite element investigation of glass fiber/epoxy composite tubes were carried out under axial compressive and radial loading. A filament winding equipment has been used for the fabrication process of the specimens. These composite tubes were fabricated with 2, 4, 6 and 8 layers, keeping the fiber orientation angle of 90°, the tubes inner diameter is 50mm and the height is 100mm for all the specimens. Steel cones, of semi cone angle of 10, 20, 30 and 40 degrees were used to develop the axial and radial-loading cases. In addition, flat plate was used for pure axial crushing cases. The Volume fraction of glass fiber and matrix used was 70% and 30% respectively. The required properties for the composite used were obtained from a tensile test specimens and used for the theoretical part of this study to calculate the first crushing loads. The experimental tests for all the crushing tests of the composite tubes and the tensile specimens tests were performed at room temperature of $20^{\circ}C$.

Three composite tubes were fabricated and tested for each number of layers and each loading case. Tests were carried out at a crushing speed of 2.5mm/min using a digital Instron testing machine of 250 kN capacity.

The results obtained from this study include the experimental results of the load-displacement relations, the first crushing load, average crushing load, crushing load gradient and the energy absorption. On the other hand, only the buckling load has been obtained from the finite element part of this study.

The experimental results show that the first crushing load and the energy absorption increase when the number of layers increases for the same loading mode. They also increase as the loading cone semi cone angle increases, for each number of layers. This was applicable for the change in the average load values. Furthermore, it has been observed that the increase of the loading cone semi angle would decrease the crushing gradient for each set of composite tubes of the same number of layers.

For the first crushing load, the change from two to eight layers for the different semi cone angles shows an increase of 53.3% to 64.9% load. While, the average load increases by 51.0% to 63.4%. Furthermore, the energy absorption increases by 52.2% to 59.3% as the number of layers increases from two to eight layers for all the cases studied. On the other hand, crushing gradient decreases by 89.5% to 73.8% as the semi cone angle increases from 10° to 90°. For tubes loaded using flat plate, first crushing load increase by 60.8% when the number of layers increase from two to eight layers.

The main factors affecting the first crushing load and the energy absorption are the number of layers, semi cone angle and the fiber to matrix ratio.

In addition, the finite element analysis has been carried out for similar composite tubes implementing the buckling analysis. The buckling load evaluated then compared to the average first crushing load for each three similar experimental tests for all the cases. From the comparison, it was found that the percentage difference was in the range between 18.13% to 37.72%.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi sebahagian keperluan untuk ijazah Master Sains

KESAN BEBAN PAKSI DAN RADIAL KE ATAS KEHANCURAN QUASI-STATIK TIUB KOMPOSIT KACA/EPOXY

Oleh

HAIFAA A. AMEEN

Ogos 2003

Pengerusi: Professor Ir. Barkawi Bin Sahari, Ph.D.

Fakulti: Kejuruteraan

Experimen dan kajian unsur terhingga bagi tiub 'fiber glass' dan komposit telah dijalankan dibawah beban mampatan dan beban radial. Alat filamen telah digunakan untuk proses pembikinan spesimen. Tiub komposit yang dibikin mempunyai 2, 4, 6 dan 8 lapisan, sudut pusingan 'fiber' adalah sudut 90°, diameter dalam silinder ialah 50mm dan tinggi silinder ialah 100mm untuk semua spesimen. Kun besi yang mempunyai sudut separuh kun 10°, 20°, 30° dan 40° sudut telah digunakan untuk menjalankan kajian bebanan 'axial' dan 'radial.

Plat datar digunakan untuk kes hancuran paksi. Pecahan isipadu gelas 'fiber' dan matrik yang digunakan masing-masing adalah 70% dan 30%. Ciri-ciri yang diperlukan untuk komposit adalah diperolehi daripada ujian ttegangan spesimen dan digunakan untuk bahagian teori dalam kajian ini untuk mengira 'crushing load' pertama. Ujian bagi semua ujian 'crushing' untuk tiub komposit dan ujian ttegangan spesimen dijalankan pada suhu bilik 20°C.

Tiga tiub komposit telah dibina dan diuji bagi setiap lapisan dan setiap kes bebanan. Ujian dijalankan pada kelajuan hancuran 2.5mm/min dengan menggunakan mesin ujian Instron berdigital muatan 250 kN. Keputusan yang diperolehi daripada kajian ini merangkumi keputusan eksperimen bagi hubungan beban-anjakan, beban hancuran pertama, purata beban hancuran, cerun beban hancuran dan tenaga serapan. Hanya beban lengkukan (buckling), diperolehi daripada hasil kajian keadah unsure terhingga.

Keputusan eksperimen menunjukkan beban hancuran pertama dan tenaga terserap meningkat apabila jumlah bilangan lapisan bertambah bagi mod bebanan yang sama. Ianya juga meningkat apabila sudut separuh kon meningkat bagi setiap lapisan. Ini adalah munasabah bagi perubahan didalam nilai purata beban.

Selain itu, adalah diperhatikan bahawa peningkatan beban sudut separuh kon akan menurunkan cerun hancuran bagi setiap set tiub komposit yang mempunyai bilangan lapisan yang sama. Pada beban hancur pertama, perubahan dari dua kepada lapan lapisan bagi sudut separuh kon yang berlainan menunjukkan peningkatan 53.3% kepada 64.9% 'load'.

Diperhatikan juga bahawa purata 'load' meningkat dari 51.0% kepada 63.4%. Tenaga serapan meningkat dari 52.2% kepada 59.3% bila bilangan lapisan meningkat dari dua kepada lapan lapisan bagi semua kes kajian.

Manakala, cerun hancuran menurun dari 89.5% kepada 73.8% apabila sudut separuh kun meningkat daripada 10° kepada 90°. Bagi tiub, dibeban menggunakan plat rata, beban hancur pertama meningkat sehingga 60.8% apabila bilangan lapisan meningkat daripada dua kepada

lapan lapisan. Factor utama yang memberi kesan kepada beban hancur pertama dan tenaga serapan adalah bilangan lapisan, sudut separuh kun dan 'fiber' kepada nisbah matrik. Analisis unsure terhingga telah dijalankan untuk tiub komposit menggunakan analisis lengkuk (buckling). Beban lengkuk yang ditentukan kemudian di sebandingkan dengan purata beban hancur pertama bagi setiap tiga ujian eksperimen yang serupa untuk setiap kes. perbandigan menunjukkan peratus perbezaan adalah di antara 18.13% hingga 37.72%.

ACKNOWLEDGEMENTS

Through the completion of the project many people have helped in its development and I would like to acknowledge their valued suggestions and comments. Specifically, I wish to express my profound appreciation and gratitude to the chairman of the supervisory committee, Professor Dr. Barkawi Bin Sahari for this supervision, guidance, constructive suggestions, comments and his valuable time spent during the discussion.

A particular note of thanks is also given to the members of the supervisory committee, Assoc. Prof. Abdel Magid S. Hamouda and Dr. El-Sadiq M. A. Saad for their guidance, suggestions and comments throughout the duration of the project

I would also like to thank Tuan Haji Shaarani for his technical expertise, guidance and assistance in using the Instron machine to perform the tests for this study. And my appreciation to Wildan for his assistance during the tests were carried out.

Finally, and most importantly, I would like to express my deep gratitude to my husband, Assoc. Prof. Dr. Yousif A. Khalid, for his full support, which allowed this report to be completed.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVALS	ix
DECLARATION	xi
LIST OF TABLES	xv
LIST OF FIGURES	xvi
NOMENCLATURE	xxi

CHAPTERS

Page

1.	I	TRODUCTION 1
1.	1 C	eneral 1
1.	2 T	ypes of Composite Materials 3
1.	3 N	Iechanical Behavior of Composite Material6
1.4	4 E	nergy Absorption in Composite Material 7
1.	5 P	roblem Statement 7
1.0	6 C	bjectives of this Study 8
1.′	7 T	hesis Layout 8
2.	L	TRATURE REVIW 9
	2.	Introduction 9
	2.	2 Composite Material 9
	2.	3 Types of Fibers 12
		2.3.1 Oil Palm 12
		2.3.2 Carbon 13
		2.3.3 Glass 14
		2.3.4 Cotton 16

	2.4	Matrix types	17
		2.4.1 Polymer	17
		2.4.2 Thermoplastic Resin	18
		2.4.3 Thermosetting Resin	18
		2.4.4 Epoxy Resin	19
	2.5	Engineering Properties	20
		2.5.1 Micromechanics of Composite Materials	21
	2.6	Failure Criteria	23
		2.6.1 Failure Theories	24
		2.6.2 Prediction of Failure Load	26
	2.7	Composite Shells Behavior	30
		2.7.1 Crushing Behavior of Cylindrical Shells	30
		2.7.2 Conical Shells	35
	2.8	Crush Energy Absorption	37
		2.8.1 Calculation of Energy Absorption	40
	2.9	Finite Element Analysis	42
	2.10	Buckling Analysis	44
	2.11	Discussion	48
3.	MET	HODOLOGY	50
	3.1	Introduction	50
	3.2	Materials and Equipments	52
	3.3	Loading Arrangement	53
	3.4	Experimental Work	55
	3.5	Tensile Test	55
	3.6	Crushing Test	56
	3.7	Finite Element Analysis	56
	3.8	LUSAS Finite Element Analysis	57
		3.8.1 Model Generation	57
		3.8.2 Element Selection and Mesh Generation	58
		3.8.3 Material Geometry Properties	59

	3.8.4	Support	60
	3.8.5	Loading	60
	3.8.6	Performing the Finite Element Analysis	61
3.9	Discu	ssion	61
4. RE	SULTS A	ND DISCUSSION	63
4.1	Introd	luction	63
4.2	Fiber	and Matrix Properties	64
	4.2.1	Matrix Properties Test	64
	4.2.2	Glass Fiber Properties Test	67
	4.2.3	Mechanical Properties Comparison	70
4.3	Deterr	mination of the Composite Materials Properties	70
4.4	Tensil	e Mechanism of Failure and Discussion	72
4.5	Experi	imental Results	72
	4.5.1	Initial Crushing Load	76
	4.5.2	Mean Crushing Load	78
	4.5.3	Crushing Load Gradient	79
	4.5.4	Crush Energy Absorption	83
4.6	Finite	Element Results	92
4.7	Comp	parison Between Experimental and Finite Element Results	98
4.8	Failure	e Modes	98
4.9	Discus	ssion	109
5. CON	CLUSIO	NS AND RECOMMENDATIONS	114
5.1	Conclu	usions	114
5.2	Recom	nmendations for Further work	108
REFEREN	CES		118
APPENDI	XA		125
APPENDI	X B		129

LIST OF TABLES

Table

Title

Table 2.1	:	Selected Properties for Different Types Of Matrix	10
Table 2.2	:	Mechanical Properties of Thermoset Matrices	11
Table 2.3	:	Typical Properties of Thermoplastic Matrices	11
Table 2.4	:	Properties of Carbon-based Fibers	14
Table 2.5	:	Typical Compositions and properties of common Glass Fibers	15
Table 2.6	:	Typical Engineering Properties of Thermosetting	17
		and Thermoplastic Polymer Matrix Materials	
Table 2.7	:	Typical mechanical properties of some of epoxy resins	20
Table 2.8	:	Calculation Results in Carbon Fiber/PEEK and Glass	27
		Fiber Cloth/Epoxy Tubes with Experimental Results	
Table 4.1	:	Matrix Specimens Dimensions and Properties	67
Table 4.2	:	Glass Fibre Specimens Dimensions and Properties	69
Table 4.3	:	Comparison of Mechanical Properties Between	70
		Experimental and Literature Results for the	
		Fiber and Epoxy	
Table 4.4	:	Experimental Results Summary	86
Table 4.5	:	Comparison of Experimental and Finite Element Analysis	95
Table 4.6	:	Effect of the Semi Cone Angle and the Number of Layers	96
		on the First Crushing Load	
Table 4.7	•	Effect of the Semi Cone Angle and the Number of Layers	97
		on the Average Load	
Table 4.8	:	Effect of the Semi Cone Angle and the Number of Layers	97
		on the Energy Absorption	
Table 4.9	•	Effect of the Semi Cone Angle and the Number of Layers	98
		on the Crushing Load Gradient	
Table A1	:	Specimens Dimension table.	126

LIST OF FIGURES

Figure		Title	Page
Figure 2.1	:	Crushing Test for Composite Tube	26
Figure 2.2	:	Load-Displacement Curve for Square Ended (Flat)	28
		Tube Under Axial Crushing.	
Figure 2.3	:	Load-Displacement Curve for Tapered Ended Tube	28
		Under Axial Crushing.	
Figure 2.4	:	Cross-Sectional View of the Tube in the Axial	29
		Direction.	
Figure 2.5	:	Cross-Sectional View of the Tube in the Hoop	29
		Direction Through the Defects.	
Figure 2.6	:	First Crushing Load for the Different Composite	32
		Tubes used and Several Loading Types	
Figure 2.7	:	Variation of Specific Energy with t/D Ratio	33
Figure 2.8	:	Variation of Specific Energy with Tube Wall	34
		Thickness	
Figure 2.9	:	Load – Displacement Relation for Cotton fiber/epoxy	36
		Cones	
Figure 2.10	:	Load – Displacement Relation for Glass fiber/epoxy	37
		Cones	
Figure 2.11	:	Typical Load – Displacement curves	38
		for (a)Quasi – static and (b) Impact, for	
		composite tested tubes.	
Figure 2.12	:	Load-Displacement Curve for FWL Carbon/Glass	39
		Hybrid Circular-Cylindrical Shells.	
Figure 2.13	:	Typical Load-Displacement Curve for a	41
		Progressively Crushed Composite Tube	
Figure 3.1	÷	Methodology Flowchart	51
Figure 3.2	:	Mandrels for Basic Tubes Specimens	52

Figure 3.3	:	Experimental Set-up and the Basic Dimensions	54
Figure 3.4	:	Dimensions Sample of Matrix	55
Figure 3.5	:	The Generated Mesh	58
Figure 3.6	:	Load and Support Positions for the Model	60
Figure 4.1	:	Tensile Test of Matrix	65
Figure 4.2	:	Load - Extension Relation for the Matrix	65
		(Epoxy Resin and Hardener)	
Figure 4.3	:	Tensile Test of Fiber	67
Figure 4.4	:	Load - Extension Relation for Glass Fiber	69
Figure 4.5	:	(a) The Steel Cones used for Loading and	73
		(b) The Experimental Arrangement	
Figure 4.6	:	Applied Load Vs Displacement (2 Layers, 10° Semi	74
		Cone Angle, for A1, A2, A3 Specimens)	
Figure 4.7	:	Load – Displacement Terms used	76
Figure 4.8	:	Initial Crushing Load Vs Cone Chamfering Angle	77
Figure 4.9	:	Initial Crushing Load Vs Number of Layers	77
Figure 4.10	:	Mean Crushing Load Vs Cone Chamfering Angle	78
Figure 4.11		Mean Crushing Load Vs Number of Layers	79
Figure 4.12	:	Applied Load Vs Displacement	80
		(2 Layers Semi Cone Angle 10°)	
Figure 4.13	:	Applied Load Vs Displacement	80
		(2 Layers Semi Cone Angle 20°)	
Figure 4.14	:	Applied Load Vs Displacement	81
		(2 Layers Semi Cone Angle 30)	
Figure 4.15	:	Applied Load Vs Displacement	81
		(2 Layers Semi Cone Angle 40°)	
Figure 4.16	:	Applied Load Vs Displacement	82
		(2 Layers Semi Cone Angle 90°)	
Figure 4.17	:	Crushing Gradient Vs Cone Chamfering Angle	82
Figure 4.18	:	Crushing Gradient Vs Semi Cone Sinθ	83
- Figure 4.19	:	Crush Energy Absorption Vs Cone Chamfering	85
-			

Angle.

		8	
Figure 4.20	:	The Mesh, Concentrate and Loading Used	88
Figure 4.21	:	Load Details	89
Figure 4.22	:	Initial Crushing Load Vs Cone Chamfering angle	91
Figure 4.23	:	Initial Crushing Load Vs Cone Angle (2 Layers)	92
Figure 4.24	:	Initial Crushing Load Vs Cone Angle (4 Layers)	93
Figure 4.25	:	Initial Crushing Load Vs Cone Angle (6 Layers)	93
Figure 4.26	:	Initial Crushing Load Vs Cone Angle (8 Layers)	94
Figure 4.27	:	Crushing Steps of 2 Layers Semi Cone Angle 10°	99
Figure 4.28	:	Crushing Steps of 2 Layers Semi Cone Angle 20°	100
Figure 4.29	:	Crushing Steps of 2 Layers Semi Cone Angle 30°	100
Figure 4.30	:	Crushing Steps of 2 Layers Semi Cone Angle 40°	101
Figure 4.31	:	Crushing Steps of 2 Layers Semi Cone Angle 90°	101
Figure 4.32	:	Crushing Steps of 4 Layers Semi Cone Angle 10°	102
Figure 4.33	:	Crushing Steps of 4 Layers Semi Cone Angle 20°	102
Figure 4.34	:	Crushing Steps of 4 Layers Semi Cone Angle 30°	103
Figure 4.35	:	Crushing Steps of 4 Layers Semi Cone Angle 40°	103
Figure 4.36	:	Crushing Steps of 4 Layers Semi Cone Angle 90°	104
Figure 4.37	:	Crushing Steps of 6 Layers Semi Cone Angle 10°	104
Figure 4.38	:	Crushing Steps of 6 Layers Semi Cone Angle 20°	105
Figure 4.39	:	Crushing Steps of 6 Layers Semi Cone Angle 30°	105
Figure 4.40	:	Crushing Steps of 6 Layers Semi Cone Angle 40°	106
Figure 4.41	:	Crushing Steps of 6 Layers Semi Cone Angle 90°	106
Figure 4.42	:	Crushing Steps of 8 Layers Semi Cone Angle 10°	107
Figure 4.43	:	Crushing Steps of 8 Layers Semi Cone Angle 20°	107
Figure 4.44	:	Crushing Steps of 8 Layers Semi Cone Angle 30°	108
Figure 4.45	:	Crushing Steps of 8 Layers Semi Cone Angle 40°	108
Figure 4.46	:	Crushing Steps of 8 Layers Semi Cone Angle 40°	109
Figure B1	÷	Applied Load Vs Displacement (2 Layers, 10°	130
		Semi Cone Angle, for A1, A2, A3 Specimens)	

Figure B2	:	Applied Load Vs Displacement (2 Layers, 20°	130
		Semi Cone Angle, for B1, B2, B3 Specimens)	
Figure B3	:	Applied Load Vs Displacement (2 Layers, 30°	131
		Semi Cone Angle, for C1, C2, C3 Specimens)	
Figure B4	:	Applied Load Vs Displacement (2 Layers, 40°	131
		Semi Cone Angle, for D1, D2, D3 Specimens)	
Figure B5	:	Applied Load Vs Displacement (2 Layers, 90°	132
		Semi Cone Angle, for E1, E2, E3 Specimens)	
Figure B6	:	Applied Load Vs Displacement (4 Layers, 10°	132
		Semi Cone Angle, for F1, F2, F3 Specimens)	
Figure B7	:	Applied Load Vs Displacement (4 Layers, 20°	133
		Semi Cone Angle, for G1, G2, G3 Specimens)	
Figure B8	:	Applied Load Vs Displacement (4 Layers, 30°	133
		Semi Cone Angle, for H1, H2, H3 Specimens)	
Figure B9	:	Applied Load Vs Displacement (4 Layers, 40°	134
		Semi Cone Angle, for I1, I2, I3 Specimens)	
Figure B10	:	Applied Load Vs Displacement (4 Layers, 90°	134
		Semi Cone Angle, for J1, J2, J3 Specimens)	
Figure B11	:	Applied Load Vs Displacement (6 Layers, 10°	135
		Semi Cone Angle, for K1, K2, K3 Specimens)	
Figure B12	:	Applied Load Vs Displacement (6 Layers, 20°	135
		Semi Cone Angle, for L1, L2, L3 Specimens)	
Figure B13	:	Applied Load Vs Displacement (6 Layers, 30°	136
		Semi Cone Angle, for M1, M2, M3 Specimens)	
Figure B14	:	Applied Load Vs Displacement (6 Layers, 40°	136
		Semi Cone Angle, for N1, N2, N3 Specimens)	
Figure B15	:	Applied Load Vs Displacement (6 Layers, 90°	137
		Semi Cone Angle, for O1, O2, O3 Specimens)	
Figure B16	:	Applied Load Vs Displacement (8 Layers, 10°	137
		Semi Cone Angle, for P1, P2, P3 Specimens)	

Figure B17	:	Applied Load Vs Displacement (8 Layers, 20°	138
		Semi Cone Angle, for Q1, Q2, Q3 Specimens)	
Figure B18	:	Applied Load Vs Displacement (8 Layers, 30°	138
		Semi Cone Angle, for R1, R2, R3 Specimens)	
Figure B19	:	Applied Load Vs Displacement (8 Layers, 40°	139
		Semi Cone Angle, for S1, S2, S3 Specimens)	
Figure B20	:	Applied Load Vs Displacement (8 Layers, 90°	139
		Semi Cone Angle, for T1, T2, T3 Specimens)	

NOMENCLATURE

Symbol

E	Young's Modulus (GN/m ²)
E_{f}	Young's Modulus of fiber (GN/m ²)
E_m	Young's Modulus of Matrix (GN/m ²)
V_{f}	Fiber Volume Fraction
V _m	Matrix Volume Fraction
ν	Poisson's Ratio
ν_{f}	Major Poisson's Ratio of Fiber
ν_{m}	Major Poisson's Ratio of Matrix
Κ	Bulk Modulus
K_{f}	Bulk Modulus of Fiber
K _m	Bulk Modulus of Matrix
G	Shear Modulus (GN/m ²)
G _f	Shear Modulus of Fiber (GN/m ²)
Gm	Shear Modulus of Matrix (GN/m ²)
Es	Specific Energy Absorb (N.m/kg)
$\overline{\sigma}$	Mean Crush Stress (N/m ²)
Р	Mean Crush Load (N)
ρ	Density of the Composite (kg/m ³)
A	Cross-Sectional Area (mm ²)
M/L	Mass per Unit Length of the Composite Tube (kg/m)
D_1, D_2	Internal and External Diameters (mm)
P_F^C	Critical Buckling Load of Tubes (N)
β	Semi Cone Angle
$\sigma_{\scriptscriptstyle sb}$	Bending Stress (N/m ²)
Μ	Bending Moment (N.m)

CHAPTER ONE INTRODUCTION

1.1 General

Among the major developments in materials in recent years are the modern composite materials. In fact, composites are now one of the most important classes of engineered materials, as they offer several outstanding properties as compared to conventional materials.

Composite materials are made by combining two or more materials, on microscopic scale, to form a useful material. Composite materials are in general not isotropic as compared to the conventional materials such as metals. Structures made of such materials are called composite structure. Some properties are improved in this way that could be important depending on the use of these materials such as strength, stiffness, corrosion and wear resistance, fatigue life and thermal insulations. Because of the advantages such as weight, strength, wear and corrosion resistance, composite materials have a wide range of applications from simple parts, automobile parts to aircraft body and parts.

One of the interesting aspects of composite material is the freedom to select the precise form of the material to suit the application. Along with this freedom is the responsibility of making design decisions on the material aspect.

Recently, the development of the finite element analysis (FEA) software has made the quantitative analysis of composite materials possible and convenient to be used.

Therefore, this FEA has been seen, as the necessity for a vigorous prediction needed for comparison with the experimental results to improve the mechanical characteristics of composite components.

Composite materials are made at least of two materials; a reinforcement material and matrix material. The reinforcement may be in the form of particles, short fibers (whiskers) or continuous fibers. The matrix can consist of metal, ceramic, glass, concrete, gypsum or resins and the reinforcement can be metal rods or filaments, whiskers of silicon carbide or nitride, carbon fiber, boron fiber and various types of glass asbestos and cellulose fiber. The matrix is generally of lower density, stiffness and strength than the fibers or whiskers.

In practical design engineering, the analysis of composite materials is usually done on some typical structures and specimens having the shape of plane, ring, tube, cone and sphere.

Usually the relations of micromechanics are intended first and foremost for initial estimates and qualitative analysis of the effect of micro structural parameters on the composite material properties. Such estimates are necessary for the solution of various problems of materials science associated with property modification and development of new materials.

1.2 Types of composite materials

Composite materials could be classified as; Particulate composite, which are composite of particles in a matrix, fibrous composites, which consist of fibers in a matrix and laminated composites, which consist of layers of various materials. In a particulate composite, particles are added to a matrix. Particles can have various effects on a matrix depending on the properties of the two constituents. Ductile particles added to a brittle matrix increase the toughness as cracks have difficulty passing through the particles. The rubber-modified polystyrene is a common example for particulate composite type. Particles of hard and stiff (high E) material added to a ductile matrix increase its strength and stiffness. An example for that type is the carbon black added to rubber. As might be expected, hard particles generally decrease the fracture toughness of a ductile matrix and this limits the usefulness of some composites of this type. In the fibrous composites, fibers of different length mostly stronger than the matrix are used. Fibers are used in composites because they are of a lightweight, stiff and stronger. Fibers are stronger than the bulk material that constitutes the fibers. This is because of the preferential orientation of molecules along the fiber direction and because of the reduced number of defects present in a fiber compared to the bulk material. The most common fibers used in composites are glass, carbon and organic (Kevlar), Boron, Silicon carbide (Sic), alumina and other fibers are used in specialized applications.

The fibers carry most of the stress, whereas the matrix holds them in place and in shape. Good adhesion between fibers and matrix is important as this allows the matrix to carry the stress from one fiber to another at the point where a fiber breaks or where one fiber

