

UNIVERSITI PUTRA MALAYSIA

DESIGN AND FABRICATION OF A TROPICAL MOTORCYCLE HELMET

FARAG MOHAMED SHUAEIB

FK 2003 58

DESIGN AND FABRICATION OF A TROPICAL MOTORCYCLE HELMET

By

FARAG MOHAMED SHUAEIB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

July 2003

DEDICATION

To my daughter "Esra"

I hope that "ALLAH" will protect you and

make your life happy as you gave me the happiness and hope with your smile

during the dark days

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

DESIGN AND FABRICATION OF A TROPICAL MOTORCYCLE HELMET

By

FARAG MOHAMED SHUAEIB

July 2003

Chairman: Associate Professor Abdel Magid Salem Hamouda, Ph.D.

Faculty: Engineering

The present work is devoted to the design and evaluation of a new crashworthy motorcycle helmet taking into consideration the tropical climate of Malaysia. A multidiscipline literature review on the design problems of motorcycle helmet was carried out and current problems were formulated. Based on the literature review findings, a new shell and liner designs were then proposed to overcome or eliminate these problems.

The shell design improvements consisted of developing hybrid natural fiber composite (NFC) shells which were fabricated and evaluated by the standard dynamic penetration test. The results of the new design were found to be satisfactory according to the related helmet standards. Three additional methods have been developed to assess the new shells performance in a more quantified manner. These tests are the helmet quasi-static penetration, the helmet rigidity, and the helmet crushing. All these tests were performed and the results confirmed the superior performance of the new natural fiber shell helmets as compared to the market dominant ABS shell helmets. Other factors also supported this design improvement such as cost, and the utilization of environmental friendly material.

In the liner design improvement, the shell was kept to the current ABS shell and the EPP foam as a liner. A 3D finite element algorithm has been developed using LS-DYNA-3D software. Based on the simulation results, the helmet with EPP foam liner was found to be satisfactory according to the related helmet standards. A parametric study of the helmet design was performed using the Response Surface Methodology in the Design of Experiment (DOE) statistical method. From this parametric study, the foam thickness and the foam density were found to have more significant effect on the helmet energy absorption than the shell effects. Design optimizations were also conducted and optimum design was obtained.

Finally, thermal analysis for commercially available helmet without ventilation system and the new helmet design with ventilation system were made, from which it was found that helmet ventilation is essential to avoid possible health problems. A design chart for helmet with ventilation system to obtain the minimum cross sectional area required for ventilation nozzles has been developed. This chart is suitable for a

wide span of amounts of heat generated from the motorcyclist head. The effect of adding the ventilation system to the helmet has been structurally investigated by the finite element simulation and found to positively improve the energy absorption performance of the helmet.

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

REKABENTUK DAN PEMBUATAN BAGI TOPI KELEDAR MOTOSIKAL TROPIKA

Oleh

FARAG MOHAMED SHUAEIB

Julai 2003

Pengerusi : Profesor Madya Abdel Magid Salem Hamouda, Ph.D.

Fakulti : Kejuruteraan

Kajian ini adalah untuk merekabentuk dan menilai topi keledar motosikal yang mengambil kira keadaan iklim tropika di Malaysia. Kajian dasar telah dijalankan terhadap masalah yang dihadapi oleh pengguna motosikal masakini. Daripada kajian tersebut, satu rekabentuk baru cengkerang dan liner telah dicadangkan untuk mengatasi masalah ini.

Pembaharuan rekabentuk cengkerang terdiri daripada pembangunan cengkerang komposit hybrid gentian asli (NFC) dimana ia telah difabrikasi dan dinilai dengan ujikaji piawai penembusan dinamik. Keputusan yang diperolehi memenuhi keperluan ujian piawai topi keledar masakini. Selain itu, tiga kaedah telah dibangunkan untuk menilai prestasi cengkerang yang direkabentuk. Ini kerana kaedah ujikaiji penembusan dinamik tidak dapat memberikan keputusan yang diharapkan. Kesemua keputusan menunjukkan kekuatan cengkerang gentian asli adalah lebih baik berbanding dengan

cengkerang ABS. Faktor yang lain juga menunjukkan bahawa kelebihan utama rekabentuk ini adalah kos yang rendah dan penggunaan bahan mesra alam.

Dalam rekabentuk liner, ABS telah digunakan sebagai cengkerang asal dan elemen tidak terhingga (prototaip maya) berdasarkan LS-DYNA3D telah disediakan bagi pembaharuan rekabentuk cengkerang dengan penyerap EPP. Keputusan simulasi menunjukkan prestasi yang amat memuaskan bagi topi keledar yang direkabentuk. Satu kajian parametrik telah juga dijalankan dengan menggunakan kaedah respon permukaan yang terdapat dalam kaedah statistik Rekabentuk Sesebuah Experimentasi (DOE). Daripada kajian ini, ketebalan dan ketumpatan penyerap didapati mempunyai pengaruh yang kuat dari segi penyerapan tenaga berbanding cengkerang. Optimasi rekabentuk juga telah dilakukan.

Akhir sekali, analisis terma telah dilakukan dan perbandingan antara rekabentuk baru berbanding rekabentuk sedia ada telah dijalankan. Satu carta rekabentuk juga telah dibangunkan untuk mencari luas keratan rentas yang minimum bagi muncung ventilasi. Ini telah didapati bahawa ia amat berguna bagi penyebaran haba pada keratan rentas topi keledar pengguna. Kesan penambahan system ventilasi telah dikaji dan didapati telah menambahkan prestasi penyerapan tenaga pada topi keledar tersebut.

ACKNOWLDEGEMENTS

First of all and before every thing, I submit in humility and gratitude to my beloved creator " ALLAH " for having looked after me during all my life and protected me from major catastrophes in this life.

A research work of this nature is generally a team work which needs the help, assistance, cooperation, and support from various parties to achieve its objectives. My profound thanks go to my supervisor Associate Professor Dr. Abdel Magid Hamouda for his guidance, advice and constructive criticism throughout the course of this study. His social smartness, friendship, and wisdom have made major impact on the progress of this research work.

I would like to record my appreciation for the valuable comments and guidance given by co-supervisors Prof. Ir. Dr. Radin Umar Radin Sohadi, Associate Prof. Dr. Megat Ahmad Hamdan, and Dr. S. V. Wong towards the completion of the study.

Special thanks to Prof. Ir. Dr. Radin Umar, as a director of the Road Safety Research Center (UPM) of utilizing the facilities of the center for this research work. His respectful dealing and kind management will be a good memory from Malaysia which I will never forget and I wish that the cooperation will be extended in the future.

My special thanks are extended to Dr. S. V. Wong for his full cooperation and assistance throughout the whole period of the study.

I wish to place on record my appreciation to Professor M. S. I. Hashmi of Dublin University, Ireland, for his help and assistance in the literature review at the early stage of this research work.

I wish to express my thanks to Dr Elsadig Mahdi, department of Aerospace Engineering of UPM, for sincere help and assistance during the helmets prototype fabrication, material testing and analysis of the experimental results.

I wish to thank all the Faculty of Engineering staff and technicians who participate in my work, particularly Mr. Sharani of the Strength of Materials Laboratory, and Mr. Tajo Arifinn of the Manufacturing Laboratory of UPM, for assistance in performing the experimental work.

Many thanks to Professor B.S. Barkawi of UPM, for his help in using the strength of materials laboratory and assistance in the simulation work at a critical stage of this research.

Many thanks to all the Road Safety Research Center and ITMA staff and researchers without exclusion who I enjoyed very much of their companionship during my study.

Finally, I could not find suitable words to express my sincere thanks to my beloved wife **Entisar Idris Sharif** for here suffering and struggling on looking after me and also taking care of my three children **Mohamed**, **Muad**, **and Esra**. Therefore, I leave this to "ALLAH" to reward here and compensate her in this life and hereafter.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xix
LIST OF FIGURES	XX
NOTATIONS AND ABBREVIATIONS	xxii

CHAPTER

l	INTRODUCTION	1
	1.1 General	1
	1.2 Importance of Motorcycling In Malaysia	2
	1.3 Commercially Available Motorcycle helmet	5
	1.3.1 Motorcycle Helmet types	5
	1.3.2 Helmet Design	7
	1.4 Natural Fiber Resources in Malaysia	13
	1.5 Problem Statement	13
	1.6 Research Objectives	15
	1.7 Thesis Layout	16
2	LETERATURE REVIEW	20
	2.0 Introduction	20
	2.1 Head Impact Biomechanics	22
	2.1.2 Anatomic Background of Human Head	22
	2.1.2 Head Injury	24
	2.2 Motorcycle Helmet Ventilation	39
	2.2.1 Introduction	39
	2.2.2 Current Designs and Possible Improvement	41
	2.2.3 Discussion	47
	2.3 Helmet Manufacturing	48
	2.3.1 Shell Manufacturing	49
	2.3.2 Helmet Liner Manufacturing	55
	2.4 Crash Characteristics	67
	2.4.1 Motorcyclist Motion during Accident	67
	2.4.2 Helmet Investigation for Multi-impact Signs	68
	2.4.3 Helmet Roll-Off	69
	2.5 Specification for Protective Helmets for Vehicle Users	70
	2.6 Helmet Mechanical Design	71

	2.6.1 Helmet Crash History	72
	2.6.2 Helmet Design Parametric Studies and Optimization	74
	2.6.3 Helmet Shell Design Issues	76
3	RESEARCH METHODOLOGY	92
	3.1 General Method of Approach	92
	3.2 Shell Improvement Study	95
	3.3 EPP Foam Liner and Optimization Study	96
	3.4 Helmet Ventilation Study	102
4	MATERIAL ALTERNATIVES FOR THE NEW MOTORCLE	
	HELMET	103
	4.1 Shell Material Selection	104
	4.1.1 Selection criteria	104
	4.1.2 Mechanical performance aspects	106
	4.2 Liner Material Selection	111
	4.2.1 Selection Procedure	113
5	SHELL STUDY TESTING APPRATUS AND PROTORYPE	
	FABRICATION	117
	5.1 Testing Apparatus	117
	5.1.1 CAD/CAM of Helmet Testing Headforms	118
	5.1.2 Drop Weight Test Rig	121
	5.2 Helmet Prototype Fabrication	123
	5.2.1 Materials	124
	5.2.2 Helmet Prototype Fabrication with Shell Made From Natural Fiber Composite (NFC)	124
,		100
6	EVALUATION OF THE BIO-COMPOSITE SHELL HELMETS	128
	6.1 Experimental Set Up	129
	6.2 Shell Testing and Results	132
	6.2.1 Helmet Penetration	132
	6.2.2 Helmet Rigidity	138
	6.2.3 Helmet Crushing	142
	6.3 Conclusions	146
7	FINITE ELEMENT SIMULATION OF THE NEW DESIGN	148
	7.1 Introduction	148
	7.2 Basic Formulation	149
	7.3 Material Properties Required for Modelling	151
	7.3.1 Mechanical Properties of ABS Material	153
	7.4 Holmot Components Material Madelling	154
	7.4 Heimet Components Material Modelling	157
	7.4.1 Snell Wodelling	157
	7.4.2 Modelling of the Liner	158
	1.5 Heimet Modelling	161

	7.5.1 EPP Foam Helmet Model Description	163
	7.5.2 Loading and Boundary Conditions	166
	7.5.3 Simulation Results and Discussion	167
	7.5.4 Conclusions	172
8	HELMET DESIGN PARAMETRIC STUDY AND OPTIMIZATION	173
	8.1 Response Surface Basic Theory	173
	8.1.1 Response Surface Construction	175
	8.1.2 Response Surface Design of Experiments	175
	8.2 Response Surface Solution	177
	8.2.1 Response Surface Design Factors and Their Levels	178
	8.2.2 Response Surface Creation and Analysis	178
	8.2.3 Response Surface Parametric Study Results and Discussion	181
	8.3 Response Surface Optimization	189
	8.4 Conclusions	194
9	HELMET VENTILATION	196
	9.1 Introduction	196
	9.2 Description of the Proposed Design	197
	9.3 Thermal Aspects	202
	9.3.1 Outdoor Air Conditions	202
	9.3.2 Body Heat Released by the Human Head	
	(Metabolic Heat)	203
	9.3.3 Other Fixed Inputs	203
	9.3.4 Case I: Helmet without Ventilation	205
	9.3.4.1 Calculation	207
	9.3.5 Case II: Helmet with Ventilation System	210
	9.4 Conclusions and Future Trends	214
10	OVERALL CONCLUSIONS AND FUTURE	
10	RECOMMENDATIONS	216
	10.1 Literature Review Findings	216
	10.2 Shell Study Conclusions	210
	10.3 EPP Foam Liner study Conclusions	217
	10.4 Helmet Ventilation Conclusion	210
	10.5 Recommendation for Further Studies	220
	10.6 Study Contributions	221
RF	FERENCES	223
AP	PENDIXES	242
Vľ	ТА	249

LIST OF TABLES

Table		Page
1.1	Distribution by body region of injuries among Malaysian Motorcyclists	4
2.1	The progression of the head injury criteria	32
2.2	The advantages and disadvantages of thermoplastic shells	50
2.3	Advantages and disadvantages of composite shells	53
2.4	Advantages and Disadvantages of PP,PE, and Pb Foam Liners	62
2.5	Advantages and disadvantages of polyurethane foam liner	64
2.6	Standards comparison for motorcycle helmet penetration test requirements	85
2.7	The Malaysian Standard MS 6.1:1969 rigidity test requirements	89
4.1	The mechanical properties of some natural and synthetic fibers	107
4.2	Mechanical properties of coir and oil palm composites as compared to synthetic fiber composites	108
4.3	The mechanical properties of some impact grades of ABS and PC plastics	109
6.1	Testing details for the three quasi-static helmet tests	130
6.2	Higher load values for rigidity test of the ABS and the bio-composite shell helmets	141
6.3	Crushing Load and energy at 20 mm displacement for the tested samples	145
7.1	True stress and true strain of data for tensile test of ABS material used in shell modeling	158
7.2	Helmet finite element model details	165
8.1	The design matrix levels	178
8.2	Design matrix in coded units (randomized)	179
8.3	The design matrix with uncoded units and response values	180

9.1	Average outdoor temperature and relative humidity in Malaysia for period from 1987-1997	204
B1	Data matrix in coded units (randomized) before adding response values	243
B2	The design matrix with uncoded units and response values	244
B3	Estimated regression coefficients for acceleration (ACC.)	245
B.4	Analysis of variance for acceleration (ACC.)	246
B5	The fitted surface analysis	247

LIST OF FIGURES

Figure		Page
1.1	Number of fatalities related to motorcycle accidents	2
1.2	Total number of registered motorcycles and total number of fatally injured motorcyclists in road crashes 1987-2000	3
1.3	Motorcycle helmet types	6
1.4	Full face helmet showing the helmet components	7
1.5	Shell deformation according to shell type; (a) Rigid shell, (b) Soft shell	9
1.6	Thesis layout chart	19
2.1	Motorcycle helmet literature review areas	20
2.2	Mid-sagittal cross-sectional view of human head and neck	23
2.3	Relationship between measured HIC and the occurrence of the skull fracture or the extravasations of fluid from blood vessels	33
2.4	Tolerance levels for bridging vein disruption (solid lines) and for gliding contusions (dashed line). Note that critical values for peak angular acceleration and angular velocity must both be exceeded for injury to result	36
2.5	Schematic view of forced ventilation system layout	43
2.6	Ventilation system with EPS foam liner	46
2.7	Composite shell making	52
2.8	Helmet shell with inserts	54
2.9	Molding of resilient foam liner helmet (PP, PE, Pb)	62
2.10	Pour in place PU foam helmet mold	64
2.11	Schematic drawing of the penetration test	84
2.12	Schismatic diagram of helmet rigidity test	88

3.1	The research general method of approach	93
3.2	The shell study methodology chart	96
3.3	Natural Fiber Helmet prototype Preparation	97
3.4	The liner study methodology	99
3.5	The helmet model calibration	100
3.6	The geometrical and modeling parameters calibration	100
4.1	The factors considered for the shell material selection	105
4.2	The factors effecting the foam liner material selection	112
4.3	Densification strain ε_D plotted against plateau stress $\sigma_{c(0.25)}$ (the compressive stress at 25 % strain) for commercially available foams. The contours show energy absorption $\varepsilon_D \sigma_{c(0.25)}$ per unit volume	116
5.1	The headform model at the drawing stage	119
5.2	The tool path of the headform manufacturing process (simulation in the Unigraphics program)	120
5.3	(a) The headform and manufacturing and (b) the final product	120
5.4	The Penetration testing headform	121
5.5	Four meters height drop weight testing rig which is designed and constructed at the Road Safety Research Centre, University Putra Malaysia, the figures to the right are enlarged focus for the strikers and the steel base	123
5.6	Schematic view of the natural fibers helmet shell moulding	126
5.7	Helmets fabricated from (a) Coir fibers hybrid with woven roving glass NFC helmet I (b) Coir NFC helmet shell	127
6.1	The test set up for the (a & b)quasi-static penetration, (c) rigidity, and (d & e) crushing tests	131
6.2	The dynamic pentration test, a,b, and c shows the test progression ,while d,e, and f shows the test in more focus for a natural fiber helmet sample	134

6.3	The quasi-static penetration test, a) ABS helmet, b) hybrid oil palm-glass helmet	136
6.4	The load – penetration curves for the ABS and the bio-composite shell helmets	136
6.5	The energy- penetration graph for the plastic and the new bio-composite designs	137
6.6	Rigidity test for ABS helmet, and oil palm-glass fiber helmets	139
6.7	Rigidity test results for natural fibres and ABS shell helmets	140
6.8	Helmet crushing tests, a) ABS shell, b) Coir-glass shell, c) EPS liner only	143
6.9	The helmet crushing load-displacement graph of glass hybrid natural fibers shell helmets and the ABS shell helmets	143
6.10	The helmet crushing energy- displacement graph of glass hybrid natural fibers shell helmets and the ABS shell helmets	144
7.1a	ABS experimental tensile stress-strain curves, the first is specimens cut from SloidGold helmet shell, while the second is the literature data	153
7.1b	The stress strain data for EPP foam using equation (7.2)	156
7.2	The EPP foam model validation	162
7.3	The impact simulation and experimental test results for helmet with EPS foam liner and ABS shell material	161
7.4	The helmet system models used in this study	165
7.5	The helmet system boundary conditions	166
7.6	The peak linear acceleration of the headform center of gravity	169
7.7	The helmet model with the ventilation system introduced	171
7.8	The effect of adding the ventilation system on the impact performance of the EPP foal liner helmet (Impact speed 6 m/s)	172
8.1	The response surface of the acceleration against the foam thickness, and the foam density, ROW: Foam density (kg/m ³), T-foam: Foam thickness (mm),t-shell : Shell thickness (mm). Acc: Peak	

	Headform CG acceleration (g's)	184
8.2	The contour plot of the acceleration against the foam thickness and the foam density	184
8.3	The response surface of the acceleration against the shell thickness, and the foam density	186
8.4	The contour plot of the acceleration response against the shell thickness and the foam density	186
8.5	The response surface of the acceleration against the foam thickness, and the Shell thickness	187
8.6	The contour plot of the acceleration against the foam thickness and the shell Thickness	188
8.7	The response optimization for the absolute minimum acceleration. The graph also shows the desirability lines which can be changed to fit a desired minimum response	189
8.8	The response optimization for minimum foam thickness of 15 mm	190
8.9	The response optimization for low setting of 45kg/m ³ foam density	191
8.10	The response optimization for the high setting of the shell thickness (5 mm)	192
9.1	General shape of the helmet	200
9.2	Isometric drawing of the foam liner showing the top configuration of the foam liner and the back side curvature to improve fitness (shallow duct 3-5 mm).	200
9.3	Side view of the main design configuration of the foam liner	201
9.4	Inside configuration of the ventilation air circulation system	201
9.5	The helmet/head system	206
9.6	Thermal representation of the model	206
9.7	The predicted internal temperature rise for still air movement and body heat for helmet with ABS shell and EPS foam liner	208
9.8	The human comfort chart	209

9.9	Schematic drawing of sensible heating of the moist air stream entering and leaving the helmet at constant pressure(Simplified model)	212
9.10	The internal helmet temperature plotted against nozzle size for a range of metabolic head heat gains	214
A.1	The shape of the tensile test specimen, all dimension are in mm	234
A.2	Tensile testing of coir composite	235
A.3	The stress-strain curves of the tensile test for the oil palm and coir composite material	235
A4	The drop weight impact testing of the natural fiber composites	237
A 5	The drop weight impact behaviour of natural fiber composite, impact velocity 4m/sec, weight 5.11 kg	238
A 6	The drop weight impact testing of natural fiber and GRP composites. impact speed 4m/sec, weight 5.11 kg.	239
A .6	The drop weight impact behaviour of plastic plates (a) ABS and (b) Polycarbonate	24()
B .1	Standardized residual against frequency	248
B2	Residual against fitted values	248

NOTATIONS AND ABBREVIATION

EPS	is the expanded polystyrene foam
EPP	is the expanded polypropylene foam
PP	is the polypropylene
PE	is the polyethylene
Pb	is the polybutylene
PC	is the polycarbonate plastic
ABS	is the acrylonitrile butadiene styrene copolymer
GRP	is the glass reinforced Plastic
CRP	is the carbon reinforced Plastic
WR	is the woven roving
E	is the young's modulus
σ	is the stress
3	is the strain
σ_y	is the foam yield stress
F	is the force
D	is the relative density of the foam
m	is the mass
а	is the acceleration
g	is the gravitational acceleration
t	is the shell thickness
ε _D	is the densification strain
h	is the drop height
А	is the contact area under the anvil
V	is the impact velocity
R	is the helmet radius

