UNIVERSITI PUTRA MALAYSIA

ASSESSMENT OF AN ACRYLIC POLYMER ON THE PROPERTIES OF SOIL-CEMENT

WONG KHIEN NGIE

FK 2003 54
ASSESSMENT OF AN ACRYLIC POLYMER ON THE PROPERTIES OF SOIL - CEMENT

By

WONG KHIEN NGIE

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

August 2003
The aim of this study is to compare the performance of Soil Cement with a manufactured polymer in order to examine the physical properties of the stabilized material. The study determine strength, durability, chemical analysis, mineralogical study, microstructural investigation and, computer modeling, CHEVPC.

The laterite soil named Serdang series was used as a fundamental control material for this study. Normal Portland cement and polymer were used as stabilizing agents. Analysis of Variance (ANOVA) design and Tukey test were used for the unconfined compression strength data between the curing periods and between cement and polymer content. The study showed significant difference ($p < 0.05$) in the amount for 8% cement with 10% polymer (SCP810) between the curing periods, between cement content; and between polymer content.
Unconfined compressive strength of SCP810 achieved more than 2.9 MN/m² (JKR, 1985) and the durability of wet-dry test shows that the weight loss of SCP810 is 12.9% against 14% of the ACI (1990) as the requirement for the road base material.

Mineralogical study in X-Ray Diffraction (XRD) showed an increase in relative intensity of the coarse grain mineral, Quartz mineral, with addition of the polymer. This findings were confirmed by the micrographs Scanning Electron Microscopy (SEM).

Finally, Layered Elastic computer programme, CHEVPC was used to identify the strain criteria of pavement upon the imposed traffic loading. Then, the strain criteria were used to model the Fatigue Models. The following two models were formulated:

- one in terms of unpaved road for the low and light traffic volume and,
- the other in terms of paved road with different thicknesses of asphalt layer and the upper bound and lower bound of soil cement materials.

The study indicates that the unpaved road is suitable for low and light traffic and the paved road can be constructed as the common road especially in tropical country for example, in Malaysia.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENILAIAN POLIMER AKRILIK TERHADAP SIFAT-SIFAT SIMEN-TANAH

Oleh
WONG KHIEN NGIE

OGOS 2003

Pengerusi: Azlan Bin Abdul Aziz.
Fakulti: Kejuruteraan

Kajian ini bertujuan untuk menilai keberkesanan simen tanah dengan polimer pembuatan bagi menguji sifat-sifat fizikal untuk kestabilan bahan tersebut. Kajian ini termasuk kekuatan, ketahanlasakan, analisis kimia, kajian mineralogi, kajian mikro struktur dan, pemodelan komputer, CHEVPC

Tanah laterit yang bernama Siri Serdang digunakan sebagai bahan kawalan asas untuk kajian ini. Simen Portland biasa dan polimer pembuatan digunakan sebagai agen penstabilan. Rekabentuk Varians (ANOVA) dan ujian Tukey digunakan untuk memproses kekuatan mampatan tak terkurung data dari segi tempoh awetan dan kandungan simen dan polimer pembuatan. Kajian menunjukkan bahawa terdapat kesan yang berbeza bagi komposisi 8% simen dengan 10% polimer (SCP810) samada dari segi tempoh awetan, kandungan simen, kandungan polimer (p < 0.05).
Kekuatan mampatan tak terkurung bagi SCP810 telah mencapai keputusan melebihi 2.9 MN/m² (JKR, 1985) dan ketahanlasakan (ujian basah-kering) bagi SCP810 telah mencapai 12.9% kehilangan berat kurang daripada 14% (ACI, 1990) yang merupakan syarat keperluan bagi bahan asas jalan.

Akhirnya, program komputer CHEVPC pula digunakan untuk mengenalpastikan kriteria tegasan bagi turapan semasa dikenakan beban trafik. Kriteria tersebut digunakan pula untuk mengaplikasikan model-model lesu. Terdapat 2 model yang diformulakan seperti berikut:

• satu dalam keadaan tanpa turapan jalan untuk kegunaan isipadu trafik yang rendah dan ringan dan,
• satu lagi berkeadaan turapan jalan dengan ketebalan lapisan asphalt yang berlainan dengan kekuatan bahan tanah simen di bahagian atas and bahagian bawah.

Kajian ini mendapati jalan tanpa turapan lebih sesuai untuk keadaan trafik yang rendah dan ringan. Manakala, jalan turapan boleh dibina sebagai jalan biasa, terutamanya di negara tropikal seperti Malaysia.
ACKNOWLEDGEMENTS

With the completion of this study, I wish to express my sincere appreciation to Mr. Azlan Bin Abdul Aziz, chairman of my supervisory committee for his invaluable guidance, constructive criticisms, suggestions, discussions and patience throughout the research work and during the preparation of this thesis. I am also much indebted and grateful to Assoc. Prof. Dr. Bujang Kim Huat and Mr. Law Teik Hua, members of my supervisory committee for their invaluable advice and guidance in supervising this dissertation.

I acknowledge with gratitude Mr. Razali Abdul Rahman, the technician of Soil Mechanics Laboratory, Department of Civil Engineering for his generous cooperation and unlimited help and Mr. Kamal, the technician of Chemical Laboratory, Department of Chemical for his analysis of the chemical content for the polymer, Renolit. I also wish to express my gratitude to Ms Liu Jan Choo for editing my report and to all of my friends who have been very helpful in assisting my study. Lastly, I am especially indebted to my loving parent, who gave me support and advice in my life.
I certify that an Examination Committee met on 26th June 2003 to conduct the final examination of Wong Khien Ngie on his Master of Science thesis entitled “Assessment of an Acrylic Polymer on the Properties of Soil-Cement” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Saleh Jaafar, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Azlan Abdul Aziz
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Bujang Kim Huat, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Law Teik Hua
Faculty of Engineering
Universiti Putra Malaysia
(Member)

![Signature]

GULAM RUSLI RAHMAT ALI, Ph.D.
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 SEP 2003
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Azlan Abdul Aziz
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Bujang Kim Huat, Ph.D.
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Law Teik Hua
Faculty of Engineering
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: **14 NOV 2003**
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

(WONG KIEN NGE)

Date: 25.8.2003
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVALS</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Statement of the Problem</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Scope of the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Design of the Study</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Significance of the Study</td>
<td>6</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2 History of Soil Cement</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Soil Cement Stabilization</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1 Stabilization Mechanisms</td>
<td>10</td>
</tr>
<tr>
<td>2.3.2 Factors Affecting Soil Cement Mixture</td>
<td>11</td>
</tr>
<tr>
<td>2.3.3 Sample size effect</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Development and Literature Review of Physical Properties Test</td>
<td>12</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS

3.1 Introduction 27
3.2 Sample Size Determination 28
3.3 Materials
3.3.1 Serdang Series Laterite Soil 31
3.3.2 Portland cement 32
3.3.3 Polymer 32
3.4 Sample Selection and Preparation 33
3.5 Soil Identification
3.5.1 Particle Size Distribution (Wet Sieving and Hydrometer) 35
3.5.2 Specific Gravity Determination 37
3.5.3 Atterberg Limit (Liquid and Plastic Limit and Linear Shrinkage Limit Tests) 37
3.5.4 Compaction Test (Modified Proctor Method) 38

2.4.1 Soil Identification Tests 13
2.4.2 Compaction Tests 14
2.4.3 Compressive Tests 15
2.4.4 California Bearing Ratio Test 16
2.4.5 Tensile Strength Test 17
2.4.6 Durability Test 17
2.4.7 Modulus of Elasticity and Tensile Strength 18
2.4.8 Poisson Ratio 19
2.5 Literature Review of Chemical Properties Tests
2.5.1 Mineralogical Analysis, X-Ray Diffraction (XRD) 19
2.5.2 Oxide Analysis, X-Ray Fluorescence (XRF) 20
2.5.3 Micro-structural Analysis, Scanning Electron Microscopy (SEM) 20
2.5.4 Chemical Analysis of Polymer Based Material 21
2.6 Development and Literature Review of Polymer Stabilized Soil and Soil Cement 21
2.7 Experimental Design
2.7.1 Two-way analysis of variance 23
2.7.2 Multiple Comparison Test 23
2.8 Standard Requirement of Soil Cement
2.8.1 Use of Cement Stabilized Soil in Road Pavements
 2.8.1.1 Main Roads 24
 2.8.1.2 Minor Roads 24
2.8.2 Malaysia Standard for Road Specification 25
2.9 Layered Elastic Program, CHEVPC 25
3.6 Compressive Strength Tests 39
 3.6.1 Unconfined Compressive Strength Test (UCS) 39
 3.6.1.1 Experimental Design for UCS 40
 3.6.1.2 Two-way analysis of variance for UCS 41
 3.6.1.3 Hypothesis Null and Alternative Hypothesis 42
 3.6.1.4 Tukey’s Multiple Comparison Test 42
 3.6.2 Modulus of Elasticity from Indirect Tensile Test 43
 3.6.3 California Bearing Ratio (CBR) 44
3.7 Durability Test (Wetting and Drying) 45
3.8 Mineralogical and Microstructure Study
 3.8.1 X-Ray Fluorescence (XRF) 46
 3.8.2 X-Ray Diffraction (XRD) 48
 3.8.3 Scanning Electron Microscopy (SEM) 48
 3.8.3.1 Sample Preparation for SEM 49
3.9 Fatigue model (Layered elastic design) 50
 3.9.1 Method and model
 3.9.1.1 Poisson Ratio Determination Test 51
 3.9.1.2 Modulus of Elasticity of UCS Test 51
 3.9.1.3 Modulus of Elasticity of Indirect Tensile Test 52
 3.9.2 Fatigue model 52

4 RESULTS AND DISCUSSION

4.1 Soil Identification Test 54
4.2 Cement Identification Test 56
4.3 Compaction Test (Modified Proctor Method) 57
4.4 Compressive Strength Test
 4.4.1 Unconfined Compressive Test (UCS) 59
 4.1.1.1 Experimental Design (two-way analysis of Variance (ANOVA)) 61
 4.4.2 Indirect Tensile Test 63
 4.4.3 California Bearing Ratio Test (CBR) 64
4.5 Durability Test 65
4.6 Mineralogical and Microstructural Study
 4.6.1 X-Ray Fluorescence (XRF) 66
 4.6.2 X-Ray Diffraction (XRD) 67
 4.6.3 Scanning Electron Microscopy (SEM) 68
4.7 Fatigue model
 4.7.1 Poisson Ratio 70
 4.7.2 Modulus of Elasticity
 4.7.2.1 UCS Test 70
 4.7.2.2 Indirect Tensile Test 71
 4.7.3 Fatigue model 71
CONCLUSION

REFERENCE

VITA

APPENDICES (ATTACHED CD)
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Elastic moduli for different material (Huang, 1993)</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Poisson ratio for different materials (Huang, 1993)</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Malaysia standard for road specification (JKR, 1985)</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Mix composition of the study.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Properties of Manufacturer Polymer</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of lateritic Serdang series soil.</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Oxide element of the Serdang series lateritic soil and Portland cement.</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Strength test results.</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Two-way ANOVA analyses</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Elasticity modulus from In-direct tensile test.</td>
<td>64</td>
</tr>
<tr>
<td>4.6</td>
<td>X-ray Fluorescence data.</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>X-ray Diffraction data.</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Poisson ratio data</td>
<td>70</td>
</tr>
<tr>
<td>4.9</td>
<td>Elasticity modulus from UCS test</td>
<td>70</td>
</tr>
<tr>
<td>4.10</td>
<td>Elasticity modulus from In-direct tensile test.</td>
<td>71</td>
</tr>
<tr>
<td>4.11</td>
<td>Fatigue data: Allowable number of load repetitions according to the fatigue models.</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The relationship between strength and density developed after investigation with various soils (MacLean et al., 1963).</td>
</tr>
<tr>
<td>3.1</td>
<td>Graph shows the probability of accepted hypothesis for degree freedom of success of 3 (Montgomery, 1991).</td>
</tr>
<tr>
<td>3.2</td>
<td>Graph shows the probability of accepted hypothesis for degree freedom of success of 6 (Montgomery, 1991).</td>
</tr>
<tr>
<td>3.3</td>
<td>Thermogravimetric graph shows that 90.4% is water and 3.73% is functional group material.</td>
</tr>
<tr>
<td>3.4</td>
<td>Fourier Transform Infrared graph shows the possible structural Unit is acrylic group.</td>
</tr>
<tr>
<td>3.5</td>
<td>Position of strain gauge.</td>
</tr>
<tr>
<td>4.1</td>
<td>Grain-size distribution for the lateritic Serdang series soil.</td>
</tr>
<tr>
<td>4.2</td>
<td>Grain-size distribution range for six representative lateritic Serdang series soils.</td>
</tr>
<tr>
<td>4.3</td>
<td>Shrinkage properties for various cement and polymer content.</td>
</tr>
<tr>
<td>4.4</td>
<td>Modified Proctor Compaction Curve for Serdang Series laterite soil.</td>
</tr>
<tr>
<td>4.5</td>
<td>Variation of compaction characteristics of the lateritic Serdang series soil with cement-polymer content (a. Maximum Dry Density; b. Optimum Moisture Content).</td>
</tr>
<tr>
<td>4.6</td>
<td>Variation of unconfined compressive strength of the lateritic Serdang series soil with cement-polymer.</td>
</tr>
<tr>
<td>4.7</td>
<td>The effect of the cement towards curing period.</td>
</tr>
<tr>
<td>4.8</td>
<td>The effect of the polymer at (a) 4%, (b) 6%, and (c) 8% Cement towards curing period.</td>
</tr>
<tr>
<td>4.9</td>
<td>Indirect Tensile Strength is increase with curing periods.</td>
</tr>
<tr>
<td>4.10</td>
<td>Soaked California Bearing Ratio (CBR) properties for various cement and polymer content.</td>
</tr>
</tbody>
</table>
4.11 Wetting and drying properties in various cement and Polymer content. 65

4.12 Soil (100x magnification). 69

4.13 Soil with 8% cement, 7 curing period (100x Magnification). 69

4.14 Soil with 8% cement with 10% polymer, 7 curing period (100x Magnification). 69

4.15 Soil with 8% cement with 10% polymer, 56 curing day (100x Magnification). 69

4.16 Tread of the various thickness of bituminous pavement & soil cement base and relatively to the allowable number of load repetition accordingly to fatigue models. 72

4.17 Design Chart for Unpaved & Low traffic Road 72

4.18 Design Chart of the paved road for the different thicknesses of bituminous pavement and soil cement road base and relatively to the Allowable number of Load Repetitions to Fatigue Model. 74
<table>
<thead>
<tr>
<th>Eqn.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Relationship between two-treatment mean</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Relationship between Interaction of all sample</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Two-way analysis of variance for UCS</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Tukey’s Multiple Comparison Test</td>
<td>42</td>
</tr>
<tr>
<td>3.4.1</td>
<td>The standard error of Tukey’s Test</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>Asphalt fatigue criteria</td>
<td>52</td>
</tr>
<tr>
<td>3.6</td>
<td>Soil cement fatigue criteria</td>
<td>53</td>
</tr>
<tr>
<td>3.7</td>
<td>Subgrade fatigue criteria</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES
(Available in CD)

Appendix

A1 Quantity of Soils Required via Quartering and Riffling for Samples.
A2 Quartering and Riffling Sample Distribution Process Chart.

B1 Sample Size Determination.
B2 Gradation Index for 6 Representative Samples.

C1 Particle Size Distribution Curve for Sample A1.
C2 Particle Size Distribution Curve for Sample B1.
C3 Particle Size Distribution Curve for Sample C1.
C4 Particle Size Distribution Curve for Sample D1.
C5 Particle Size Distribution Curve for Sample E1.
C6 Particle Size Distribution Curve for Sample F1.
C7 Particle Size Distribution Curve for Sample A1-F1.
C8 Particle Size Distribution Data for Sample A1-F1.

D1 Modified Proctor Compaction Test 1 (Soil Only).
D2 Modified Proctor Compaction Test 2 (4% Cement).
D3 Modified Proctor Compaction Test 3 (6% Cement).
D4 Modified Proctor Compaction Test 4 (8% Cement).
D5 Modified Proctor Compaction Test 5 (4% Cement).
D6 Modified Proctor Compaction Test 6 (6% Cement).
D7 Modified Proctor Compaction Test 7 (8% Cement).
D8 Modified Proctor Compaction Test 8 (4% Cement, 5% Polymer).
D9 Modified Proctor Compaction Test 9 (6% Cement, 5% Polymer).
D10 Modified Proctor Compaction Test 10 (8% Cement, 5% Polymer).
D11 Modified Proctor Compaction Test 11 (4% Cement, 5% Polymer).
D12 Modified Proctor Compaction Test 12 (6% Cement, 5% Polymer).
D13 Modified Proctor Compaction Test 13 (8% Cement, 5% Polymer).
D14 Modified Proctor Compaction Test 14 (4% Cement, 5% Polymer).
D15 Modified Proctor Compaction Test 15 (6% Cement, 5% Polymer).
D16 Modified Proctor Compaction Test 16 (8% Cement, 5% Polymer).
D17 Modified Proctor Compaction Test 17 (4% Cement, 10% Polymer).
D18 Modified Proctor Compaction Test 18 (6% Cement, 10% Polymer).
D19 Modified Proctor Compaction Test 19 (8% Cement, 10% Polymer).
D20 Modified Proctor Compaction Test 20 (4% Cement, 10% Polymer).
D21 Modified Proctor Compaction Test 21 (6% Cement, 10% Polymer).
D22 Modified Proctor Compaction Test 22 (8% Cement, 10% Polymer).
D23 Modified Proctor Compaction Test 23 (4% Cement).
D24 Modified Proctor Compaction Test 24 (6% Cement).
D25 Modified Proctor Compaction Test 25 (8% Cement).
D26 Modified Proctor Compaction Test 26 (Soil Only).
D27 Modified Proctor Compaction Test 27 (Soil Only).
D28 Modified Proctor Compaction Test 28 (4% Cement 10% Polymer).
D29 Modified Proctor Compaction Test 29 (6% Cement 10% Polymer).
D30 Modified Proctor Compaction Test 30 (8% Cement 10% Polymer).

E1 Plastic Limit Data.
E2 Liquid Limit Chart for Soil Only.
E3 Liquid Limit Chart for 4% Cement.
E4 Liquid Limit Chart for 6% Cement.
E5 Liquid Limit Chart for 8% Cement.
E6 Liquid Limit Chart for 4% Cement 5% Polymer.
E7 Liquid Limit Chart for 6% Cement 5% Polymer.
E8 Liquid Limit Chart for 8% Cement 5% Polymer.
E9 Liquid Limit Chart for 4% Cement 10% Polymer.
E10 Liquid Limit Chart for 6% Cement 10% Polymer.
E11 Liquid Limit Chart for 8% Cement 10% Polymer.
E12 Atterberg Limit Data.

F1 Multiple comparison test (Tukey Test) (ANOVA) (Page 1 – Page 6)

G1 Unconfined Compressive Strength Test (UCS1-Soil-7days).
G2 Unconfined Compressive Strength Test (UCS2-Soil-7days).
G3 Unconfined Compressive Strength Test (UCS3-Soil-7days).
G4 Unconfined Compressive Strength Test (UCS31-Soil-7days).
G5 Unconfined Compressive Strength Test (UCS32-Soil-7days).
G6 Unconfined Compressive Strength Test (UCS33-Soil-7days).
G7 Unconfined Compressive Strength Test (UCS121-Soil-14days).
G8 Unconfined Compressive Strength Test (UCS122-Soil-14days).
G9 Unconfined Compressive Strength Test (UCS123-Soil-14days).
G10 Unconfined Compressive Strength Test (UCS61-Soil-28days).
G11 Unconfined Compressive Strength Test (UCS62-Soil-28days).
G12 Unconfined Compressive Strength Test (UCS63-Soil-28days).
G13 Unconfined Compressive Strength Test (UCS64-Soil-56days).
G14 Unconfined Compressive Strength Test (UCS65-Soil-56days).
G15 Unconfined Compressive Strength Test (UCS66-Soil-56days).
G16 Unconfined Compressive Strength Test (UCS4-4% Cement-7 days).
Unconfined Compressive Strength Test (UCS5-4% Cement-7 days).

G18 Unconfined Compressive Strength Test (UCS6-4% Cement-7 days).

G19 Unconfined Compressive Strength Test (UCS34-4% Cement-7 days).

G20 Unconfined Compressive Strength Test (UCS35-4% Cement-7 days).

G21 Unconfined Compressive Strength Test (UCS36-4% Cement-7 days).

G22 Unconfined Compressive Strength Test (UCS124-4% Cement-14 days).

G23 Unconfined Compressive Strength Test (UCS125-4% Cement-14 days).

G24 Unconfined Compressive Strength Test (UCS126-4% Cement-14 days).

G25 Unconfined Compressive Strength Test (UCS67-4% Cement-28 days).

G26 Unconfined Compressive Strength Test (UCS68-4% Cement-28 days).

G27 Unconfined Compressive Strength Test (UCS69-4% Cement-28 days).

G28 Unconfined Compressive Strength Test (UCS70-4% Cement-56 days).

G29 Unconfined Compressive Strength Test (UCS71-4% Cement-56 days).

G30 Unconfined Compressive Strength Test (UCS72-4% Cement-56 days).

G31 Unconfined Compressive Strength Test (UCS13-4% Cement 5% Polymer-7 days).

G32 Unconfined Compressive Strength Test (UCS14-4% Cement 5% Polymer-7 days).

G33 Unconfined Compressive Strength Test (UCS15-4% Cement 5% Polymer-7 days).

G34 Unconfined Compressive Strength Test (UCS43-4% Cement 5% Polymer-7 days).

G35 Unconfined Compressive Strength Test (UCS44-4% Cement 5% Polymer-7 days).

G36 Unconfined Compressive Strength Test (UCS45-4% Cement 5% Polymer-7 days).

G37 Unconfined Compressive Strength Test (UCS133-4% Cement 5% Polymer-14 days).

G38 Unconfined Compressive Strength Test (UCS134-4% Cement 5% Polymer-14 days).

G39 Unconfined Compressive Strength Test (UCS135-4% Cement 5% Polymer-14 days).
Unconfined Compressive Strength Test (UCS85-4% Cement 5% Polymer-28 days).

Unconfined Compressive Strength Test (UCS86-4% Cement 5% Polymer-28 days).

Unconfined Compressive Strength Test (UCS87-4% Cement 5% Polymer-28 days).

Unconfined Compressive Strength Test (UCS88-4% Cement 5% Polymer-56 days).

Unconfined Compressive Strength Test (UCS89-4% Cement 5% Polymer-56 days).

Unconfined Compressive Strength Test (UCS90-4% Cement 5% Polymer-56 days).

Unconfined Compressive Strength Test (UCS22-4% Cement 10% Polymer-7 days).

Unconfined Compressive Strength Test (UCS23-4% Cement 10% Polymer-7 days).

Unconfined Compressive Strength Test (UCS24-4% Cement 10% Polymer-7 days).

Unconfined Compressive Strength Test (UCS52-4% Cement 10% Polymer-7 days).

Unconfined Compressive Strength Test (UCS53-4% Cement 10% Polymer-7 days).

Unconfined Compressive Strength Test (UCS54-4% Cement 10% Polymer-7 days).

Unconfined Compressive Strength Test (UCS142-4% Cement 10% Polymer-14 days).

Unconfined Compressive Strength Test (UCS143-4% Cement 10% Polymer-14 days).

Unconfined Compressive Strength Test (UCS144-4% Cement 10% Polymer-14 days).

Unconfined Compressive Strength Test (UCS103-4% Cement 10% Polymer-28 days).

Unconfined Compressive Strength Test (UCS104-4% Cement 10% Polymer-28 days).

Unconfined Compressive Strength Test (UCS105-4% Cement 10% Polymer-28 days).

Unconfined Compressive Strength Test (UCS106-4% Cement 10% Polymer-28 days).

Unconfined Compressive Strength Test (UCS107-4% Cement 10% Polymer-56 days).

Unconfined Compressive Strength Test (UCS108-4% Cement 10% Polymer-56 days).

Unconfined Compressive Strength Test (UCS7-6% Cement-7 days).

Unconfined Compressive Strength Test (UCS8-6% Cement-7 days).
G63 Unconfined Compressive Strength Test (UCS9-6% Cement-7
days).
G64 Unconfined Compressive Strength Test (UCS37-6% Cement-7
days).
G65 Unconfined Compressive Strength Test (UCS38-6% Cement-7
days).
G66 Unconfined Compressive Strength Test (UCS39-6% Cement-7
days).
G67 Unconfined Compressive Strength Test (UCS127-6% Cement-14
days).
G68 Unconfined Compressive Strength Test (UCS128-6% Cement-14
days).
G69 Unconfined Compressive Strength Test (UCS129-6% Cement-14
days).
G70 Unconfined Compressive Strength Test (UCS73-6% Cement-28
days).
G71 Unconfined Compressive Strength Test (UCS74-6% Cement-28
days).
G72 Unconfined Compressive Strength Test (UCS75-6% Cement-28
days).
G73 Unconfined Compressive Strength Test (UCS76-6% Cement-56
days).
G74 Unconfined Compressive Strength Test (UCS77-6% Cement-56
days).
G75 Unconfined Compressive Strength Test (UCS78-6% Cement-56
days).
G76 Unconfined Compressive Strength Test (UCS16-6% Cement 5%
Polymer-7 days).
G77 Unconfined Compressive Strength Test (UCS17-6% Cement 5%
Polymer-7 days).
G78 Unconfined Compressive Strength Test (UCS18-6% Cement 5%
Polymer-7 days).
G79 Unconfined Compressive Strength Test (UCS46-6% Cement 5%
Polymer-7 days).
G80 Unconfined Compressive Strength Test (UCS47-6% Cement 5%
Polymer-7 days).
G81 Unconfined Compressive Strength Test (UCS48-6% Cement 5%
Polymer-7 days).
G82 Unconfined Compressive Strength Test (UCS136-6% Cement 5%
Polymer-14 days).
G83 Unconfined Compressive Strength Test (UCS137-6% Cement 5%
Polymer-14 days).
G84 Unconfined Compressive Strength Test (UCS138-6% Cement 5%
Polymer-14 days).
G85 Unconfined Compressive Strength Test (UCS91-6% Cement 5%
Polymer-28 days).
Unconfined Compressive Strength Test (UCS92-6% Cement 5% Polymer-28 days).
Unconfined Compressive Strength Test (UCS93-6% Cement 5% Polymer-28 days).
Unconfined Compressive Strength Test (UCS94-6% Cement 5% Polymer-56 days).
Unconfined Compressive Strength Test (UCS95-6% Cement 5% Polymer-56 days).
Unconfined Compressive Strength Test (UCS96-6% Cement 5% Polymer-56 days).
Unconfined Compressive Strength Test (UCS25-6% Cement 10% Polymer-7 days).
Unconfined Compressive Strength Test (UCS26-6% Cement 10% Polymer-7 days).
Unconfined Compressive Strength Test (UCS27-6% Cement 10% Polymer-7 days).
Unconfined Compressive Strength Test (UCS55-6% Cement 10% Polymer-7 days).
Unconfined Compressive Strength Test (UCS56-6% Cement 10% Polymer-7 days).
Unconfined Compressive Strength Test (UCS57-6% Cement 10% Polymer-7 days).
Unconfined Compressive Strength Test (UCS145-6% Cement 10% Polymer-14 days).
Unconfined Compressive Strength Test (UCS146-6% Cement 10% Polymer-14 days).
Unconfined Compressive Strength Test (UCS147-6% Cement 10% Polymer-14 days).
Unconfined Compressive Strength Test (UCS109-6% Cement 10% Polymer-28 days).
Unconfined Compressive Strength Test (UCS110-6% Cement 10% Polymer-28 days).
Unconfined Compressive Strength Test (UCS111-6% Cement 10% Polymer-28 days).
Unconfined Compressive Strength Test (UCS112-6% Cement 10% Polymer-56 days).
Unconfined Compressive Strength Test (UCS113-6% Cement 10% Polymer-56 days).
Unconfined Compressive Strength Test (UCS114-6% Cement 10% Polymer-56 days).
Unconfined Compressive Strength Test (UCS10-8% Cement -7 days).
Unconfined Compressive Strength Test (UCS11-8% Cement -7 days).
Unconfined Compressive Strength Test (UCS12-8% Cement -7 days).
Unconfined Compressive Strength Test (UCS40-8% Cement -7 days).
Unconfined Compressive Strength Test (UCS41-8% Cement -7 days).
Unconfined Compressive Strength Test (UCS42-8% Cement -7 days).
Unconfined Compressive Strength Test (UCS130-8% Cement -14 days).
Unconfined Compressive Strength Test (UCS131-8% Cement -14 days).
Unconfined Compressive Strength Test (UCS132-8% Cement -14 days).
Unconfined Compressive Strength Test (UCS80-8% Cement -28 days).
Unconfined Compressive Strength Test (UCS81-8% Cement -28 days).
Unconfined Compressive Strength Test (UCS82-8% Cement -28 days).
Unconfined Compressive Strength Test (UCS83-8% Cement -56 days).
Unconfined Compressive Strength Test (UCS84-8% Cement -56 days).
Unconfined Compressive Strength Test (UCS85-8% Cement -56 days).
Unconfined Compressive Strength Test (UCS19-8% Cement 5% Polymer-7 days).
Unconfined Compressive Strength Test (UCS20-8% Cement 5% Polymer-7 days).
Unconfined Compressive Strength Test (UCS21-8% Cement 5% Polymer-7 days).
Unconfined Compressive Strength Test (UCS49-8% Cement 5% Polymer-7 days).
Unconfined Compressive Strength Test (UCS50-8% Cement 5% Polymer-7 days).
Unconfined Compressive Strength Test (UCS51-8% Cement 5% Polymer-7 days).
Unconfined Compressive Strength Test (UCS139-8% Cement 5% Polymer-14 days).
Unconfined Compressive Strength Test (UCS140-8% Cement 5% Polymer-14 days).
Unconfined Compressive Strength Test (UCS141-8% Cement 5% Polymer-14 days).
Unconfined Compressive Strength Test (UCS97-8% Cement 5% Polymer-28 days).
Unconfined Compressive Strength Test (UCS98-8% Cement 5% Polymer-28 days).