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The synthesis of new palm based polyol esters as the biodegradable base stock for 

lubricant production was conducted via chemical transesterification of palm based 

methyl esters with trimethylolpropane, 2-ethyl-2-(hydroxymethyl)- 1 ,3-propanediol 

(TMP). Both palm oil (POME) and palm kernel methyl esters (PKOME) were used 

as the starting materials and sodium methoxide as the catalyst. The reactions were 

carried out under different temperatures (80 to 140°C) and vacuum pressures (0. 1 to 

500 mbar). Palm based TMP esters containing 98% w/w triesters was successfully 

synthesized in 45 minutes under 10  mbar vacuum, T=120°C, and 3 .9: 1 molar ratio of 

POME to TMP. While the effect of methyl esters to TMP ratio was minimal, the 

optimum molar ratio was found at 3 . 5 : 1  and 3 .8 : 1 in palm kernel and palm oil TMP 

ester synthesis respectively. The amount of catalyst required was less than 1 .0% 

w/w of the total mass of reactants. The optimal reaction conditions were: 

temperature, BO°C for POME and 120°C for PKOME; vacuum, 20 mbar; catalyst, 

sodium methoxide at 0 .7% (w/w); POME:TMP, 3 .8:1 ;  PKOME:TMP, 3 .5:1 ;  

duration, 1 hour. Analysis of  the reaction products was performed using GC with a 
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high temperature capillary column, SGE HT5 operated at a temperature gradient of 

6°C/min starting from 80°C to 340°C. Before injection, the sample was derivatized 

with N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) in ethyl acetate at 40°C for 

at least 10 min. This procedure provided a complete separation of the reaction 

products: TMP, palm based methyl esters, monoesters, diesters and triesters. 

The kinetics study on transesterification of palm oil-based methyl esters with TMP 

established that the reactions occurred via three stepwise and reversible elementary 

reactions. The reversible reactions were suppressed by applying large excess of 

methyl esters and continual withdrawal of methanol via vacuum. The optimum ratios 

for k2lkl and k3lkl in palm oil TMP esters synthesis ranged from 0.70-0.80 and 0.21-

0.25 respectively. For palm kernel TMP ester synthesis, the ratios for k2lkl and k3lkl 

were between 0.60-0.70 and 0. 12-0. 1 5 .  The activation energies of the reactions 

ranged from 17 .2 to 33 .9 kcallmol. The lubrication properties of palm oil-based 

TMP esters indicated good potential as base stock in biodegradable lubricant 

formulation. Despite its high pour points, other lubrication properties such as 

viscosity, VI, wear and friction properties are comparable to commercial hydraulic 

fluids. The pour point (PP) problem associated with the saturation level in palm oil 

was resolved, as the PP was successfully improved to -32°C in high oleic palm 

based TMP esters. However, lowering the PP has negative effect on oxidative 

stability as well as wear and friction. With proper additives, it is believed that the 

new formulated high oleic palm oil TMP ester will offer a wide variety of 

applications: hydraulic fluids, fire resistant fluids, metalworking fluids, and general 

lubricating oils. Its unique chemistry offers excellent oxidative and thermal stability, 

superior low temperature behaviour, and biodegradability. 
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SINTESIS ESTER TRIMETILPROPANA MINYAK SAWIT DAN POTENSI 
PENGGUNAAN SEBAGAI BAHAN ASAS MINYAK PELINCm 

Oleh 

ROBI' AD BINTI YUNUS 

October 2003 

Pengerusi: Profesor Madya Fakhru'l-Razi Ahmadun, Ph.D. 

Fakulti: Kejuruteraan 

Sintesis ester polio I minyak sawit sebagai bahan asas dalam penghasilan minyak 

pelincir biodegradasi dijalankan melalui proses transesterifikasi kimia metil ester 

minyak sawit dengan trimetilolpropana, 2-etil-2-(hidroksimetil)- 1 ,3-propanadiol 

(TMP). Metil ester dari minyak kelapa sawit (POME) dan dan minyak isirong kelapa 

sawit (PKOME) digunakan sebagai bahan mentah dan sodium metoksida sebagai 

pemangkin. Tindakbalas dijalankan pada suhu 80 ke 140°C dan tekanan vakum, 0. 1 

ke 500 mbar. Ester TMP minyak sawit yang mengandungi 98% w/w triester telah 

berjaya disintesis dalam masa 45 minit pada tekanan 1 0  mbar, suhu 120°C dan 

nisbah mol POME:TMP, 3.9 : 1 .  Walaupun kesan nisbah mol POME (PKOME):TMP 

keatas tindakbalas adalah minima, nisbah optima adalah 3 . 5 :  1 dan 3 . 8 :  1 bagi sintesis 

ester TMP minyak sawit dan isirong minyak sawit. Jumlah pemangkin yang 

diperlukan adalah kurang dari 1% dari jumlah jisim bahan tindakbalas. Keadaan 

tindakabalas optima adalah: suhu, BO°C bagi POME and 120°C bagi PKOME; 

tekanan: 20 mbar; pemangkin: sodium metoksida pada 0 .7% (w/w); POME: TMP, 

3 .8: 1 ;  PKOME: TMP, 3 .5: 1; masa, 1 jam. Analisis hasil tindakbalas dibuat 

5 



menggunakan GC dengan turus kapilari bersuhu tinggi, SGE HT5 pada suhu berkala 

6°C/min dari 80°C ke 340°C. Sebelum disuntik, sampel ditindakabalaskan dengan 

N,O-Bis(trimetilsilil) trifluoroacetamida (BSTFA) dalam etil acetat pada suhu 40°C 

selama 10  min. Kaedah ini membolehkan analisa kuntitatif kerana pemisahan 

lengkap hasil tindakabalas seperti: TMP, metil ester, monoester, diester dan triester. 

Kaj ian kinetik keatas transesterifikasi metil ester minyak sawit dengan TMP 

menunjukkan tindakabalas berlaku secara turutan melibatkan tiga tindakbalas asas 

berbalik. Tindakbalas berbalik dikurangkan dengan menggunakan metil ester lebihan 

dan penyingkiran berterusan metanol melalui vakum. Nisbah optimum pekali 

tindakbalas k2/kl and k3/kl dalam sintesis ester TMP minyak sawit berada pada julat 

0.70-0.80 dan 0.21 -0.25. Bagi sintesis ester TMP minyak isirong sawit, nisbah k2/kl 

dan k3lkl adalah diantara 0.60-0.70 dan 0. 12-0. 15 .  Tenaga keaktifan tindakabalas 

bagi sintesis tersebut berada diantara 17.2 to 33 .9 kcallmol. Ujian pelinciran keatas 

ester TMP minyak sawit menunjukkan potensi tinggi minyak tersebut sebagai bahan 

asas dalam formulasi minyak pelincir biodegradasi. Walaupun takat tuang (PP) 

tinggi, kelikatan,indek kelikatan, ciri haus dan geseran adalah setara dengan minyak 

hidralik yang ada dipasaran. Masalah PP yang dikaitkan dengan tahap tepu minyak 

sawit telah dapat diselesaikan dengan penemuan bam, ester TMP minyak sawit oleik 

tinggi dimana PP dapat dikurangkan ke -32°C. Walaubagaimanapun, pengurangan 

PP menimbulkan kesan negatif kepada kestabilan oksida dan ciri haus serta geseran. 

Dengan penggunaan bahan tambah tertentu, minyak sawit oleik tinggi dipercayai 

dapat digunakan dalam pelbagai kegunaan: bendalir hidralik, bendalir logamkerja, 

dan minyak pelincir am. Ciri kimianya yang unik menawarkan kestabilan terma dan 

oksida yang tinggi, sifat suhu rendah yang baik dan biodegradasi. 
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Adsorption equilibrium constant (dimensionless) 
Reaction rate constants for reactions 1, 2, and 3 (wt-lminol) 
Reaction rate constants for reverse reactions 1, 2, and 3 
(wt-1mino

l
) 

Rate constant for adsorption 
Rate constant for desorption 
{[1MPo]kJk2}1R2R31tt 
(krk3) 
(kj-k3) 
(kJ-kzj 
k2lkJ 
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� 
o 
v 

Jl 
p 
Subscript A, BC D 

Subscript i,j , , 
Subscript 0 

Superscript a, /3, x' and I) 

k3lkJ 
k/(kl-k� 
Kinematic viscosity, mm

2
/s (cSt) 

Dynamic viscosity, mPa.s (cP) 
Density (glml) 
Reacting components A, B, C and D 
ith or jth component 
Initial condition 
Orders of reaction 
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1.1  Background 

CHAPTER 1 

INTRODUCTION 

Biodegradable lubricants in the form of animal and vegetable fats and oils have been 

in use since ancient history. However, in the second half of the 20th century these 

natural lubricants are predominantly replaced by mineral-based lubricants due to its 

cost and performance considerations (Dowson, 1997). Despite its inherent 

limitations, natural fats and oils continued to play an important role in lubricant 

formulation. According to Formo ( 1982), about 10,000 tonnes (20 millions pounds) 

of fats and oils were used for lubricants production in 1962 and increased to 100,000 

tonnes in 1976. The US Department of Agriculture has estimated about 54,000 

tonnes ( 108 million pounds) of vegetable oils was used in lubricant formulations in 

1 993, out of 70 million tonnes of vegetable oils currently produced worldwide 

(Margaroni, 1999). This figure represents approximately 0.5% of total lubricants 

supplied to the US market. (Honory and Boeckendstedt, 1998) 

Today, most of the lubricants and functional fluids are derived exclusively from 

petrochemical or mineral bases. They account for 85-90 % of the total world 

lubricants. Whilst, less than 1 5% of the world lubricants are synthetic-based, the 

synthetic-based lubricants offer high performance oil with superior lubricity, higher 

thermal stability, excellent oxidative stability, lower volatility, and hence fewer oil 

change requirement (Moore et aI, 2003; Shanley and Butcher, 1999). Due to its poor 

oxidative stability, vegetable oil-based lubricants account for only 1 % of total world 

lubricants. Adding additives such as antioxidant and pour point depressant enhances 

the properties of these biodegradable lubricants. 
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The awareness of preserving the environment has inspired research and development 

in environmental friendly products such as biodegradable lubricants. Lubricants are 

one of many hazardous contaminants of our environment, almost 90% are mineral

based and most of the used oils are not regenerated. It is reported that every year 

million tonnes of engine, industrial and hydraulic oils leak into the ground, 

waterways or are disposed otT into the environment. It was calculated that up to 

600,000 tons of oil a year disappear uncontrolled in the European Community (EC) 

alone (Wilson, 1998). According to the US Navy statistics, the total oil spilled in the 

US coasts is increasing alarmingly, from 17,370 gallons in 1990 to 66,404 in 1997 

and up to 1 8 1 ,453 gallons in 1 998 (Johnson, 1 999). 

The modern developments in high-performance biodegradable lubricants began only 

in the 1970' s. The first biodegradable lubricant was two-stroke oil based on 

synthetic esters, which was commercially available in 1975 . It was developed in 

response to the increasing environmental concern over the use of petroleum-based 

lubricants in environmentally sensitive areas and in once-through applications. 

Many large corporations such as Mobil Oil Co. ,  BP, Castrol and Shell have 

formulated range of biodegradable products with specific applications. These 

products are available commercially and conformed to various categories of 

biodegradable lubricants classifications such as German's "Blue Angel" Eco-Iabel 

(Hery and Battersby, 1 998; Kiovsky et al., 1994). 

The most critical areas requiring biodegradable lubricants are the "total loss" or 

"once through" materials such as chain saw lubricants, two-cycle-engine oils, and 

hydraulics fluids (Kiovsky et ai., 1994). Due to the higher risks in entering soil and 
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