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Abstract
Electrocardiogram (ECG) signals are crucial in diagnosing cardiovascular diseases
(CVDs). While wavelet-based feature extraction has demonstrated effectiveness in deep
learning (DL)-based ECG diagnosis, selecting the optimal wavelet base poses a sig-
nificant challenge, as it directly influences feature quality and diagnostic accuracy. Tra-
ditional methods typically rely on fixed wavelet bases chosen heuristically or through
trial-and-error, which can fail to cover the distinct characteristics of individual ECG sig-
nals, leading to suboptimal performance. To address this limitation, we propose a rein-
forcement learning-based wavelet base selection (RLWBS) framework that dynamically
customizes the wavelet base for each ECG signal. In this framework, a reinforcement
learning (RL) agent iteratively optimizes its wavelet base selection (WBS) strategy based
on successive feedback of classification performance, aiming to achieve progressively
optimized feature extraction. Experiments conducted on the clinically collected PTB-
XL dataset for ECG abnormality classification show that the proposed RLWBS frame-
work could obtain more detailed time-frequency representation of ECG signals, yielding
enhanced diagnostic performance compared to traditional WBS approaches.

Introduction
According to a report issued by the American Heart Association [1], cardiovascular diseases
(CVDs) emerge as the leading cause of mortality worldwide, with the number of individuals
affected by CVDs projected to rise to 23.6 million by 2030 [2]. The ECG is a critical physio-
logical recording obtained via electrodes placed on the body surface that measures the heart’s
electrical activity. It provides essential diagnostic information for detecting CVDs. ECG sig-
nals can reveal symptoms of heart-related pathologies, which are crucial for the prompt diag-
nosis and effective monitoring of CVDs. They also have the potential to facilitate rapid med-
ical interventions for patients [3]. Therefore, the precise and efficient diagnosis of ECG sig-
nals for identifying heart diseases is instrumental in ensuring timely treatment and early
intervention, which could dramatically decrease mortality rates associated with CVDs [4].
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However, manual ECG diagnosis requires specialized knowledge and significant timein study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.
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investment from physicians, consuming substantial medical resources and potentially causing
diagnostic backlog. Consequently, there is a growing demand for automated ECG classifica-
tion technologies to address the increasing burden of CVDs [5]. To accelerate the automation
of the ECG diagnostic process for clinical applications, many existing studies employ DL to
directly map ECG signals to their corresponding categories [6–8]. In addition, feature engi-
neering which extract significant features from ECG signals could help further improve the
classification performance and efficiency of DL-based ECG classification [9]. Among various
feature extraction methods, the wavelet transform (WT) is particularly effective for extracting
time-frequency information of signals and could reveal frequency variations over time, which
is suitable to obtained refined features from non-stationary signals like ECGs [10].

TheWT is widely used in DL-based ECG classification [11] as it could utilize wavelet base
functions to filter and decompose ECG signals into different sub-bands across various time
scales [12]. For instance, [13] utilizes continuous wavelet transform (CWT) to convert ECG
signals into the time-frequency domain and employ convolutional neural networks (CNNs) to
extract features from the time-frequency maps. It achieved an improvement in the F1 score by
4.75% to 16.85% compared to competing methods without WD for arrhythmia classification.
In [14], 24 wavelet features are severed as the input to a multi-layer perceptron (MLP) neu-
ral network, and a classification accuracy of 96.5% can be achieved for arrhythmia detection.
[15] proposes a novel deep bidirectional LSTM network that takes wavelet sequences at each
decomposition level as input features for ECG classification, resulting an accuracy of 99.39%
on the MIT-BIH Arrhythmia Database. DL-based ECG classification with wavelet features
maintains classification performance while benefiting from lower model complexity, making
it practical for applications with limited computational and storage resources [16]. Selecting
an appropriate wavelet base function is crucial for accurately capturing the characteristics of
time-varying signals, as shown in Fig 1. It can be seen that the detailed time-frequency char-
acteristics captured differ depending on the chosen wavelet base. Hence, the choice of wavelet
base function is a critical pre-determined parameter for WT in DL-based ECG classification
[9]. Despite the powerful capabilities of WT for feature extraction, the selection of an optimal
wavelet base remains a complex and uncertain challenge [10].

To select appropriate wavelet bases, many existing studies pre-select the base based on
expert experience [17]. Some studies consider selecting optimal wavelet base based on the
correlation or similarity between the wavelet base and the signals to be analyzed. For instance,
[18] determine the optimal wavelet base function for ECG signal denoising by calculating
the correlation coefficients between the ECG signal and different wavelet base functions. The
basis with the highest correlation coefficient is considered as optimal. Recently, selecting the
optimal wavelet bases based on the performance of the targeted application becomes pop-
ular. [19] proposes a cross-validation approach to select wavelet bases, where the wavelet
combination that yields the highest detection performance during the validation is utilized
for further analysis. [20] conducts a thorough quantitative analysis to evaluate the denois-
ing performance of 115 potential wavelet base functions (from 6 wavelet families). The opti-
mal wavelet base can be determined based on the signal-to-noise ratio (SNR) after denois-
ing. In[21], the wavelet base which yields the highest denoising performance and arrhythmia
classification performance simultaneously is considered as optimal. These wavelet parameter
selection methods indeed could find an optimal wavelet base appropriate for the character-
istics of most ECG signals, resulting in higher average performance. However, using a single
wavelet base for all ECG signals may overlook signals that deviate from the majority, as ECG
signals in different categories, especially abnormal ones, exhibit significant variations in the
time-frequency domain.
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Fig 1. An illustration of different wavelet bases and their corresponding wavelet features obtained from the same ECG signal. (a) Different wavelet bases. (b)
Wavelet features obtained with different bases.

https://doi.org/10.1371/journal.pone.0318070.g001

In this study, we focus on a dynamic approach to determine wavelet bases for ECG sig-
nals to enhance DL-based ECG diagnosis. By selecting wavelet bases which coincides with the
unique characteristics of each ECG signal, we aim to generate wavelet features that are more
detailed and distinguishable. Leveraging RL [22], the wavelet base selection (WBS) process
is modeled as a stateless Markov Decision Process (MDP) [23]. Here, an RL agent is trained
to optimize its action, i.e., selecting wavelet bases, to maximize the reward induced by more
appropriate selection of wavelet bases. In our previous study [24], RL was successfully adopted
for selection of the optimal parameters for short-time Fourier transform (STFT), which
inspires us to apply RL for adaptively select wavelet bases for DL-based ECG classification.

Our main contributions are as follows:

• This is the first study to systematically consider selecting wavelet bases for signals within
an RL framework, where an agent is trained to choose wavelet bases to obtain improved
wavelet features, thereby immediately enhancing classification performance.

• The wavelet base is customized for each individual ECG signal, allowing for the capture of
the most significant wavelet features relevant to its respective category.

• The efficacy of the proposed approach is validated in ECG abnormality classification
through the clinically collected PTB-XL ECG database compared to competing methods.

Materials and methods
The overall workflow of the proposed approach is illustrated in Fig 2. First, raw ECG signals
undergo preprocessing to standardize the data by scaling inputs and segmenting the signals
for label aggregation. The preprocessed signals are then split into training, validation, and test
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Fig 2.The overall workflow of this study.

https://doi.org/10.1371/journal.pone.0318070.g002

datasets. An RL agent is trained to adaptively select appropriate wavelet bases for the ECG sig-
nals in the training dataset. Simultaneously, the agent’s selection strategy is guided through
feedback from an evaluation network, which continuously assesses the diagnostic perfor-
mance obtained with the continuous wavelet transform (CWT) of ECG signals in the evalu-
ation dataset, using the wavelet bases provided by the agent. Finally, the trained RL agent is
evaluated on the test dataset to assess the effectiveness of its WBS strategy.

Continuous wavelet transform
In this study, the CWT is employed to extract time-frequency features from ECG signals as
it could extract detailed characteristics of ECG signals at adjustable time-frequency resolu-
tion. Consider a real-valued signal x(t), the CWT of x(t) by using a wavelet base 𝜓(t) can be
formulated as

W(c, b) = 1√
c ∫

+∞

–∞
x(t)𝜓( t – b

c
)dt (1)

where c and b correspond to the parameters of scale and time shift, respectively,W(c, b) rep-
resents the wavelet coefficient at scale c and the time shift b, the term 𝜓( t–bc ) describes the
wavelet base 𝜓(t) under the translational and scaling transformations. The wavelet coefficient
W(c, b) essentially quantifies the similarity between signal and the wavelet function 𝜓( t–bc ),
producing features across multiple temporal regions and frequencies. This enables the capture
of time-frequency characteristics in the signal at varying resolutions.

Denote c = [c1, c2,⋯, cM] and b = [b1, b2,⋯, bN] as the vectors containing sampled values
in the scale and shift domains, respectively. The sampled version of the continuous wavelet
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transform (CWT) in the time-frequency domain can be represented as

W = {W(ci, bi)}(i,j)∈[c1 ,c2 ,⋯,cM]×[b1 ,b2 ,⋯,bN] (2)

whereW(ci, bi) is the (i, j)th element inW. The matrixW represents the discretized CWT
results, capturing the time-frequency characteristics of the signal. These features, represented
byW, can then be regarded as wavelet-derived features suitable for input into DL models for
further analysis and classification.

The wavelet bases exhibit variable time-frequency characteristics, as shown in Fig 1. Com-
monly used wavelet bases in signal analysis include the Haar wavelet, Daubechies wavelet
(dbN), Symlet wavelet (symN), Coiflet wavelet (coifN), and Biorthogonal wavelet (biorNr.Nd)
[25]. The Haar wavelet is the simplest to compute but is discontinuous in the time domain.
Daubechies wavelets, with their extreme phase and higher vanishing moments, are suitable
for reconstructing smooth signals but are more computationally complex and asymmetric.
Symlet wavelets improve upon Daubechies wavelets by offering better symmetry and reduced
phase distortion. Coiflet wavelets provide high symmetry and effective frequency band par-
titioning. Biorthogonal wavelets introduce biorthogonality, resolving the conflict between
symmetry and precise signal reconstruction.

The wavelet features obtained from the same ECG signal using different wavelet bases
through CWT can vary as their time-frequency characteristics change depending on the
selected wavelet base, highlighting the importance of choosing the right one. An appropriate
wavelet base is crucial for extracting relevant features from ECG signals that are indicative of
different diagnostic categories. This study aims to develop a systematic method for selecting
the optimal wavelet base for individual ECG signals, enhancing the feature extraction capa-
bilities of CWT and thereby improving the classification accuracy of models in distinguishing
between various ECG categories.

RL basics
RL is an approach that involves learning to generate actions to maximize cumulative rewards
through interaction with an environment. The structure of RL is illustrated in Fig 3. At its
core, an agent interacts with the environment by taking actions based on the current system
state and receiving rewards in return. The agent aims to learn the optimal action at each time
step to maximize the long-term cumulative reward through continuous learning and policy
improvement. The problem addressed by RL can be modeled as a MDP [26], characterized by
the tuple {S ,A,P,R,𝛾}, where:

• S is the state space, representing the set of all possible system states.
• A is the action space, representing the set of all possible actions.
• P is the state transition probability, representing the probability distribution of transitioning
from one state to another. Specifically, P(s′|s, a) denotes the probability of transitioning to
state s′ from state s after taking action a.

• r is the reward function, representing the immediate reward received after performing an
action in a given state, denoted as R(s, a).

• 𝛾 is the discount factor, which determines the present value of future rewards and lies
within the interval [0, 1].

In an MDP, the policy 𝜋 is a mapping function that specifies the action a to be taken in
each state s, i.e., 𝜋 ∶ S→A. The goal of reinforcement learning is to find an optimal policy 𝜋∗
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Fig 3. Structure of reinforcement learning.

https://doi.org/10.1371/journal.pone.0318070.g003

that maximizes the expected cumulative reward. Specifically, the objective can be expressed as
maximizing the following expected discounted sum:

𝜋∗ = argmax
𝜋

𝔼 [
∞
∑
t=0
𝛾tR(st, at) ∣ s0 = s] (3)

where at ∼𝜋(a|st) is the action given by a policy maker 𝜋 at state st, st+1 ∼ P(s|st, at) denotes
the transition probability of state st+1 given the current state st and action at, and 𝛾 is the
discount factor used to balance short-term and long-term rewards.

In this study, an agent is employed that follows a policy, taking the ECG signal as input
and generating an action that selects the optimal wavelet base for the CWT of the ECG sig-
nals. the agent continuously refines its selection strategy, improving the accuracy of the ECG
classification task over time.
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RL-basedWBS
To address the problem of selecting the appropriate wavelet base for ECG diagnosis, we pro-
pose the RL-based wavelet base selection (RLWBS) framework. This approach systemati-
cally determines the optimal wavelet base for each ECG signal, enhancing feature extraction
and improving classification performance of ECG signals. TheWBS problem is formulated
as a MDP within an RL framework, where an RL agent interacts with a specially designed
environment to iteratively learn and refine the rationale of WBS based on the classification
feedback.

RLWBS framework. In this study, as a data-driven method, the ECG data to train the
policy maker is divided into training and evaluation datasets, i.e., T and V , respectively. Then,
the WBS process can be further divided into two stages as illustrated in Fig 4.

In the training stage, as shown in Fig 4, at the beginning of its tth learning iteration, a
mini-batch of ECG signals is randomly sampled from the training dataset T and grouped as
Xt, i.e.,

Xt = {x1t, x2t,⋯, xBt} (4)

where xit is the ith ECG signal in a mini-batch of B ECG signals in the tth iteration.
Denote the action spaceA = {a(1), a(2),⋯, a(Na)} where a(j) is the jth candidate action and

Na is the total number of candidate actions. Let 𝜋𝜃(x) represent the policy network, which
takes an ECG signal x as input and outputs a probability vector

P(a|x) = [p(a = a(1)|x), p(a = a(2)|x),⋯, p(a = a(Na)|x)] (5)

where P(a|x) corresponds to the probability distribution for selecting an action a conditioned
on x, with p(a = a(j)|x) indicating the conditional probability of choosing the jth action (i.e.,
the jth wavelet base) on x. The action for the ECG signal xit, denoted as ait, is determined by
sampling from the probability distribution P(a|xit), i.e.,

ait ∼ P(a|xit). (6)

We aggregate all the actions from V as the action for the whole system as

at ∶= [a1t, a2t,⋯, aBt] (7)

Once ait (the chosen wavelet base) is selected, the wavelet features for the ECG signal xit are
extracted using the CWT with the selected wavelet base, denoted asWit. The resulting wavelet
features,Wt = {W1t,W2t,⋯,WBt}, along with their respective categories, are used to train a
backbone neural network f. This trained network ft in the tth iteration serves as the evaluation
network, assessing classification accuracy and generating a reward. This reward evaluates the
effectiveness in WBS of the policy network, guiding further refinement of its strategy.

In the evaluation stage, as illustrated in Fig 4, each ECG signal in the evaluation dataset,
i.e., x(v)i ∈ V , is input to the policy network 𝜋𝜃 to obtain its corresponding action selection
probabilities P(a|x(v)i ). Unlike in the training stage, the action for each signal is selected with
the highest output probability from the policy network, i.e.,

a(v)i = argmax
a

P(a|x(v)i ) (8)
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Fig 4. An illustration of the training and evaluation stages. (a) Training stage. (b) Evaluation stage.

https://doi.org/10.1371/journal.pone.0318070.g004

where a(v)i is the selected action, i.e., the wavelet base index, for the signal x(v)i . The wavelet
featuresWv for the ECG signals in the evaluation dataset are then obtained based on the
selected actions {a(v)i }

|V |
i=1 where |V | denotes the size of the evaluation dataset. The backbone

model, ft, trained in the previous stage, serves as the evaluation network, providing classifi-
cation performance using the wavelet featuresWv. The inference accuracy on the evaluation
dataset, denoted as 𝜂t, reflects the effectiveness of the wavelet featuresWt generated by the
policy network 𝜋𝜃 in training the backbone network f. Hence, Thus, the system state in this
study is defined as

st ∶= {Xt,𝜋𝜃}. (9)

Finally, reward in the tth iteration can be described as

rt(st, at) ∶= 𝜂t(Xt,𝜋𝜃, ft,V) (10)
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Table 1.The candidate wavelet bases that can selected by the RL agent. The wavelet base is indexed, and the
number in parentheses is subsequently used to represent the corresponding wavelet base.
Wavelet family Wavelet bases (Index)
Haar haar (1)
Daubechies db2 to db20 (2 to 20)
Symlets sym3 to sym8 (21 to 26), sym10 (27), sym20 (28)
Coiflets coif3 to coif5 (29 to 31)
Biorthogonal bior1.1(32), bior2.2(33), bior3.3(34), bior4.4(35)

https://doi.org/10.1371/journal.pone.0318070.t001

Here, 𝜂t is influenced by the performance of the evaluation network ft, which is trained on Xt

with wavelet bases selected by 𝜋𝜃, and further guided by the classification accuracy calculated
on the evaluation dataset.

The policy network 𝜋𝜃 then adjusts its weights 𝜃 to generate improved actions, aiming
to maximize the expected reward. This optimization is achieved using the policy gradient
method [27], which allows the network to refine its WBS strategy over time. The detailed pro-
cess of this adjustment using policy gradients will be described in the following subsection.

In this study, the candidate wavelet bases include the Haar, Daubechies, Biorthogonal,
Coiflets, and Symlets wavelet families, as shown in Table 1. These wavelet families are selected
based on a comprehensive evaluation of their properties, including compact support, orthog-
onality, and vanishing moments, which are crucial for effective feature extraction and clas-
sification performance [28]. Hence, the action set for each ECG signal can be defined as
A = {1, 2,⋯, i,⋯,Na}, where i corresponds to the index of the wavelet base listed in Table 1.
Each index represents a specific wavelet base that the RL agent can select for feature extrac-
tion.

Update of policy network. In this study, the policy gradient (PG) algorithm [27] is
employed to optimize the policy, aiming to maximize the probability of selecting the optimal
action given a state [29]. We define the policy 𝜋𝜃(a|st) as:

𝜋𝜃(a|st) ∶= 𝜋𝜃(a|x1t) ⋅ 𝜋𝜃(a|x2t)⋯𝜋𝜃(a|xBt). (11)

This represents the joint distribution of action selection for all ECG signals in the state st,
where a contains the corresponding actions for the signals in the state. Each 𝜋𝜃(a|xit) is the
probability of selecting action a (i.e., the wavelet base) for the ith ECG signal xit within the
mini-batch.

According to the PG algorithm, the gradient of the sampled version of the expected cumu-
lative reward with respect to the network weights 𝜃 based on collected state-action pairs and
rewards can be calculated as

∇J(𝜃) =
⎡⎢⎢⎢⎣

T
∑
t=0
∇𝜃 log𝜋𝜃(at ∣ st)

T
∑
k=t
𝛾k–trk

⎤⎥⎥⎥⎦
, (12)

where ∇𝜃 log𝜋𝜃(at ∣ st) represents the gradient of the log-probability of selecting the action
at given state st under the current policy network 𝜋𝜃. According to (5), (6), and (11), the
gradient ∇J(𝜃) can be further expressed as

∇J(𝜃) =
⎡⎢⎢⎢⎣

T
∑
t=0

B
∑
i=1
∇𝜃 log p(a = ait ∣ xit)

T
∑
k=t
𝛾k–trk

⎤⎥⎥⎥⎦
(13)
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Fig 5. Structure of the policy network.

https://doi.org/10.1371/journal.pone.0318070.g005

Finally, based on the gradient descent theorem, the learnable weights of the policy network
𝜃 can be updated by performing gradient ascent:

𝜃 ← 𝜃 + 𝛼∇J(𝜃), (14)

where 𝛼 is the learning rate for the weights of the policy network.
The detailed design of the policy network is shown in Fig 5. The input signal first passes

through two modules consecutively, each containing Conv2D, ReLU, and BN operations, fol-
lowed by MaxPooling2D and Dropout. The corresponding output from the two modules is
then flattened and passed through a linear layer with a ReLU activation function. Finally, two
branches, each including a linear layer and a softmax layer, are utilized to generate the two
elements in the action individually. The final output represents the probability distributions
of selecting the wavelet base.

By continuously updating the policy network using the PG algorithm, the model improves
its ability to select the most effective wavelet bases for the corresponding ECG signals to
exhibit better features for ECG classification.

Evaluation network. To evaluate the effectiveness of the actions generated by the policy
network 𝜋𝜃 and guide its learning of more appropriate wavelet bases, a deep neural network f
is employed as the critic within the RL framework [30].

During the tth iteration of the training stage, the network f is trained as the backbone using
the wavelet featuresWt. The training continues until the backbone achieves a sufficient level
of accuracy, at which point its generalization capability reflects the appropriateness of the
actions at generated by the policy network 𝜋𝜃.

To further assess the actions at chosen by the policy network, the prediction accuracy 𝜂t is
measured by inputting the wavelet featuresWv from the evaluation dataset into the trained
backbone network f. These wavelet features are derived from the wavelet bases corresponding
to the actions {a(v)i }

|V |
i=1 selected by the policy network. This evaluation effectively quantifies

the capability of WBS mechanism of the policy network.
The accuracy 𝜂t serves as the reward, providing a direct assessment of the effectiveness

of the wavelet bases at selected by the policy network. At the end of each learning iteration,
the weights of the backbone network f are reset to their initial values, ensuring that training
begins from a fresh state at the start of each iteration.
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Algorithm 1 RLWBS in the tth learning iteration
1: Sample a mini-batch of ECG signals from the training dataset, denoted as st
2: Select actions for each ECG signal xit in st using the policy network 𝜋𝜃, i.e., ait ∼
𝜋𝜃(a|xit)

3: Perform CWT to extract wavelet featuresWt from the signals in st based on the selected
actions at

4: Train the backbone network f using the wavelet featuresWt and their corresponding
labels

5: Apply the policy network to the evaluation dataset, obtain the wavelet bases for the ECG
signals, and compute their corresponding wavelet featuresWv

6: Evaluate the prediction accuracy 𝜂t on the evaluation dataset using the trained network f,
and use it as the reward rt

7: Update the policy network 𝜋𝜃 by performing gradient ascent to adjust its parameters 𝜃,
using Eqs. (13) and (14)

8: Reset the backbone network f to its initial state

Algorithm 1 describes the proposed RLWBS framework in the tth learning iteration. The
process continues until the inference accuracy on the evaluation dataset shows only minor
variations. At this point, the entire process terminates, and the policy network can be applied
to ECG signals for the targeted applications.

Performance metrics
The classification performance of the proposed approach is evaluated using the metrics of
precision, recall, sensitivity, specificity, Area Under the Curve (AUC), F1, and Matthews
Correlation Coefficient (MCC), which are defined as:

Precision = TP
TP + FP

, (15)

Recall = TP
TP + FN

, (16)

Sensitivity = TP
TP + FN

, (17)

Specificity = TN
TN + FP

, (18)

AUC = Sensitivity
Specificity

, (19)

F1 = 2× Precision× Recall
Precision + Recall

, (20)

MCC = TP× TN – FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (21)
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where TP, TN, FP and FN represent the true positive , true negative, false positive, and false
negative predicted values, respectively.

Additionally, to calculate the macro-averaged metrics, the corresponding metrics are first
computed individually for each category. These values are then averaged, assigning equal
weight to each category irrespective of its sample size, to derive the final macro-averaged
metrics.

Results and discussion
In this section, we assess the effectiveness of the proposed RLWBS framework for autonomously
selecting optimal wavelet bases. The proposed method is implemented in Python using the
PyTorch framework. For this evaluation, we perform experiments on the publicly available
PTB-XL ECG database [31]. Initially released in 2020, the dataset includes 21,799 clinical
12-lead ECG recordings from 18,869 patients, each lasting 10 seconds. This study focuses on
multi-label classification across five superclass categories: normal ECG (NORM), conduction
disturbance (CD), hypertrophy (HYP), myocardial infarction (MI), and ST/T change (STTC).
Given that a single ECG can carry multiple labels, this creates a multi-label classification sce-
nario. The PTB-XL dataset adheres to the inter-patient paradigm [32], ensuring that records
from the same patient appear exclusively in either the training or test sets, with no overlap.

For baseline comparisons, we include a commonly used approach that selects the wavelet
base achieving the highest classification accuracy in N-fold cross-validation, as in [33]
(referred to here as CV-WBS). Additionally, we evaluate an energy and Shannon entropy-
based method (referred to as EE-WBS) as used in [34], which selects the optimal wavelet base
based on the energy-to-Shannon entropy ratio.

Performance improvement with RLWBS
We first evaluate the proposed RLWBS framework on five DL models used as benchmark-
for ECG classification on the PTB-XL dataset as listed in [35], i.e., XResNet [36], Inception
[37], ResNet [38], LSTM [39], and LSTM-bidir [39]. Additionally, we include the state-of-the-
art model LDM-XResNet, which has demonstrated the highest classification performance in
[40]. Originally developed for 1D ECG inputs, these models have been adapted to process 2D
wavelet features in this study, including modifications such as substituting 1D convolutional
layers with 2D convolutional layers to enable compatibility with 2D feature inputs.

Table 2 presents the macro-AUC and macro-F1 scores of the tested models on the PTB-
XL dataset, comparing results across different wavelet selection methods. Models paired with
the proposed RLWBS method consistently achieved higher macro-AUC and macro-F1 scores
than those using CV-WBS and EE-WBS, demonstrating the efficacy of the proposed RLWBS.
This result suggests that RLWBS generates more informative wavelet features, enhancing the
ability of model to differentiate between categories. In subsequent analyses, LDM-XResNet is
selected as the classifier to further evaluate different WBS approaches.

Fig 6 presents various performance curves, including precision-recall, ROC, and cali-
bration curves with the three WBS methods. Using the identical state-of-the-art (SOTA)
classifier, the precision-recall and ROC curves achieved with RLWBS consistently outper-
form those achieved with CV-WBS and EE-WBS, demonstrating superior performance
with RLWBS. Furthermore, as observed from the calibration curves, all three classifiers with
the respective WBS mechanisms exhibit a tendency to be overconfident in their predic-
tions, where the predicted probabilities are higher than the actual probabilities. Neverthe-
less, the calibration curve obtained with RLWBS aligns more closely with the ideal calibration
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Table 2. Performance comparison of various DL models using different WBS methods.
macro-AUC macro-F1
CV-WBS EE-WBS RLWBS CV-WBS EE-WBS RLWBS

LSTM 0.913 0.921 0.923 0.637 0.651 0.682
LSTM-bidir 0.917 0.923 0.926 0.642 0.677 0.698
ResNet 0.921 0.924 0.928 0.674 0.682 0.707
Inception 0.918 0.923 0.927 0.650 0.673 0.701
XResNet 0.923 0.926 0.928 0.683 0.700 0.712
LDM-XResNet 0.926 0.931 0.935 0.730 0.739 0.762

https://doi.org/10.1371/journal.pone.0318070.t002

curve compared to the others, indicating higher effectiveness and reliability of the proposed
method.

These outcomes highlight the advantage of adaptive wavelet selection in our RLWBS
method over static approaches. The CV-WBS method, which selects a single wavelet base
that performs best on average, may overlook unique features in subsets of ECG signals that
deviate from the majority, resulting in suboptimal performance for some cases. The EE-WBS
approach, which selects a wavelet base based on morphological similarity to ECG signals,
considers only one aspect of wavelet characteristics, potentially missing other factors such
as support and vanishing moments. In contrast, the RLWBS framework enables the policy
network to iteratively optimize WBS by maximizing classification accuracy through reward-
based feedback from previous iterations. This continuous learning process enhances the capa-
bility of the network to select increasingly effective wavelet bases, while the adaptive nature
of RLWBS ensures that extracted features align closely with the specific characteristics of
each ECG signal. This adaptability could contribute to more effective feature extraction and
improved classification performance in ECG diagnosis.

Additionally, Table 3 provides a detailed comparison of precision, recall, specificity, F1,
and MCC scores achieved by LDM-XResNet using different WBS methods across all the diag-
nostic categories. The proposed RLWBS method consistently achieves higher precision and
recall, indicating its stronger ability in identifying both positive and negative cases, thereby
reducing both missed detections and false alarms. Hence, the proposed RLWBS could strike
a better balance between false positives and false negatives, resulting in improved F1 scores.
Moreover, the proposed method demonstrates superior performance in specificity and MCC,
which indicates a lower misdiagnosis rate and a higher correlation between the predictions
and the ground truth. These results further validate the efficacy of the proposed method in
selecting the more appropriate wavelet base, ensuring more accurate and reliable ECG classi-
fication.

Furthermore, we compare the SOTA model, LDM-ResNet1d, which originally uses 1D
ECG signals, to its modified version adapted for wavelet feature input, i.e., RLWBS+LDM-
XResNet2d in Table 4. When combined with RLWBS, the modified LDM-ResNet model
achieves even higher macro-F1 scores. This improvement further demonstrates the efficacy of
the proposed RLWBS framework in enhancing the inference capacity of DL models for ECG
diagnosis.

Comparison of extracted wavelet features
To assess the effectiveness of wavelet bases selected by the RLWBS framework for feature
extraction, we present examples of wavelet features generated by each of the three WBS meth-
ods in Fig 7. These scalograms, produced through CWT of the same ECG signal segments,
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Fig 6.Different performance curves. (a), (b), and (c) are curves of precision-recall, ROC, and calibration, respectively.

https://doi.org/10.1371/journal.pone.0318070.g006

demonstrate that the time-frequency information obtained via the RLWBS framework cap-
tures finer detail and variation than the other methods, particularly in areas with rapid and
complex frequency changes. Hence, it indicates that the RLWBS method provides greater
detail in the time-frequency representation, effectively capturing the diversity of frequency
components.

Unlike many existing approaches [19,33,41,42], which predetermine wavelet bases dur-
ing the preparation stage, the RLWBS framework adaptively selects wavelet bases, providing a
higher degree of freedom in capturing time-frequency features. By adjusting wavelet wavelet
base to align with the unique characteristics of different signals, RLWBS produces a clearer,
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Table 3. Category-wise performance comparison of different WBS methods.
Precision CD HYP MI NORM STTC macro- micro-
CV-WBS 0.775 0.615 0.757 0.763 0.772 0.736 0.774
EE-WBS 0.782 0.613 0.742 0.751 0.751 0.730 0.765
RLWBS 0.786 0.642 0.774 0.784 0.757 0.749 0.783
Recall
CV-WBS 0.745 0.451 0.765 0.902 0.760 0.725 0.792
EE-WBS 0.732 0.566 0.782 0.917 0.742 0.748 0.802
RLWBS 0.755 0.603 0.795 0.933 0.798 0.777 0.821
Specificity
CV-WBS 0.810 0.496 0.831 0.959 0.809 0.781 0.865
EE-WBS 0.803 0.600 0.836 0.983 0.796 0.804 0.927
RLWBS 0.819 0.648 0.842 0.976 0.865 0.830 0.948
F1
CV-WBS 0.769 0.541 0.761 0.827 0.766 0.730 0.783
EE-WBS 0.756 0.589 0.761 0.826 0.751 0.739 0.783
RLWBS 0.770 0.622 0.784 0.852 0.777 0.762 0.802
MCC
CV-WBS 0.556 -0.05 0.595 0.802 0.569 0.494 0.560
EE-WBS 0.536 0.166 0.612 0.819 0.539 0.535 0.655
RLWBS 0.576 0.251 0.635 0.841 0.655 0.591 0.665

https://doi.org/10.1371/journal.pone.0318070.t003

Table 4. Comparison of F1 scores between the original LDM-XResNet1d and the modified LDM-XResNet2d
model with RLWBS.

CD HYP MI NORM STTC macro-F1
LDM-XResNet1d [40] 0.763 0.571 0.767 0.862 0.747 0.742
RLWBS+LDM-XResNet2d 0.770 0.622 0.784 0.852 0.777 0.762

https://doi.org/10.1371/journal.pone.0318070.t004

more accurate depiction of signal time-frequency dynamics. This adaptability yields more
detailed and relevant time-frequency information according to categories, which is particu-
larly advantageous for analyzing complex signals, as it captures subtle variations and potential
anomalies more effectively.

Analysis of selected wavelet bases by RLWBS
Table 5 presents the distribution of wavelet base families selected by both the EE-WBS and
RLWBS methods. Notably, neither method selects the Haar wavelet, as its discontinuous
nature makes it unsuitable for capturing ECG signal features. Additionally, both methods
share a similar distribution pattern, with the db wavelet family chosen most frequently, fol-
lowed by the sym, bior, and coif wavelet families. This pattern reflects the significance of mor-
phological similarity between the ECG signal and wavelet bases, which is the core idea fol-
lowed by EE-WBS. However, while both approaches emphasize similarity, RLWBS seems to
extend beyond this criterion by integrating additional factors influencing wavelet selection
compared to EE-WBS. By training a policy network guided by classification performance,
RLWBS adapts dynamically, optimizing wavelet selection not only based on similarity but also
on other critical factors that enhance feature extraction. This adaptability results in a more
refined and effective wavelet-based feature extraction process, particularly valuable for ECG
diagnosis.

Fig 8 illustrates two examples of the action probability distributions generated by the pol-
icy network for two distinct ECG signals. The high certainty in selecting specific actions
upon training completion demonstrates the convergence of action learning, as the policy
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Fig 7. Examples of extracted features generated by different wavelet selection methods across varying
time-frequency scales. (a), (b), (c), and (d) focus on the same time-frequency regions, respectively.

https://doi.org/10.1371/journal.pone.0318070.g007

Table 5. Distribution of selected wavelet base families with EE-WBS and RLWBS.
haar db sym bior coif

EE-WBS 0% 45% 37% 14% 4%
RLWBS 0% 53% 38% 7% 2%

https://doi.org/10.1371/journal.pone.0318070.t005

network identifies a wavelet base for each input signal with high confidence. It suggests that
the network successfully detects unique patterns or features within each signal, enabling fur-
ther decision-making accordingly. Furthermore, the adaptivity of the policy network can be
observed as it dynamically selects wavelet bases tailored to different ECG signals. This adap-
tive approach aims to optimize wavelet selection on a per-signal basis, ultimately enhancing

PLOS ONE https://doi.org/10.1371/journal.pone.0318070 February 3, 2025 16/ 21

https://doi.org/10.1371/journal.pone.0318070.g007
https://doi.org/10.1371/journal.pone.0318070.t005
https://doi.org/10.1371/journal.pone.0318070


i
i

“pone.0318070” — 2025/1/31 — 21:20 — page 17 — #17 i
i

i
i

i
i

PLOS ONE Adaptive wavelet base selection for deep learning-based ECG diagnosis

Fig 8. Two examples of the probability distribution output from the policy network.

https://doi.org/10.1371/journal.pone.0318070.g008

classification performance by aligning the wavelet base more closely to the characteristics of
each signal.

Model interpretability through GradCAM
Fig 9 illustrates the focus of the model trained with RLWBS on the ECG signals, represented
by the blue curves, while the red curves depict the attention values generated by the classi-
fier. For abnormal categories, the model assigns high attention values to the abnormal ECG
regions, effectively highlighting diagnostically relevant segments. Additionally, critical regions
of normal ECG signals are carefully examined to confirm the absence of abnormal features.
This highlights the capability of the classifier with RLWBS to capture distinctive features perti-
nent to cardiac diseases, aligning with clinical considerations and providing valuable support
to healthcare practitioners in diagnosis.

Limitations and future works
Compared to traditional WBS approaches, such as EE-WBS, which determine the appropri-
ate wavelet base solely by measuring the correlation between ECG signals and wavelet bases,
the proposed method requires a training dataset with fully annotated labels. These labels pro-
vide performance guidance, enabling the policy network to refine its policy generation strat-
egy. Additionally, the efficacy of the proposed method may degrade with smaller training
datasets, as training of the policy maker for WBS heavily rely on the amount of data available
for training. This dependency on large volumes of annotated data could be a limitation in sce-
narios where data is limited, such as when data is streaming or labeled datasets are scarce or
expensive to obtain.

A potential solution to these limitations could be transfer learning [43]. Specifically, the
knowledge gained from an agent trained on one dataset could be transferred to other ECG
signals or different application domains with distinct classification categories, thus enabling
broader applicability. To tackle the challenge of unlabeled datasets, unsupervised learning
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Fig 9. GradCAM for different categories.

https://doi.org/10.1371/journal.pone.0318070.g009

techniques [44] could be employed to adjust the policy maker online, even with limited data
annotations. This would help reduce the reliance of training policy maker on fully labeled
datasets and extend the usability of the proposed method in real-world scenarios where labels
are not readily available. Additionally, in situations with limited data samples, few-shot learn-
ing [45] could be utilized to enable the trained agent to adapt its action generation with mini-
mal training samples, effectively mitigating data scarcity and further enhancing the adaptabil-
ity of the proposed approach.

Conclusion
This study introduces an RL-based WBS mechanism designed to enhance classification per-
formance in DL-based ECG diagnosis. The approach enables an RL agent to dynamically
select the optimal wavelet base for each ECG signal, matching its unique characteristics and
thus providing more informative wavelet features for improved classification performance.
Specifically, the WBS task is framed as an MDP and solved through a PG method, with par-
ticularly designed configurations for state, action, and reward. Performance evaluation with
the PTB-XL dataset shows that, unlike traditional methods, which often rely on static wavelet
bases selected through trial-and-error or similarity to ECG signal morphology, the proposed
RLWBS framework achieves finer ECG feature capture, yielding higher level of classification
outcomes. It highlights the potential of RL-driven wavelet selection to advance DL-based ECG
diagnostic models.
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