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Abstract: Background/Objectives: The increasing threat of antimicrobial resistance (AMR)
to global public health urgently needs attention. Misuse of antimicrobials in sectors such
as dairy farming has led to the emergence and spread of resistant bacteria and genes.
This study investigated AMR patterns and profiles of Escherichia coli (E. coli) from various
sources, including soil, effluent, cow dung, and milk. Methods: A total of 192 samples
were collected, comprising environmental samples (soil and effluent), cow dung samples,
and milk samples from eight dairy farms in Selangor, Malaysia. The spread plate method
was employed to isolate E. coli, and all the isolates were subjected to Gram staining to
identify Gram-negative, rod-shaped bacteria. The Vitek® 2 system was used for E. coli
identification and susceptibility testing. Results: The prevalence of E. coli identified in
the eight farms was 66.1%. A total of 360 E. coli isolates were successfully isolated, and
19.7% of the isolates presented AMR with ampicillin exhibiting the highest resistance
(18.3%), followed by trimethoprim–sulfamethoxazole (8.9%). Additionally, 8.9% of them
were multidrug resistant, which could be divided into 16 patterns. For the extended
spectrum beta-lactamase screening, nine isolates were positive. Conclusions: This finding
emphasizes the rise in resistant isolates in the growing dairy industry and underscores
the urgency of addressing the potential reservoir of AMR. Therefore, essential measures
such as continuous surveillance and effective antimicrobial stewardship programs are
crucial for regulating veterinary antimicrobial use. Research on the mechanisms driving the
development and dissemination of AMR is imperative for addressing One Health concerns.

Keywords: antimicrobials; antimicrobial resistance; dairy farm; environment; milk

1. Introduction
Antimicrobial resistance (AMR) represents one of the greatest threats to global public

health [1]. AMR poses serious risks to human well-being, leading to prolonged illnesses,
increased morbidity and mortality rates, and increased healthcare costs [2]. The burgeoning
of AMR was evident in 2019, with 1.27 million global deaths attributed directly to AMR and
4.95 million deaths from illnesses related to bacterial AMR [1]. Without immediate action,
projections suggest 10 million annual fatalities and USD 100 trillion in economic losses
globally by 2050 [1,3]. The acceleration of the AMR crisis is closely linked to the widespread
abuse and overuse of antimicrobials worldwide. Inappropriate prescribing practices and
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extensive use across various sectors, notably agriculture, have been the primary drivers of
AMR development and spread [1,4,5].

Dairy farming represents a significant sector contributing to antimicrobial use in
agriculture [6]. With an increasing demand for milk and dairy products, worldwide
dairy production is projected to increase rapidly, reaching 977 million tons by 2029 [7]. In
Southeast Asia, including Malaysia, smallholder dairying holds great potential for a highly
profitable and sustainable industry [8–10]. Corresponding to this growth, antimicrobial use
in the dairy industry is also on the rise [6,11]. These substances are primarily employed to
treat and prevent infections in dairy cows, such as mastitis, lameness, respiratory illness,
and enteric diseases, as well as to enhance growth and feed efficiency [6,11]. Consequently,
food safety and the quality of dairy milk and products have become major concerns [10].

The excessive and improper use of antimicrobials in dairy farms has led to the emer-
gence and spread of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance
genes (ARGs). These resistant pathogens and genes can be transferred through various path-
ways, threatening human and animal health, the environment, and the food chain [12,13].
Antimicrobial residues, ARBs, and ARGs are often found in animal waste, contaminating
the soil environment and reaching nearby water sources [14–16]. Furthermore, they can
be introduced into the food chain at any point during the farm-to-form scale [17]. These
findings underscore the health risk associated with AMR.

Among the multidrug-resistant pathogens highly prevalent on dairy farms, Escherichia
coli (E. coli) is particularly concerning, as certain strains can cause foodborne infections in
humans [18] and are among the most commonly reported mastitis-causing pathogens in
dairy farms [19]. As a zoonotic bacterium in nature, E. coli colonizes the digestive systems
of cattle and other animals [20]. E. coli serves as an indicator organism for AMR surveillance
and acts as a reservoir for ARGs, which can be transferred to animals and humans through
numerous pathways, such as direct animal contact, contaminated food, water sources, and
farm environments [18,21]. Therefore, monitoring commensal E. coli from dairy farms to
understand AMR patterns and profiles is essential [21,22]. At present, most of the studies
on antimicrobial-resistant E. coli are in the fields of human and animal medicine, while data
concerning the environment and food products are very scarce.

The aim of this study was to determine the prevalence of E. coli and to determine AMR
patterns of the E. coli strains isolated from various samples, including the environment,
cow dung, and milk from dairy farms across Selangor State, Malaysia. The results from
this study can serve as a surveillance tool to guide antimicrobial stewardship, and they are
essential for promoting sustainable agricultural practices and protecting both animal and
human health from the threat of AMR.

2. Results
2.1. Prevalence of E. coli in Dairy Farms

The prevalence of E. coli from the eight dairy farms was 66.1% (127/192), as shown in
Table 1. An in-depth analysis then revealed that the prevalence of E. coli was 58.3% in soil
samples, 64.6% in effluent, 85.4% in cow dung, and 56.3% in milk samples. A total of 360
E. coli isolates were identified from eight dairy farms in Selangor. Among the E. coli isolates,
61 (16.9%) were from soil, 88 (24.4%) were from effluent, 141 (39.2%) were from cow dung,
and 70 (19.4%) were from milk samples. An identification test using the VITEK®2 system
(bioMérieux, Nurtingen, Germany), also revealed that one E. coli isolate was classified as
E. coli O157:H7. This isolate was sourced from a milk sample collected at Farm 4.
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Table 1. Prevalence of E. coli from dairy farms based on various samples.

Farms
No. of Samples
Collected (n)

No. of Positive E. coli/Total No. of Samples (%)

Soil Effluent Cow Dung Milk

1 24 3/6 (50.0) 2/6 (33.3) 4/6 (66.7) 2/6 (33.3)

2 24 2/6 (33.3) 4/6 (66.7) 5/6 (83.3) 2/6 (33.3)

3 24 4/6 (66.7) 4/6 (66.7) 6/6 (100.0) 2/6 (33.3)

4 24 5/6 (83.3) 2/6 (33.3) 4/6 (66.7) 4/6 (66.7)

5 24 3/6 (50.0) 5/6 (83.3) 5/6 (83.3) 3/6 (50.0)

6 24 4/6 (66.7) 5/6 (83.3) 6/6 (100.0) 6/6 (100.0)

7 24 4/6 (66.7) 4/6 (66.7) 5/6 (83.3) 3/6 (50.0)

8 24 3/6 (50.0) 5/6 (83.3) 6/6 (100.0) 5/6 (83.3)

Total 192 28/48 (58.3) 31/48 (64.6) 41/48 (85.4) 27/48 (56.3)

2.2. Antimicrobial Resistance Rate in E. coli

The isolates were subjected to antimicrobial susceptibility testing. Overall, 19.7%
(71/360) of the isolates exhibited resistance to at least one antimicrobial agent. No-
tably, ampicillin had the highest resistance rate (18.3%), followed by trimethoprim–
sulfamethoxazole (8.9%) and ampicillin–sulbactam (7.2%) (Figure 1). None of the isolates
exhibited resistance to imipenem or meropenem, both of which are carbapenems. Figure 2
shows the number of isolates with resistance to antimicrobial agents categorized based on
the types of samples. The results showed that 13.1% (n = 8/61) of E. coli isolated from soil,
22.7% (n = 20/88) from effluent, 13.5% (n = 19/141) from cow dung, and 31.4% (n = 22/70)
from milk exhibited resistance to at least one antimicrobial agent (Figure 3). To evaluate the
differences between farms, types of farms, and types of samples with resistance patterns,
the Kruskal–Wallis test was utilized as the data were not normally distributed. The Kruskal–
Wallis test revealed a significant difference in the resistance pattern of E. coli between farms
and sample types (p < 0.05). Nonetheless, no significant difference was observed in the
resistance pattern of E. coli among farm types (p > 0.05) (Figure 4a–c).
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Figure 1. The percentage of resistance of E. coli based on antimicrobial agents.
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Figure 3. AMR patterns of E. coli based on sample types.
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Figure 4. (a) Kruskal–Wallis test to compare resistance patterns based on the eight farms; (b) Kruskal–
Wallis test to compare resistance patterns based on the sample types; and (c) Kruskal–Wallis test to
compare resistance patterns based on the farm types. The asterisks (*) in the plot represent individual
data points. The circle (o) represents an outlier in the data.
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2.3. Multidrug Resistance (MDR) Profiles in E. coli

Based on the results, 8.9% (32/360) of isolates were resistant to three or more antimi-
crobials categories. Furthermore, 28.1% (9/32) were from effluent, 37.5% (12/32) from milk,
21.9% (7/32) from cow dung, and 12.5% (4/32) from soil samples. For MDR profiling,
multidrug-resistant E. coli can be divided into 16 patterns, as shown in Table 2.

Table 2. AMR profiling of the E. coli isolates.

Antimicrobial Resistance Profile a Number of
Antimicrobial Categories Isolates, n

AMP AMC AMS CFE CPA CFN CEFO CEFX GEN CIP TMP 8 1

AMP AMS CFE CPA CEFO CEFZ CEFX CEFE CIP TMP 6 1

AMP AMC CFE CPA CFN TMP 5 1

AMP CFE CPA CFN CEFO CEFX CEFE 4 1

AMP CFE CPA CEFO CEFX GEN 4 2

AMP AMS CIP TMP 4 7

AMP GEN CIP TMP 4 1

AMP CFE CPA CEFO CEFX CEFE 3 1

AMP CFE CPA CEFO CEFX 3 3

AMP AMC AMS TZP 3 1

AMP AMC TMP 3 2

AMP AMS TMP 3 5

AMP AMS CIP 3 3

AMP CIP TMP 3 1

AMP GEN CIP 3 1

AMP AMS GEN 3 1
a AMP, ampicillin; AMC, amoxicillin-clavulanic acid; AMS, ampicillin–sulbactam; CFE, cefuroxime; CPA, ce-
furoxime axetil; CFN, cefoxitin; CEFO, cefotaxime; CEFZ, ceftazidime; CEFX, ceftriaxone; CEFE, cefepime; GEN,
gentamicin; CIP, ciprofloxacin; TMP, trimethoprim–sulfamethoxazole; TZP, piperacillin–tazobactam.

2.4. ESBL-Producing E. coli

Nine (2.5%) isolates were identified as ESBL positive, of which 2.8% (4/141) originated
from cow dung, 4.3% (3/70) from milk, and 4.3% (2/88) from effluent. All isolates also
exhibited MDR. The findings indicated that one of the ESBL-producing isolates from
effluent demonstrated 62.5% (10/16) AMR, one of the ESBL-producing isolates from cow
dung demonstrated 43.8% (7/10) AMR, and the rest of the ESBL-producing cow dung
isolates demonstrated 37.5% AMR each. The details on the AMR of these ESBL-producing
isolates are shown in Table 3.

Table 3. AMR profiling of the ESBL-producing isolates.

ESBL-Producing Isolates Antimicrobial Resistance Profile a

Cow dung
Isolate 1 AMP, CFE, CPA, CEFO, CEFX, GEN
Isolate 2 AMP, CFE, CPA, CEFO, CEFX, GEN
Isolate 3 AMP, CFE, CPA, CFN, CEFO, CEFX, CEFE
Isolate 4 AMP, CFE, CPA, CEFO, CEFX, CEFE

Milk
Isolate 1 AMP, AMC, AMS, TZP
Isolate 2 AMP, CFE, CPA, CEFO, CEFX
Effluent
Isolate 1 AMP, CFE, CPA, CEFO, CEFX
Isolate 2 AMP, AMS, CFE, CPA, CEFO, CEFZ, CEFX, CEFE, CIP, TMP

a AMP, ampicillin; AMC, amoxicillin-clavulanic acid; AMS, ampicillin–sulbactam; CFE, cefuroxime; CPA, ce-
furoxime axetil; CFN, cefoxitin; CEFO, cefotaxime; CEFZ, ceftazidime; CEFX, ceftriaxone; CEFE, cefepime; GEN,
gentamicin; CIP, ciprofloxacin; TMP, trimethoprim–sulfamethoxazole; TZP, piperacillin–tazobactam.
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3. Discussion
The main aim of this study was to determine the prevalence and AMR patterns of E.

coli from various sources in dairy farms, including the environment (soil and effluent), cow
dung, and milk. Currently, very limited data are available in Malaysia and other countries
pertaining to AMR on dairy farms, especially concerning environmental components.

This study identified E. coli in 58.3%, 64.6%, 85.4%, and 56.3% of soil, effluent, cow
dung, and milk samples, respectively. The findings were aligned with the outcomes of
other reported studies. For example, a study in Punjab, India, reported E. coli in 60% of
the slurry samples, and a study in Indonesia revealed that 69.3% of the samples were
positive for E. coli [23,24]. In Malaysia, a study on bacteriological quality and safety of raw
milk revealed 65% were E. coli positive [25]. However, a study in Holeta district, Central
Ethiopia, reported a lower prevalence of 19% for E. coli in raw milk samples [26]. Variations
in the prevalence of E. coli may be influenced by geographical locations, farming practices,
and sanitation standards. Moreover, the high prevalence of E. coli in milk indicates poor
hygienic practices during milking and handling, potentially resulting in direct or indirect
fecal contamination while posing a risk to consumers of contaminated milk [27].

In this study, only one isolate from milk sample was identified as E. coli 0157:H7,
while the remaining isolates were identified as E. coli via the Vitek® 2 system. Despite the
isolation and identification of 360 E. coli isolates from environmental, cow dung, and milk
samples, only one isolate (0.3%) tested positive for E. coli 0157:H7. This finding is supported
by a study in Malaysia that reported a low presence (3.6%) of E. coli 0157:H7 isolates in
cattle, environments, milk, and beef, suggesting the potential absence of this isolate in
cattle farms [28]. However, these findings contrast slightly with those of other studies, such
as that of Ariyanti et al., where 15.6% of E. coli 0157:H7 were identified in milk samples
in Indonesia [29]. Similarly, Mesele et al. reported a 4.7% prevalence of E. coli 0157:H7
in various samples [28]. These findings suggest that cattle in Malaysia are not significant
reservoir for E. coli serotype 0157:H7. However, its presence in raw milk highlights the
potential public health risk.

In this study, resistance in E. coli was highest against ampicillin (18.3%), followed by
trimethoprim–sulfamethoxazole (8.9%), and ampicillin–sulbactam (7.2%). Meropenem
and imipenem were proven to be effective against E. coli. Resistant E. coli was highly
present in milk (31.4%) and effluent (22.7%). According to the Malaysia National AMR
Data Surveillance (2018–2021), E. coli is 100% resistant to erythromycin and 53% resistant to
ampicillin, whereas it is 100% susceptible to gentamicin [30]. The percentage of resistance
to ampicillin in this study is consistent with data from Kim et al. and Huang et al. [31,32],
although it was found to be higher in most of the studies [33–37].

A report by Hinthong et al. [38] in Thailand revealed that the percentage of penicillin-
resistant E. coli (92.2%) was the highest, followed by resistance in the folate pathway-
inhibitor category (26%), and the Cephems category (18.2%). Similarly, most studies have
shown high susceptibility (96.6–100%) to meropenem and imipenem [35,38–40]. This
finding is understandable because ampicillin is often used in livestock farms to treat
mastitis and endometritis in dairy cows [23,31]. The elevated resistance of trimethoprim–
sulfamethoxazole and ampicillin–sulbactam is attributed to the extensive use of this com-
bination due to its broad-spectrum activity, and effectiveness against infections [23,41,42].
According to Hassali et al., in Malaysia, 66.6% of the antimicrobial products registered
by the National Pharmaceutical Regulatory Agency (NPRA) were for use in livestock,
with 45 products under the β-lactam group of drugs and 43 under the combination drug
containing trimethoprim [43].

Based on these findings, even though the percentage of resistant E. coli varied between
samples, resistance to similar types of antimicrobials was commonly detected. For example,
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a high percentage of resistance was observed to ampicillin, trimethoprim–sulfamethoxazole,
and ampicillin–sulbactam across all the samples, whereas 100% susceptibility was ob-
served for imipenem and meropenem. This highlights the potential transmission route
of antimicrobial-resistant E. coli between different sources, including the environment,
food, and animal waste [44,45]. Furthermore, the consistent detection of resistant E. coli
across sample types suggests that such bacteria may spread through more interconnected
pathways [44,45]. Therefore, a better understanding of these transmission dynamics is
crucial for developing comprehensive strategies to mitigate the spread of AMR.

The occurrence of ESBL-producing E. coli was considered very low in this study
(2.07%), similar to the findings of Kamaruzzaman et al., who reported that 4.8% of dairy
farms in Malaysia were ESBL-producing E. coli, with 0.27% in feces, 1.32% in farm environ-
ments, and 3.18% in milk samples [46]. Consistent with these findings, the resistance of E.
coli in this study was low towards third- and fourth-generation cephalosporins, such as
cefotaxime (2.1%), ceftazidime (0.3%), ceftriaxone (2.1%), and cefepime (0.9%), respectively.
In contrast, Liu et al. reported that 70.59% (12/17) of E. coli were resistant to β-lactams
in their study, and another study in Assam, India, reported a 35% prevalence of ESBL-
producing E. coli in cow dung samples [35,47]. These findings suggest that limited use
of β-lactam agents for treating mastitis and prophylactic may be more restrictive in dairy
farms. Nonetheless, the presence of ESBL-producing E. coli in milk warrants increased
attention due to the production of dairy products. Food-borne outbreaks associated with
milk and dairy products have resulted in hospitalizations and fatalities worldwide [48].

Similarly, the percentage of MDR bacteria observed in this study was 8.9%, with MDR
profiles ranging from resistance to three to eleven antimicrobials. This diversity in the
AMR spectrum among isolates was evident [49]. This finding is comparable with other
studies examining E. coli isolates from milk and environmental samples on dairy farms
elsewhere. For examples, Ngaywa et al. reported 2% (6/304) MDR in E. coli isolates from
raw milk samples [50], and Widodo et al. reported 11.7% (14/139) MDR in wastewater [51].
These percentages, however, were lower than the 21% (45/214) in milk samples reported by
Mwasinga et al. [52] and the 44.4% (126/284) in various milk and environmental samples
reported by Shoaib et al. [40]. The observed MDR level in this study could potentially be
linked to the farmer’s practice, which involves DVS for continuous monitoring of the cattle’s
heath and conditions of the studied areas, including probability of lower antimicrobial
usage. Nevertheless, these findings underscore the emergence of resistant isolates and
indicate the potential reservoir of AMR if proactive measures are not implemented.

Strength and Limitations

To the best of the author’s knowledge, this study is among the first to investigate the
AMR in E. coli from various samples, including soil, effluent, cow dung, and milk in the
context of Malaysian dairy farm environments. A previous study by Kamaruzzaman et al.
focused solely on ESBL-producing E. coli and conducted only genotypic analyses [46]. This
effort is crucial for providing baseline data on E. coli resistance levels in environmental
components, together with cow dung, which represents animals, and milk, which represents
food. Furthermore, this study aligns with the Malaysian Action Plan on AMR (MyAP-
AMR) and the data generated can serve as baseline database on environmental bacteria,
complementing existing databases on AMR in clinical and animals’ contexts.

This study, however, possessed certain limitations that should be acknowledged.
Given that this study was carried out in a specific region, the findings did not extend to
other areas of the country. Additionally, this study did not include the use of questionnaires
to access antimicrobial usage on farms, which could reveal a direct correlation with the
AMR rates.
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4. Materials and Methods
4.1. Sample Collection

A cross-sectional study was carried out across eight dairy farms in the state of Selangor,
Malaysia, from January 2022 to December 2023. The inclusion criteria for farm selection
were that all dairy farms be registered under the Department of Veterinary Services, Se-
langor (DVS), and that cows be reared solely for dairying purposes, not for meat. The
exclusion criteria were farms that rear other animals for milk, such as buffalo, and those not
registered with the DVS. The selected farms included small (0–30 cows), semi-commercial
(30–50 cows), commercial (50–100 cows), and large-scale (100 cows and above), depending
on the number of lactating cows [53,54] (Figure 5).

Figure 5. Location and scale of the selected farms in Selangor.

During this study, a total of 192 samples were collected, comprising environmental
samples (soil and effluent) (n = 96), cow dung samples (n = 48), and milk samples (n = 48).

Approximately 25 g of soil was randomly taken from various locations within each
dairy farm, with distances of 10 to 20 m between sampling sites [55]. Soil samples were
primarily collected near the cow barn and gracing areas. The top layer of soil, to a depth of
3 cm, was removed via a metal spade that was cleaned, disinfected with 75% alcohol, and
flamed with a Bunsen burner prior to each collection [55].

Effluent samples of approximately 200 mL were collected from various locations within
the farm’s drainage or water-pooled areas via a long-handled stainless-steel ladle [55]. The
ladle was cleaned and disinfected similar to the metal spade, whereby it was cleaned,
disinfected with 75% alcohol, and flamed with a Bunsen burner prior to each collection.
The soil and effluent samples were placed in sterile zip-locked plastic bags.

Fresh cow dung samples were collected using a sterile FecalSwabTM (COPAN, Jef-
ferson Ave, Murrieta, California) containing 2 mL of Cary–Blair medium (Copan). Raw,
unpasteurized cow milk samples were collected from bulk tanks via sterile disposable
bottles. All samples were promptly stored in ice boxes and transported immediately to the
laboratory for analysis.

4.2. Isolation and Enumeration of E. coli

The soil sample from the zip-lock plastic bag was manually homogenized by shaking
the bag up and down before 10 g of the sample was weighed and dispensed into the first
dilution Falcon tube containing 90 mL of peptone water (DifcoTM, BD Diagnostics, Franklin
Lakes, NJ, USA). For the effluent and milk samples, the plastic bags and bottles were
homogenized by shaking, and 10 mL of each sample was directly transferred into the first
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dilution Falcon tube containing 90 mL of peptone water. Similarly, 2 mL of Cary–Blair
medium containing cow dung was directly transferred into the first dilution Falcon tube
containing 18 mL of peptone water. These were recorded as 10−1 dilutions.

The Falcon tubes were vortexed and then left to settle at room temperature. Next,
the serial dilutions were continued by transferring a 1.0 mL aliquot to a new Falcon tube
containing 9 mL of DifcoTM peptone water, followed by vortexing; this process was repeated
five times (until 10−6). From each Falcon tube, a 1.0 mL aliquot of sample was pipetted onto
the center of a commercially prepared CHROMagar™ E. coli (CHROMagar, Saint-Denis,
France) agar plate and spread evenly throughout the plate. The plates were then incubated
aerobically at 37 ◦C for 24 h. Three representative colonies were selected from plates
containing 30 to 300 isolates for further purification via two successive subculturing steps,
ensuring that pure colonies were obtained before identification and susceptibility testing
were performed.

4.3. Identification of E. coli and Antimicrobial Susceptibility Testing

All the pure isolates were subjected to Gram staining to identify Gram-negative,
rod-shaped bacteria. Identification of E. coli, including E. coli O157, was carried out via
VITEK®2 GN (bioMérieux, Nurtingen, Germany), whereas antimicrobial susceptibility
testing was performed via AST-N314 (bioMérieux, Nurtingen, Germany), following the
manufacturer’s guidelines [56]. Prior to identification and testing, a bacterial suspension of
each sample was prepared. Approximately 3 mL of prepared 0.45% saline (bioMérieux)
was dispensed into a prelabeled, clear, 12 mm × 75 mm polystyrene test tube. Pure colonies
were inoculated into saline-containing tubes and mixed well until the turbidity reached
0.50 to 0.63 McFarland via a DensiCHEK Plus instrument (bioMérieux).

The identification and testing results were interpreted on the basis of the ID-GPC
database, and the final results were obtained automatically. The MIC analysis and interpre-
tation of antibiotic susceptibility for E. coli was based on the Clinical Laboratory Standards
Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) guidelines. The AST-N314 card comprises screening for extended-spectrum
beta-lactamase (ESBL) and 16 types of antimicrobials, including ampicillin, amoxicillin-
clavulanic acid, ampicillin–sulbactam, piperacillin–tazobactam, cefuroxime, cefuroxime ax-
etil, cefoxitin, cefotaxime, ceftazidime, ceftriaxone, cefepime, imipenem, meropenem, gen-
tamicin, ciprofloxacin, and trimethoprim–sulfamethoxazole. Quality control for VITEK®2
involved testing E. coli ATCC® 25922™ and P. aeruginosa ATCC® 27853™ in accordance
with the manufacturer’s instructions, and all control minimum inhibitory concentrations
(MICs) fell within the acceptable range.

4.4. Data Analysis

The data was analyzed via IBM SPSS Statistics version 27. The Kruskal–Wallis test
was used to compare the resistance patterns of E. coli between farms and types of samples.

5. Conclusions
This study demonstrated the notable prevalence of antimicrobial-resistant E. coli in

milk, cow dung, and dairy farm environments. The findings signified a potential public
health risk concerning the possibility of extensive transmission from various sources while
necessitating strategies to mitigate the spread of AMR. Hence, continuous surveillance
and effective antimicrobial stewardship programs are essential in the dairy industry to
monitor and regulate antimicrobial use in veterinary practices. Future studies should
also investigate the mechanisms contributing to AMR development and spread within
environmental contexts. Additionally, studies should focus on utilizing whole-genome
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sequencing to analyze ARGs and phylogenetic relationships, exploring the connections
between the environment, humans, and animals. These efforts are pivotal to proactively
addressing One Health framework-related issues.
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