

UNIVERSITI PUTRA MALAYSIA

PRECAST CONCRETE SANDWICH PANEL AS A BUILDING SYSTEM

BENAYOUNE ABDELGHANI

FK 2003 37

PRECAST CONCRETE SANDWICH PANEL AS A BUILDING SYSTEM

By

BENAYOUNE ABDELGHANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment for the Requirements for the Degree of Doctor of Philosophy

March 2003

Ĕ

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Doctor of Philosophy

PRECAST CONCRETE SANDWICH PANEL AS A BUILDING SYSTEM

By

BENAYOUNE ABDELGHANI

March 2003

Chairman: Professor Abang Abdullah Abang Ali

Faculty: Engineering

Precast Concrete Sandwich Panels (PCSP) that act as load bearing elements are structurally and thermally efficient building elements with potential for use as an Industrialised Building System (IBS).

The study aims to investigate all issues related to structural performance of PCSP. The strength characteristics of PCSP under imposed loads with both wythes being structural wythes were established and the condition for achieving composite behaviour was examined. Although it is possible to use any conventional flooring system with the use of PCSP as walling elements, the structural behaviour of PCSP under lateral load was also studied so that PCSP can be adopted as flooring elements. This helps to reduce the number of different types of elements necessary in a building. A study on typical connections between PCSP elements was also undertaken.

Under axial and eccentric loads, an experimental program consisting of twelve specimens with different heights was carried out. The theoretical investigation consists of two theoretical formulations namely, classical expressions and Finite

Element Method (FEM). Comparison between non-linear FEM proposed models and experimental data was made in order to validate the models.

An FEM parametric study was carried out by varying two important parameters i.e. the effect of slenderness (height-to-thickness ratio, H/t) and the stiffness of the shear connectors as measured by the bar diameter. The ultimate strength of the PCSP was found comparable to the strength expected for full composite panels. It achieved a high composite behaviour at service and acted in partially composite manner at ultimate stage. A study on the effect of opening in the form of doors and windows in the sandwich panels was also undertaken. It was found that the ultimate load of the PCSP decreases with increase in slenderness ratio (H/t). Simplified design formulae to determine the ultimate strength of PCSP under axial and eccentric loads were proposed to closely match the strength values.

The FEM investigation was extended to explore the feasibility of usage of PCSP as slab. Two non-linear FEM models (2-D and 3-D models) were used to simulate the behaviour of PCSP as one-way and two-way acting slabs respectively. The non-linear FEM models were validated by experimental data. Parameters such as shear connector numbers and applied loading influencing the ultimate strength and the compositeness of the PCSP working as slab were investigated. A method for the determination of the interface shear force and the design of shear connectors was proposed. The results as obtained experimentally indicated that the classical elastic theory assuming fully composite action and non-linear FEM models were reasonably accurate in predicting ultimate loads and lateral deflections.

The behaviour of typical vertical connections between two precast concrete sandwich panels under shear and bending using FEM was carried out. FEM results were found to be in good correlation with experimental values. Ultimate strength,

ductility of the connection, strain in anchor steel bars, strains variations across the critical zone together with cracking patterns and mode of failure were studied. The proposed FEM model predicted with an acceptable accuracy the general behaviour of the connections under moment and shear forces. On the basis of this investigation, connection reinforcement details were recommended.

Ę.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PANEL SANDWIC KONKRIT PASANG DAHULU SEBAGAI SISTEM BINAAN

Oleh

BENAYOUNE ABDELGHANI

Mac 2003

Pengerusi: Profesor Abang Abdullah Abang Ali

Fakulti: Kejuruteraan

Panel Dinding Sandwic Konkrit Pasang Dahulu (PCSP) galas beban adalah elemen yang mempunyai ciri-ciri struktur yang kukuh dan penebat haba yang berkesan. Panel PCSP juga berpotensi untuk di jadikan sebagai salah satu Sistem Binaan Industri (IBS) yang ekonomi.

Objective utama penyelidikan ini adalah bertujuan untuk mewujudkan panel sandwic galas beban yang berpotensi sebagai salah sebuah sistem binaan yang terunggul. Penyelidikan bertujuan untuk mengenalpasti segala isu yang berkaitan dengan sifat-sifat kejuruteraan struktur PCSP. Dengan itu, ciri-ciri kekuatan PCSP akibat beban kenaan terhadap dinding tersebut dapat di kenalpasti dan sifat rencam dinding sandwic panel dapat di selidiki dengan lanjut. Untuk mengurangkan bilangan elemen yang di perlukan dalam sistem binaan tersebut, panel PCSP juga telah di uji sebagai sistem papak. Dengan itu, ujian terhadap panel PCSP dengan di kenakan beban sisi telah di jalankan. Penyelidikan terhadap sistem sambungan antara elemenelemen PCSP juga telah di kaji.

Ł

Program ujikaji terhadap dua belas panel yang di kenakan beban paksi dan beban sipi serta ketinggian panel yang berbeza di jalan kan. Sifat kelangsingan dan kesipian beban terhadap kekuatan panel telah di kaji. Kajian melalui teori secara lazim dan secara kaedah unsur terhingga (FEM) telah di laksanakan. Untuk mengesahkan model tak lelurus FEM yang di cadangkan, perbandingan antara datadata ujikaji telah di lakukan.

Kajian berparameter melalui FEM telah di jalankan dengan mengubahsuai dua parameter penting iaitu kesan kelangsingan (nisbah tinggi ke tebal, H/t) dan keukuhan penyambung ricihan melalui perubahan garispusat bar. Melalui kajian ini, di dapati bahawa kekuatan muktamad PCSP mempunyai nilai yang menghampiri kepada panel yang bercirikan rencam penuh. Kajian terhadap panel dengan pembukaan saperti tingkap dan pintu juga telah di jalankan. Dalam kajian itu, di dapati bahawa kekuatan mukatamad panel menurun dengan bertambahnya nisbah kelangsingan (H/t). Dari itu, persamaan rekabentuk dapat dihasilkan untuk memberikan nilai kekuatan muktamad PCSP akibat beban paksi dan beban sipi.

Kajian FEM telah di perluaskan terhadap PCSP sebagai sistem papak. Dua FEM model tak lelurus (model 2-D dan 3-D) telah di cadangkan untuk mengkaji sifat-sifat papak satu-hala dan dua hala. Model FEM tak lelurus tersebut telah di perbandingkan dan di sahkan dengan data-data ujikaji. Parameter saperti bilangan penyambung ricihan dan beban kenaan yang mempengaruhi kekuatan muktamad dan kerencaman PCSP sebagai papak telah di kaji. Satu kaedah untuk menentukan daya ricih di antara muka papak dan rekabentuk penyambung ricihan telah dapat di cadangkan. Keputusan kajian menunjukkan bahawa teori kenyal secara lazim dan model FEM tak lelurus adalah memuaskan dalam meramal beban muktamad dan pesongan sisi.

No.

Kajian terhadap sambungan menegak antara dua panel sandwic konkrit pasang dahulu terhadap daya ricih dan momen lentur telah di jalankan dengan menggunakan model FEM. Keputusan model FEM menunjukkan nilai yang setanding dengan ujikaji. Kekuatan muktamad, kemuluran sambungan, keterikan pada bar pengikat, perubahan keterikan pada zon **b**ritikal serta corak retakan dan ragam kegagalan telah di bentangkan. Model FEM yang dicadangkan telah memberi ramalan keputusan yang memuaskan terhadap sambungan yang di kenakan daya ricih dan momen lentur. Hasil dari kajian ini, tetulang untuk sambungan tersebut dapat di syorkan.

No.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Dr. D.N. Trikha and Prof. Ir. Abang Abdullah Abang Ali for their invaluable guidance and patience throughout the research program. I also wish to extend my appreciation to Assoc. Prof. Dr. Ir. Abdul Aziz Abdul Samad & Prof. Dr. Anvar A. Ashrabov for their kind help, support and constructive comments.

I also appreciate the assistance of the technical staff of Structural Engineering Laboratory especially that of Hj. Ghazali Said, Mr. Baharuddin Abdul Karim and Mr. Mohd Halim Osman. The support of the IRPA Research Grant is gratefully acknowledged.

My parents were always supporting and encouraging me throughout my years in college. I cannot thank them enough for devoting their lives to their children's education. Dedicating this dissertation to them is the least I can do to show my appreciation. I would like also to thank all my sisters and brothers not only for their support and encouragement, but also for being the best sisters and brothers anybody can have. Likewise, I would like to thank my wife Sofia, for her love, encouragement and patience.

Many thanks to all the friends I met during my stay in UPM for making this place a second home away from home. Finally, I thank Allah for HE always direct my path and always answer my prayers.

A. Benayoune

ž

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVAL SHEETS	ix
DECLARATION FORM	xi
LIST OF TABLES	xv
LIST OF FIGURES	xxii
LIST OF NOTATIONS	xxvii

CHAPTER

1	INT	RODUCTION	
	1.1	Building Systems	29
	1.2	Load Bearing Precast Concrete Building System	32
	1.3	Precast Concrete Sandwich Panel (PCSP)	35
	1.4	Objective and Scope	39
	1.5	Thesis Layout	42
2	LITE	ERATURE REVIEW	
	2.1	Introduction	45
	2.2	Reinforced Concrete Solid Wall	49
	2.3	Precast Concrete Sandwich Panel as Structural Wall Element	54
		2.3.1 Panel without Opening	55
		2.3.2 Panel with Opening	57
	2.4	Panel as Slab	59
	2.5	Panel under Shear	72
	2.6	Panel under Combined Axial and Flexural Load	72
	2.7	Connection Between Load Bearing Wall Panel	73
		2.7.1 Connection in In-Situ Construction	74
		2.7.2 Connection Between Precast Concrete Sandwich Panels	79

2.8 Conclusion

3

METHODOLOGY 3.1 Introduction 87 3.2 Experimental Investigation 89 3.2.1 Materials and Fabrication of Test Specimens 90 3.2.2 Test Setup and Procedure 997 3.3 Finite Element Analysis 105 3.3.1 Constitutive Models 106 3.3.2 Choice of Finite Elements 113 3.3.3 Parametric Studies 116 3.3.3.1 PCSP as Wall Panel 116 3.3.3.2 PCSP as Slab 121 3.3.3.3 PCSP Connection 124 3.4 Classical Analysis 127 3.4.1 PCSP as Wall 127 3.4.2 PCSP as Slab 131

85

2	_	0	
3	.5	Conc	lusion

4	EXPERIMENTAL INVESTIGATION - WALL	
	4.1 Introduction	139
	4.2 Test Result	139
	4.2.1 PCSP under Axial Load	139
	4.2.1.1 Load Deflection Profile	140
	4.2.1.2 Load Strain Relationship	146
	4.2.1.3 Strain in Shear Connectors	151
	4.2.1.4 Failure Load and Crack Patterns	154
	4.2.1.5 Influence of the Slenderness Ratio	156
	4.2.2 PCSP under Eccentric Load	157
	4.2.2.1 Load Deflection Profile	158
	4.2.2.2 Concrete Surface Strains under Eccentric Load	164
	4.2.2.3 Strain in Shear Connectors under Eccentric Load	169
	4.2.2.4 Failure Load and Crack Pattern under Eccentric Loading	172
	4 2 2 5 Influence of the Slenderness Ratio	178
	4226 Influence of Eccentricity on ultimate Load	179
	Capacity	1//
	4.3 Conclusion	179
5	THEORETICAL INVESTIGATION - WALL	
	5.1 Introduction	181
	5.2 Validation of the Finite Element Model	182
	5.2.1 Panel under Axial Load	182
	5.2.2 Panel under Eccentric Load	185
	5.3 Parametric Study – Choice of Panels for Analysis	187
	5.3.1 Behaviour under Axial Load - Analysis I	189
	5.3.2 Behaviour under Eccentric Load – Analysis I	193
	5.4 Parametric Study - Stability Analyses	202
	5.4.1 Buckling under Axial Load	203
	5.4.2 Buckling under Eccentric Load	205
	5.4.3 Connector Efficiency	207
	5.5 Proposed Equations	210
	5.6 Sandwich Panel with Opening	216
	5.6.1 Panel without an Opening (PN)	216
	5.6.2 Panel with a Door Opening (PD)	218
	5.6.3 Panel with a Window Opening (PW)	223
	5.6.4 Panel with Door and Window Openings (PDW)	228
	5.7 Conclusion	235
6	THEORETICAL INVESTIGATION - SLAB	
	6.1 Introduction	237
	6.2 Validation of Finite Element Models	238
	6.2.1 One-Way PCSP Slab – 2D Model	238
	6.2.2 Two-Way Acting PCSP Slab	240
	6.2.3 Shear Connector	240
	6.3 Parametric Study	241
	6.3.1 One-Way PCSP Slab	242

î

140

6.3.1.1 Load-Deflection Profile	242
6.3.1.2 Stress-Strain Distribution	244
6.3.1.3 Degree of Composite Action at Elastic Stage	246
6.3.1.3 Degree of Composite Action at ultimate Stage	247
6.3.2 Shear Connector	249
6.3.3 Two-Way PCSP Slab	250
6.3.3.1 Choice of Panel Dimensions	250
6.3.3.2 Effect of Orientation of Shear Connector	252
6.3.3.3 Effect of Aspect Ratio	252
6.3.4 Example - Analysis of Typical PCSP Slab	257
6.4 Conclusion	260
7 THEORETICAL INVESTIGATION - CONNECTION	
7.1 Introduction	262
7.2 Study of Alternative Connections	265
7.3 FEM - Result & Discussion	266
7.3.1 Connection under Bending Moment	267
7.3.1.1 Strength of the Connection	267
7.3.1.2 Ductility of the Connection	268
7.3.1.3 Ductility of the Connection	269
7.3.1.4 Tension Developed along the Anchorage Steel Bar	270
7.3.1.5 Composite Behaviour	273
7.3.1.6 Crack Patterns	273
7.3.2 Connections under Shear Force	274
7.3.2.1 Ultimate Strength	274
7.3.2.2 Ductility	275
7.3.2.2 Degree of Reserve Deformability	277
7.3.2.3 Crack Pattern and Failure Mode	277
7.4 Connection under Combined Bending and Shear Force	279
7.4.1 Discussion of Result	281
7.4.2 Composite Behaviour Near the Critical Zone	285
7.4.3 Crack Patterns and Failure Mode	287
7.5 Conclusion	290
8 CONCLUSION & RECOMMENDATION	
8.1 Summary	291
8.2 Conclusion	294
8.3 Recommendation for Future Research	398
REFERENCES	300
APENDICES	303
BIODATA OF THE AUTHOR	345

2

Table		Page
2.1	Details of test panels	59
2.2	Material properties	59
2.3	Details of test panels	69
3.1	Test specimens, with dimensions, aspect ratio and slenderness ratio strain distribution in PCSP under flexure	92
3.2	Concrete properties	94
3.3	Properties of steel	94
4.1	Crack and failure load of panel under axial loading	155
4.2	Crack and failure load of panel under eccentric loading	173
5.1	FEM and experimental ultimate loads of PA1 and PA2	184
5.2	FEM and experimental ultimate loads and moments	186
5.3	Analysed panels, dimensions, aspect ratios and slenderness ratios	188
5.4	Axial ultimate strength P_u^{FEM} , kN	193
5.5	Eccentric ultimate strength P_u^{FEM} , kN	202
5.6	Combined ultimate loads and ultimate moments for panels PE1 PE6 and PE8	215
6.1	Details of test panels used for FEM validation	238
6.2	Amount of composite action	246
6.3	Percentage of composite action at ultimate load	249
6.4	Comparison forces in shear connector legs for Panel P11	250
6.5	Sandwich slab sizes and aspect ratios	251
7.1	Material properties	266
7.2	FEM and Experimental values for M_{cr} , M_u , R_{cr} , R_u and D_{rd} for connection type A.	268

LIST OF TABLES

ŝ

- 7.3 Theoretical (V_u^{FEM}) and Experimental (V_u^{Exp}) ultimate shear forces 275
- 7.4 Degree of reserved deformability at 70% of ultimate shear force 277

E.

Figur	ligure	
1.1	Load-bearing building System	31
1.2	Skeleton building system	32
1.3	Various types of architectural load bearing wall panel	34
1.4	A typical precast concrete sandwich panel	37
1.5	Strain distribution in PCSP under flexure	38
2. 1	Typical FABCON sandwich wall panel	46
2.2	Typical COREWALL sandwich panel	46
2.3	Typical METROMONT sandwich wall panel	46
2.4	Typical VARIAX sandwich wall panel	46
2.5	Shear testing load	48
2.6	Flexural test setup	48
2.7	Geometry of the wall opening (Saheb, 1990)	54
2.8	Types of tested panels (Abdelfattah, 1999)	57
2.9	Test panel details (Farah, 2002)	58
2.10	Test panels chosen for tests as slabs (Ellinna, 2002)	60
2.11	Test set-up for one-way panels (Ellinna, 2000)	61
2.12	Test set-up for two-way panels (Ellinna, 2000)	61
2.13	Load-deflection profile at mid-span for P11 (Elllina, 2000)	62
2.14	Load-deflection profile at mid-span for P21 & P22 (Ellinna, 2000)	63
2.15	Strain in shear connector at mid-span of panel P11 (Ellinna, 2000)	63
2.16	Typical crack patterns for PCSP as slabs (Ellinna, 2000)	64
2.17	PCSP with wide flange FRP connectors (Einea, 1994)	65
2.18	PCSP with bone shape FRP connectors (Einea, 1994)	66

LIST OF FIGURES

2.19	PCSP with bent bar connectors (Einea, 1994)	66
2.20	PCSP with FRP straps and steel pins (Einea, 1994)	66
2. 21	Deformation of FRB connectors (Einea, 1994)	67
2.22	Load-shear displacement curves as obtained experimentally, by FEM and expression 2.1 (Einea, 1994)	68
2.23	Load-deflection curves (Thomas et. al., 1994)	71
2.24	Calculated percent composite moment (Thomas et. al., 1994)	71
2.25	Different types of connectors (Farah, 1998)	72
2.26	Mechanical Connection	74
2.27	Details of corner reinforcement (Mayfield, 1972)	75
2.28	Crack patterns of a typical connection in in-situ construction (Mayfield, 1972)	76
2.29	Typical reinforcement details (Jackson, 1995)	77
2.30	Crack patterns at failure (Jackson, 1995)	77
2.31	Finite element mesh connection 60° corner (Hashim et al. 1999)	79
2.32	Specimen and reinforcement details of the cast in-situ connections (Pang, 2002)	81
2.33	Test set-up for pure moment test (Pang, 2002)	82
2.34	Test set-up for pure shear test (Pang, 2002)	82
2.35	Comparison of moment versus change of included angle curves (Hashim et al. 1999) and (Pang, 2002)	84
2.36	Flexural test setup used by Mayfield (1971)	84
2.37	Flexural test setup used by Skettrup et al. (1984)	85
2.38	Flexural test setup used by Jackson (1995)	85
3.1	Details of a typical PCSP test specimen	91
3.2	Truss-shaped steel shear connectors	93
3.3(a)	Casting of the bottom concrete wythe	95

F

3.3(b)	BRC inserted in the bottom wythe of concrete	95
3.3(c)	Casting the top wythe of concrete	96
3.3(d)	Finish of the PCSP	96
3.4	Test set-up and test frame	98
3.5	A typical Panel in the loading frame (top end hinged, bottom hinge fixed)	99
3.6	Bottom end condition (Detail B)	100
3.7	Top end condition and loading arrangement (Detail B)	100
3.8	Location and designation of strain gauges	103
3.9	Number and locations of dial gauges	104
3.10	Concrete under biaxial stress state in terms of ultimate uniaxial cylinder crushing strengh (Kupfer, 1973)	108
3.11	A simplified failure envelope for biaxial concrete model (LUSAS, 2000)	109
3.12	Softening behaviour stress-strain behaviour normal to a crack plane (LUSAS, 2000)	111
3.13	Von Mises failure theory	112
3.14	Strain hardening of modified von Mises criterion (LUSAS, 2000)	113
3.15	Elements used in analytical models	115
3.16	PCSP idealisation under axial/eccentric loads, loading and boundary conditions	117
3.17	FEM model for a panel without opening (PN)	119
3.18	FEM model for a panel with a door opening (PD)	119
3.19	FEM model for a panel with a window opening (PW)	120
3.20	FEM model for a panel with door & window openings (PDW)	120
3.21	One-way PCSP slab idealisation, loading and boundary conditions	122
3.22	Finite element idealisation of two-way PCSP, and support conditions	124

Sec. 11

3.23	Finite element idealisation of PCSP/PCP connection, loading and boundary conditions under pure moment	126
3.24	Finite element model under shear force	127
3.25	PSCP subjected to an eccentric compression	130
3.26	Non-composite and fully composite panels	133
3.27	PCSP cross section	135
3.28	Horizontal interface shear forces in sandwich panels	137
4.1.	Axial load versus lateral deflection at 300 mm from the top for specimens PA1 through PA6	141
4.2	Axial load vs. deflection in concrete wythes for PA1	142
4.3	Axial load vs. deflection in concrete wythes for PA2	142
4.4	Axial load vs. deflection in concrete wythes for PA3	143
4.5	Axial load vs. deflection in concrete wythes for PA4	143
4.6	Axial load vs. defection in concrete wythes for PA5	144
4.7	Axial load vs. deflection in concrete wythes for PA6	144
4.8	Deflection along the height of the two wythes of the specimen PA1 at different load stages	145
4.9	Deflection along the height of the two wythes of the specimen PA3 at different load stages	145
4.10	Deflection along the height of the two wythes of the specimen PA6 at different load stages	146
4.11	Axial load versus strain at 200 mm from the top for specimens PA1 through PA6	147
4.12	Axial load vs. strain at different locations in concrete wythes for PAI	148
4.13	Axial load vs. strain at different locations in concrete wythes for PA2	148
4.14	Axial load vs. strain at different locations in concrete wythes for PA3	149
4.15	Axial load vs. strain at different locations in concrete wythes for PA4	149
4.16	Axial load vs. strain at different locations in concrete wythes for PA5	150

with

4.17	Axial load vs. strain at different locations in concrete wythes for PA6	150
4.18	Typical strain variation across the mid-height of the PCSP at different load stages	151
4.19	Load vs. strain (S7 and S8) at the top of the panel PA5	152
4.20	Axial load vs. strain (S1 and S2) at the mid height of the panel PA5	152
4.21	Axial load vs. strain (S13 and S14) at the bottom of the panel PA5	153
4.22	Axial load vs. strain in steel (ST3 and ST4) at the mid height of the panel PA5	153
4.23	Cracking pattern for panel PA1	155
4.24	Crack patterns for panel PA4	156
4.26	Influence of slenderness ratio on ultimate load	157
4.27a	Eccentric load versus lateral deflection at mid height for specimen PE1 through PE6	159
4.27b	Eccentric load vs. deflection in concrete wythes for PE1	159
4.28	Load vs. deflection at different locations in concrete wythes for PE2	160
4.29	Load vs. deflection at different locations in concrete wythes for PE3	160
4.30	Load vs. deflection at different locations in concrete wythes for PE4	161
4.31	Load vs. deflection at different locations in concrete wythes for PE5	161
4.32	Load vs. deflection at different locations in concrete wythes for PE6	162
4.33	Deflection along the height of the specimen PE1	162
4.34	Deflection along the height of the specimen PE3	163
4.35	Deflection along the height of the specimen PE6	163
4.36	Load versus strain at mid-height (C2) for specimens PE1 to PE6	165
4.37	Load vs. surface strain in concrete wythes at different heights for PE1	165
4.38	Load vs. surface strain in concrete wythes at different heights for PE2	166
4.39	Load vs. surface strain in concrete wythes at different heights for PE3	166
4.40	Load vs. surface strain in concrete wythes at different heights for PE4	167

tra

4.41	Load vs. surface strain in concrete wythes at different heights for PE5	167
4.42	Load vs. surface strain in concrete wythes at different heights for PE6	168
4.43	Typical strain variation across the panel thickness at mid-height at different load stages	168
4.44	Load vs. strain in shear connector legs (S7 and S8) at the top of the panel PE6	1 7 0
4.45	Load vs. strain in shear connector legs (S1 and S2) at the mid-height of the panel PE6	1 7 0
4.46	Load vs. strain in shear connector legs (S13 and S14) at the top of the panel PE6	171
4.47	Load vs. strain in steel (ST3 and ST4) at the mid height of the panel PE6	171
4.48	Crack patterns for panel PE1	174
4.49	Crack patterns for panel PE4	174
4.50	Crack patterns for panel PE4 (face of un-loaded wythe)	175
4.51	Crack patterns for panel PE4 (face of the loaded wythe)	175
4.52	Crack patterns for panel PE6, unloaded wythe	177
4.53	Influence of slenderness ratio on ultimate load	178
4.54	Axial/eccentric loads ratio versus slenderness ratio	1 7 9
5.1	Axial load versus lateral deflection for PA1 at mid-height of the panel	183
5.2	Comparison between axial experimental and FEM ultimate strengths	184
5.3	Eccentric load versus lateral deflection for PA1 at mid-height of the panel	185
5.4	Ratio of the experimental ultimate eccentric load to the FEM ultimate strengths vs. slenderness ratio	187
5.5	Axial load vs. lateral deflection at 250mm from the top loaded edge for different panels	190
5.6	Typical lateral deflection along the height of a typical PCSP under different load stages	190
5.7	Typical load vs. surface strain at 250mm from the top of a wall panel	192

s.

5.8	Strain variations across the wall thickness for PA1 at different load stages	192
5.9	Load vs. lateral deflection at 250mm from top	194
5.10	Load vs. lateral deflection in concrete wythes for panel PE1 at 250mm from top	195
5.11	Lateral deflection along the panel for PE1 at different load stages	196
5.12	Typical strain variation across the wall panel at different load stages	19 7
5.13	Typical load versus strain curve in the outer and the inner wythes of PCSP under increasing eccentric load	198
5.14	Cracks observed at failure load at 150 mm from top	198
5.15	Load vs. strain curves for shear connector at different locations	199
5.16	Axial force in shear connector legs	200
5.17	Deformed shape of PCSP under eccentric load (not to scale)	200
5.18	Ultimate strength versus slenderness	201
5.19	Load-deflection profile – Analysis III	204
5.20	Buckling load versus slenderness ratio (H/t)	204
5.21	Buckling load to ultimate load ratio versus slenderness ratio	205
5.22	Load-deflection profile – Analysis III	206
5.23	Comparison between buckling and crushing failure for panel PE8	206
5.24	Comparison between axial and eccentric Buckling Analysis III	207
5.25	Buckling modes of PCSP - Analysis I	208
5.26	Mode of failure against shear connector bar diameter under axial load Analysis I & II	209
5.27	Slenderness against buckling load – Analysis II	210
5.28	Comparison of design axial strengths	212
5.29	Slenderness functions versus slenderness ratio	213
5.30	Displacement contour for the panel PN	217

Ł

5.31	Compressive stress contour for the panel PN	217
5.32	Displacement contour for the panels PD and PN	219
5.33	Displacement variations at section A-A for the panels PD and PN	219
5.34	Compression stress contour for the panel PD	220
5.35	Compressive stress variations at section A-A for the panels PD and PN	220
5.36	Tensile stress contour for the panels PD	221
5.37	Tensile stress variations at section A-A for the panels PD and PN	221
5.38	Stress variation across the beam strip (A2-A2) from top to bottom	222
5.39	Stress variation across the section A1-A1 at mid-height of PD	222
5.40	Deformed shape and displacement contour for the panel PW	224
5.41	Displacement variation at section B-B for the panel PW and PN	224
5.42	Principal compressive stress contour for the panels PW	225
5.43	Principal compressive stress variation at section B-B for the panels PW and PN	225
5.44	Principal tensile stress contour for the panel PW	226
5.45	Tensile stress variation at section B-B for the panels PW and PN	226
5.46	Stress variation at the section B2-B2 for panel PW	227
5.47	Stress variation the section B1-B1 at mid-height of PW	227
5.48	Deformed shape and displacement contour for the panel PDW	229
5.49	Displacement variation at section C-C for the panel PDW and PN	229
5.50	Principal compressive stress contour for the panels PDW	230
5.51	Principal compressive stress variation at section C-C for the panels PDW and PN	230
5.52	Principal tensile stress contour for the panel PDW	231
5.53	Tensile stress variation at section C-C for the panels PDW and PN	231
5.54	Stress variation at section C2-C2 for the panel PDW	232

Ł