
Convergence of Digital Twins and food drying technology: How to bring the 
next generation of dryers to life!?

Arman Arefi a,* , Carlos Vilas b, Mulugeta Admasu Delele a,c, Petra Foerst d, Sebastian Gruber d,  
Mohammad Kaveh e, Farhad Khoshnam a,f, Norhashila Hashim g,h, Maimunah Mohd Ali i,j,  
Saman Zohrabi k, Muhammad Tayyab a,l, Aditya Parmar m,n, Pramod Aradwad a,o,p,  
John Ndisya a,q, Waseem Amjad r, Majharulislam Babor a, Annika Mahn a,l, Barbara Sturm a,l,**

a Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
b Biosystems and Bioprocess Engineering Group, IIM-CSIC, c/ Eduardo Cabello, 6, 36208, Vigo, Spain
c Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O Box 26, Bahir Dar, Ethiopia
d Technical University of Munich, TUM School of Life Sciences, Department of Life Science Engineering, Food Process Engineering, Weihenstephaner Berg 1, 85354, 
Freising, Germany
e Department of Petroleum Engineering, Knowledge University, Arbil, Iraq
f Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
g Department of Biological and Agricultural Engineering, Faculty of Engineering Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
h SMART Farming Technology Research Centre (SFTRC), Faculty of Engineering Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
i Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
j Innovation Center for Confectionary Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul 
Ehsan, Malaysia
k Department of Bioresource Engineering, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Montreal, Quebec, Canada, H9X 
3V9
l Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany
m Natural Resources Institute (NRI), Faculty of Engineering and Science, University of Greenwich, United Kingdom
n WorldFish, Jalan Batu Maung, Batu Maung, 11900, Bayan Lepas, Penang, Malaysia
o Technische Universität Berlin, Institute of Food Biotechnology and Process Engineering, Berlin, Germany
p Indian Council of Agricultural Research, New Delhi, India
q Department of Agricultural and Biosystems Engineering, Kenyatta University, Nairobi, Kenya
r Department of Energy Systems Engineering, Faculty of Agricultural Engineering, University of Agriculture, Faisalabad, Pakistan

A R T I C L E  I N F O

Keywords:
Digital Twins-based smart food drying
Non-invasive measurements
Dynamic optimization
Mathematical models
Advanced control

A B S T R A C T

Digital Twins technology is rapidly growing and has the potential to revolutionize traditional food-processing 
methods. However, their application in food-drying processes is still in its infancy. This study aimed to 
explore how Digital Twins can be applied to food drying process. Traditionally, food drying is performed under 
constant conditions, where air temperature and velocity remain constant. However, the literature review shows 
that variable drying conditions (trajectories) can improve both energy efficiency and product quality. The 
challenge is that the trajectories are calculated based on what happened in the process, not what is currently 
happening. Digital Twins address this shortcoming by enabling decision making based on real-time data. In this 
conceptual review paper, physiochemical parameters as an element of the physical world of a Digital Twins- 
based smart food dryer is first presented. Next, potential sensors for building a digital counterpart of the 
physiochemical parameters are discussed. This is followed by mathematical models, dynamic optimization, and 
advanced control, which are the core elements of a decision-making and control unit. Finally, future research 
needs are discussed. This conceptual review paper will guide and give a solid insight to academic researchers, 
companies, and other potential stakeholders on merging Digital Twins and food drying technologies.

This article is part of a special issue entitled: Digital Twins published in Journal of Food Engineering.
* Corresponding author.
** Corresponding author. Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.

E-mail addresses: aarefi@atb-potsdam.de (A. Arefi), Bsturm@atb-potsdam.de (B. Sturm). 

Contents lists available at ScienceDirect

Journal of Food Engineering

journal homepage: www.elsevier.com/locate/jfoodeng

https://doi.org/10.1016/j.jfoodeng.2025.112770
Received 19 March 2025; Received in revised form 31 July 2025; Accepted 6 August 2025  

Journal of Food Engineering 404 (2026) 112770 

Available online 7 August 2025 
0260-8774/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0003-1038-6974
https://orcid.org/0000-0003-1038-6974
mailto:aarefi@atb-potsdam.de
mailto:Bsturm@atb-potsdam.de
www.sciencedirect.com/science/journal/02608774
https://www.elsevier.com/locate/jfoodeng
https://doi.org/10.1016/j.jfoodeng.2025.112770
https://doi.org/10.1016/j.jfoodeng.2025.112770
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfoodeng.2025.112770&domain=pdf
http://creativecommons.org/licenses/by/4.0/


1. Introduction

The high water content in fruits and vegetables provides a potential 
growing environment for microorganisms to accelerate spoilage. To 
mitigate microbial spoilage, drying technology has been of great inter
est, as water activity is reduced to hinder the growth of microorganisms. 
Dried fruits and vegetables are not only associated with a longer shelf 
life, but also lower expenses for transportation, storage, and packaging 
(Mousakhani-Ganjeh et al., 2021). Nevertheless, the drying process has 
been criticized for its negative impact on nutrients; dried apple slices, for 
instance, contain 70 % less vitamin C compared to fresh ones (Arefi 
et al., 2021) in convective drying. The advent of smart processing 
practices in the manufacturing industry in the context of the Industry 4.0 
and 5.0 concepts promises to significantly advance the understanding of 
product-process interactions and the dynamics of changes of products in 
food processing (Sturm, 2018). In this context, the emerging concept of 
Digital Twins plays a crucial role. Digital Twins are defined as the virtual 
replica of real world (Verboven et al., 2020). In its first maturity stage, it 
was limited to simulating the physical entity, the so-called Digital 
Model. A digital model considers scenarios that could occur in the 
physical entity instead of the current state. To address this shortcoming, 
the digital model was further extended to a Digital Shadow by enabling 
real-time data transfer from the physical entity to the model. Never
theless, the communication between physical and virtual entities was 
unidirectional. In other words, it was the physical world affecting the 
digital shadow, and not vice versa. Real-time optimization and control of 
a physical process is possible only if there exists bidirectional commu
nication by which the digital shadow can send its feedback to the 
physical entity, which is called Digital Twins. Digital Twins resemble 
their physical counterparts in a way their appearance is not only similar 
but also show the same behavior, like a mirror (Kritzinger et al., 2018). 
Digital Twins consist of a physical entity, digital entity, and bidirectional 
communication between them. Indeed, in contrast to the traditional 
drying process, which usually relies on constant process conditions 
irrespective of the varations in raw material quality, Digital Twins-based 
smart food drying employs dynamic/variable drying conditions found to 
be superior to constant drying conditions (Jin et al., 2014b; Chen et al., 
2020a; Olmos et al., 2002; Sturm, 2010; Sturm et al., 2009; Sujinda 
et al., 2021).

1.1. The-state-of-the-art of Digital Twins in food drying process

Digital Twins-based drying is still in its infancy, and in-depth 
research is needed to bring it to the real world. Martynenko (2017)
highlighted the interdisciplinary nature of the research topic as a chal
lenge postponing the development of intelligent dryers, as it requires 
knowledge of drying principles, Artificial Intelligence, computer vision, 
mathematical modeling, dynamic optimization, real-time control, and 
process automation. The earliest and unique effort given to the devel
opment of a Digital Twins-based dryer dates back to 2007, when Mar
tynenko and Yang (2007) integrated a machine vision system into a pilot 
dryer to optimize both the drying time and quality index of ginseng 
roots. Their proposed system reduced the drying time from 240 to 
90–110 h whilst meeting the quality criterion. Concurrently, Sturm and 
Hofacker (2007) proposed a system integrating a machine vision for a 
better understanding of the dynamic changes within the process based 
on the continuous monitoring of color changes. They found that product 
temperature-controlled drying has significant advantages over air tem
perature control in terms of the reduction of color changes, drying time, 
and thermal stress of the product. Based on the continuous measurement 
of color changes, they determined the inflection points in the degree of 
change in ΔE at the phase transition. This information was used in a 
follow-up study to change processing conditions in a stepwise manner 
(Sturm and Hofacker, 2010).

Most of existing studies have focused on individual components of a 
Digital Twins-based smart food drying rather than developing a fully 

integrated system. Prawiranto et al., (2021) developed a digital model 
for solar drying, combining a mechanistic drying model with fruit 
quality degradation models to assess the impact of weather variations on 
drying time and final product quality. The model effectively demon
strated differences in drying outcomes across various drying runs. They 
further proposed integrating real-time or forecasted weather data into 
the model to enable real-time control of solar dryers. A recent study by 
Schemminger et al. (2024) developed a physics-based model enhanced 
with Monte Carlo simulations to capture the natural variability in fresh 
carrot slices and during convective drying. The model provided 
non-invasive insights into hygrothermal dynamics and β-carotene 
degradation. To reduce the computational burden of mechanistic drying 
models, Ghosh and Datta (2023) developed a deep learning-based sur
rogate model by training on simulation data from a multiphysics drying 
model. This approach maintained high spatial and temporal resolution 
while significantly improving computational efficiency. A dynamic 
optimization approach was applied to enhance both energy efficiency 
and vitamin C retention during the drying of broccoli (Jin et al., 2014b). 
By modeling the kinetics of moisture loss and nutrient degradation, 
optimal trajectories for air temperature and flow rate were identified. 
The optimized strategy, featuring a descending–ascending temperature 
profile and a gradually reduced airflow, achieved significantly higher 
energy efficiency (65 %) and vitamin C retention (55 %) compared to 
conventional static drying (28 % and 32 %, respectively). Sabat et al. 
(2022) integrated a computer vision system into a dryer for inline 
monitoring of potato slice color changes during drying. The extracted 
chromatic features served as input to a Long Short-Term Memory 
(LSTM) model, which accurately predicted the corresponding moisture 
content, demonstrating the effectiveness of combining vision-based 
sensing with deep learning for non-destructive moisture estimation. 
Advanced non-invasive sensors, such as near- and mid-infrared hyper
spectral imaging (Su et al., 2020) and low-field nuclear magnetic reso
nance (Sun et al., 2021c), have shown promising results for monitoring 
moisture content changes during drying.

With the rapid advancement of Artificial Intelligence, non-invasive 
sensors, and computing powers, the emergence of digital twin-based 
approaches in food drying processes is increasingly anticipated. How
ever, there remains ambiguity regarding the integration of Digital Twins 
into food drying systems. This paper seeks to clarify this gap by pre
senting a structured framework for implementing Digital Twins in food 
drying applications. It offers a step-by-step guide to assist researchers 
and practitioners in developing a smart dryer powered by digital twin 
technology.

1.2. How to integrate Digital Twins components to develop a smart food 
drying process

Fig. 1 shows a schematic representation of Digital Twins-based smart 
food drying process. The Physical entity (red dashed rectangle) consists 
of the environment where the drying process is carried out (chamber, 
tunnel, etc.); the product to be dried; and the sensors (see Section 3) used 
to measure the relevant process/product variables (Section 2). If the 
available sensors are able to measure the relevant process variables, 
then such measurements can be fed directly to the Virtual entity (see 
Section 4.1). If this is not the case (for example when only temperature 
measurements are available), a software sensor (Lara-Cisneros and 
Dochain, 2018), that combines mathematical models and hardware 
sensor measurements, can be used to estimate unmeasured process/
product variables, which are fed to the Virtual entity. A dynamic opti
mization procedure (Section 4.2.1) can be used to compute the optimal 
trajectories or set points of the variables to be controlled in the process 
(Section 2). Once such reference trajectories are computed, they are sent 
to a controller (Section 4.2.2) to compute the values of the variables that 
can be manipulated in the process (input variables/controls) such as air 
velocity, chamber temperature, etc. The output of the controller is sent 
to the process so that the reference trajectories/set points are met. To 
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minimize the impact of modeling errors, the above-mentioned proced
ure can be performed recursively. In this regard, when new process 
measurements are available, they are fed to the Virtual entity to 
recompute the reference trajectories. Besides, such measurements can 
be also used to update the model parameters and improve its predictive 
capabilities by fitting the model predictions to the experimental data. 
The Digital Twins can integrate other modules to identify hardware 
malfunctions (Fault detection (Massei et al., 2025)); to ensure consis
tency among the sensor measurements (Data reconciliation (Pitarch 
et al., 2019)); to estimate states (Kalman filter or Moving horizon Esti
mation (Allgöwer et al., 1999)); or to estimate and account for process 
product variability (Oliveira-Silva et al., 2021), among other.

1.3. Challenges of Digital Twins-based smart food drying systems

The number of parameters transferred between physical and virtual 
entities and their accuracy, the so-called fidelity, is foreseen as a chal
lenge. Fruits and vegetables are complex matrices containing a number 
of micronutrients. However, the low concentration of micronutrients, 
given the high amount of water, raises concerns about their accurate 
prediction. A digital replica of the full spectrum of micronutrients, if not 
impossible, requires a number of sensors. As a result, the initial cost of a 
digital twin-based drying process can be high. Moreover, the develop
ment of robust predictive models requires a reasonable number of 
tedious and costly quality measurements. Furthermore, the high-tech 
level of the Digital twins-based smart food drying process brings about 
special maintenance and operator training. The data storage cost is 
another issue. Another challenge is the expandability of a Digital Twins- 
based dryer for a broad spectrum of fruits and vegetables. Nevertheless, 
Digital-Twins is seen as the future of food processing systems, and the 
above-mentioned challenges need to be addressed.

2. Physicochemical parameters

During the drying of fruits and vegetables, a range of quality attri
butes, such as water activity, color, texture, rehydration capacity, 
shrinkage, total phenolic content, pigments (e.g., anthocyanins, chlo
rophyll, and carotenoids), vitamin C, and aroma, undergo significant 
changes. These attributes are not only critical for consumer acceptance 
but also reflect the nutritional and functional value of the final product. 
Their retention or degradation depends heavily on the drying method 
and conditions, including temperature, air velocity, and humidity. Un
derstanding how these attributes respond to different drying conditions 
is essential for optimizing the process and ensuring product quality. 
Table 1 summarizes findings from the literature on how these attributes 
are impacted across various drying studies. As presented in Table 1, the 
quality attributes show different behaviors which can be mathematically 
modeled as presented in section 4.1. However, such models are often 
limited in their generalizability, as their accuracy depends on factors 
such as drying conditions, raw material properties, and processing pa
rameters. To address this shortcoming, it is essential to continuously 
update these models using real-time sensor data. To this end, potential 
sensors for real-time monitoring are presented in the following section.

3. Potential sensors for Digital Twins-based food drying system

Overall, a fusion of sensors is expected to result in a reliable and 
comprehensive digital representation of quality attributes. Nevertheless, 
the following points are worth considering. 

• Imaging techniques are preferred over point-based techniques 
because they deliver spatial information and their field of view is 
larger, by which several samples can be simultaneously monitored. 
Furthermore, shrinkage/bending causes changes in the distance and/ 
or angle between the point-based optical probes and samples, which 
can influence the received light. However, point-based techniques 

Fig. 1. The concept of Digital Twins-based smart food drying process.
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Table 1 
The impact of drying parameters on quality attributes of fruits and vegetables.

Physicochemical 
attributes

Description Findings Reference

Water activity Air temperature: 
40, 50, and 60 ◦C 
Final dried 
condition: 
moiture content 
(MC) of 10 % w.b

Water activity of 
beetroot pulp dried 
at high 
temperatures was 
low.

Preethi et al. 
(2020)

Air temperature: 
313.15–373.15 K 
Final dried 
condition: 
constant final 
weight

Water activity of 
dried guabiju pulp 
was low with high 
drying 
temperature.

Bombana et al. 
(2023)

Air temperature: 
40, 50, and 60 ◦C 
Drying time: 24, 
30, and 36 h 
Final dried 
condition: 
unspecified

The drying 
conditions with 
higher 
temperatures 
(60 ◦C and 70 ◦C) 
and longer times 
(30 h and 36 h) 
resulted in lower 
water activity in 
onion.

Sarkar et al. 
(2023)

Air temperature: 
40, 50, 60, 70, 
and 80 ◦C 
Air velocity: 1.0 
and 1.5 m/s 
Final dried 
condition: 
constant final 
weight

Higher 
temperatures 
correlated with 
lower water 
activity in dried 
red-fleshed dragon. 
Air velocity did not 
have a significant 
effect on water 
activity.

Mahayothee et al. 
(2019)

Air temperature: 
45, 55, and 65 ◦C 
Sample 
thicknesses: 1.5 
and 5 mm 
Air velocity: 0.2 
m/s 
Final dried 
condition: 
unspecified

Higher air 
temperature and 
air velocity settings 
correlated with 
lower water 
activity in dried 
apple chips. 
Thicker samples 
exhibited higher 
water activity.

Demiray et al. 
(2023)

Air temperature: 
50, 60, and 70 ◦C 
Air velocity: 0.5 
and 1 m/s 
Final dried 
condition: 
constant final 
weight

Higher 
temperature and 
air velocity settings 
parameters settings 
correlated with 
lower water 
activity in dried 
feijoa fruit.

Castro et al. 
(2023)

Air temperature: 
40, 50, 60, and 
70 ◦C 
Air velocity: 0.5, 
1, and 2 m/s 
Final dried 
condition: 
constant final 
weight

Higher air velocity 
correlated with 
lower water 
activity in dried 
lemongrass leaves. 
Air temperature did 
not significantly (p 
> 0.05) influence 
the water activity 
in the dried leaves.

Mujaffar and 
John (2018)

Color Air temperature: 
60, 70, and 80 ◦C

As the air 
temperature 
increased, the color 
changes of kiwi 
slices increased

Tepe et al. (2022)

Air temperature: 
50, 60, and 70 ◦C

Color changes of 
yam slices 
increased as the 
temperature 
increased.

Sahoo et al. 
(2022)

Air temperature: 
50, 60, and 70 ◦C

Pomegranate color 
changes increased 

Kaveh et al. 
(2021)

Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

with an increase in 
the temperature.

Air temperature: 
40, 55, and 70 ◦C

The color changes 
in blood-flesh 
peach were 
negatively 
correlated with 
temperature.

Tan et al. (2022)

Texture Air temperature: 
50, 60, 70, 80, 
and 90 ◦C

Temperature 
exposure reduced 
firmness of pepino 
fruit (Solanum after 
convective drying.

Di Scala et al. 
(2011)

Air temperature: 
110, 115, and 
120 ◦C

Fracturability and 
crispness were 
shown to be higher 
while hardness was 
slower at higher 
temperatures in 
convectively dried 
apple slices.

Kian-Pour and 
Karatas (2019)

Air temperature: 
75 ◦C

The firmness of 
apple cubes 
convectively dried 
at 75 ◦C was higher 
than in fresh cubes.

Antal et al. (2015)

Air temperature: 
40, 50, 60, 70, 
and 80 ◦C

Hardness, 
cohesiveness, 
chewiness, and 
resilience were 
lower while 
springiness and 
adhesiveness were 
higher in 
convectively dried 
maqui berry than in 
fresh samples at all 
temperature 
settings. 
Springiness, 
cohesiveness, and 
gumminess of the 
samples at 80 ◦C 
were notably 
similar to fresh 
samples.

Quispe-Fuentes 
et al. (2017)

Air temperature: 
50 ◦C 
Slice thickness: 
4–5 mm 
Air velocity: 1.2 
m/s 
Final dried 
condition: MC 3 
% d.b.

Hot-air drying 
increased the 
hardness and 
brittleness in 
strawberry fruit 
and in turn the 
crunchiness and 
crispiness in the 
dried slices.

Alonzo-Macías 
et al. (2014)

Rehydration Air temperature 
60, 65, and 75 ◦C

Rehydration ratio 
of apple slices 
increased with 
increasing 
temperature.

Aradwad et al. 
(2023)

Air temperature: 
50, 60, and 70 ◦C

Wormwood leaves 
dried at higher air 
temperature 
exhibited higher 
rehydration ratio.

Beigi (2017)

Air temperature: 
50, 60, and 70 ◦C

Hawthorn samples 
dried at higher air 
temperature 
showed higher 
rehydration ratio.

Aral and Beşe 
(2016)

Air temperature: 
50–70 ◦C

The lowest 
rehydration ratio of 
yam slices was 
associated with 
50 ◦C.

Sahoo et al. 
(2022)

(continued on next page)
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Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

Air temperature: 
45, 50, 55, and 
60 ◦C

The higher 
temperature, the 
higher rehydration 
ratio mushroom 
had.

Xu et al. (2022)

Air temperature: 
45, 55, 65, and 
75 ◦C

As the temperature 
increased, the 
rehydration ratio of 
quince decreased.

Izli and Polat 
(2019)

Air temperature: 
60, 65, 70, and 
75 ◦C

With the increase 
of temperature, 
rehydration ratio of 
Phyllanthus 
emblica decreased.

Huang et al. 
(2023)

Air temperature: 
of 50, 60, and 
70 ◦C.

Mint leaves dried at 
higher air 
temperature 
exhibited lower 
rehydration ratio.

Beigi (2017)

Air temperature: 
50, 60, and 70 ◦C 
Air velocity: 0.5, 
1, and 1.5 m/s 
Slice thickness: 3, 
6, and 9 mm

The highest 
rehydration ratio of 
yam slices was 
associated with the 
highest air velocity.

Ojediran et al. 
(2020)

Air temperature: 
50, 60, and 70 ◦C 
Air velocity: 5, 7, 
and 9 m/s

With the increase 
of air velocity, the 
rehydration ratio of 
quince slices 
increased.

Goli et al. (2023)

Rehydration Air temperature: 
60 and 80 ◦C 
Air velocity: 0.2 
and 0.7 m/s

An increase in the 
temperature and 
air velocity caused 
a decrease in 
rehydration ratio of 
chicory roots.

Balzarini et al. 
(2018)

Air temperature: 
40, 60, and 75 ◦C 
Air velocity: 0.6 
m/s 
Material 
thickness:4, 7, 
and 10 mm

Air temperature did 
not influence the 
rehydration ratio of 
purple-speckled 
cocoyam

Ndisya et al. 
(2020)

Shrinkage Air temperature: 
55, 65, and 75 ◦C

Pomegranate 
shrinkage 
increased with 
increasing drying 
temperature

Sufer and 
Palazoglu (2019)

Air temperature: 
50, 60, 70 and 
80 ◦C

As the temperature 
increased, the 
potato shrinkage 
increased

Thuy et al. (2022)

Air temperatures 
50, 60, and 70 ◦C

Shrinkage of 
papaya increased 
as temperature 
increased

Islam et al. (2019)

Air temperatures 
of 40, 50, 60, and 
70 ◦C

Shrinkage of melon 
slices decreased as 
the temperature 
increased.

Darvishi et al. 
(2015)

Air temperatures: 
50, 60, and 70 ◦C.

Shrinkage of plum 
increased with 
decreasing drying 
temperature

Ojediran et al. 
(2021)

Air temperatures: 
50, 60, 70, and 
80 ◦C 
Air velocity: 0.5, 
1, and 1.5 m/s

An increase in 
temperature caused 
an increase in pear 
slices shrinkage, 
but the air velocity 
did not have a 
significant effect on 
shrinkage.

Kalantari et al. 
(2023)

Air temperatures 
50, 60, and 70 ◦C 
Air velocities of 

Shrinkage of 
hawthorn fruit 
increased with 

Aral and Beşe 
(2016)

Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

0.5, 0.9, and 1.3 
m/s.

decreasing drying 
temperature and 
air velocity.

Total phenolic 
content

Air temperature: 
50, 60, and 70 ◦C

The total phenolic 
content of pumpkin 
increased as the 
temperature 
increased.

Chikpah et al. 
(2022)

Air temperature: 
60, 70, and 80 ◦C

Kiwi slices dried at 
high temperature 
were associated 
with a higher 
concentration of 
total phenolic 
content.

(Izli et al., 2017; 
Tepe et al., 2022)

Air temperature: 
40, 50, and 60 ◦C

The increase in 
drying temperature 
increased total 
phenolic content of 
paprika.

Kheto et al. 
(2021)

Air temperature: 
40, 50, and 60 ◦C

As the temperature 
increased, total 
phenolic content of 
beetroots 
decreased.

Preethi et al. 
(2020)

Air temperature: 
60 and 80 ◦C

Increasing air 
temperature 
decreased total 
phenolic content of 
green banana.

Kamble et al. 
(2022)

Air temperature: 
20, 40, and 70 ◦C

High temperature 
lead to high 
degradation of 
phenolic contents 
compared to low 
temperature drying 
and freeze drying.

Joshi et al. (2011)

Air temperature: 
60–70 ◦C

Hot air drying at 
60–70 ◦C resulted 
in approximately 
40 % decrease in 
both total 
phenolics and 
antioxidant 
activity.

Guiné et al. 
(2015)

Air temperature: 
55–75 ◦C

Increasing drying 
temperature up to 
75 ◦C resulted in 
higher levels of 
phenolic 
compounds and 
lycopene in the 
dried tomatoes.

Da Cruz et al. 
(2012)

Total phenolic 
content

Air temperature: 
55–75 ◦C

Increasing drying 
temperature up to 
75 ◦C resulted in 
higher levels of 
phenolic 
compounds and 
lycopene in the 
dried tomatoes.

Da Cruz et al. 
(2012)

Air temperature: 
50–90 ◦C

Higher the drying 
temperature 
resulting in lower 
the value of 
phenolic 
components.

López et al. 
(2010)

Air temperature: 
40, 60, and 80 ◦C 
Air velocity: 0, 
0.8, and 1.6 m/s

The higher air 
velocity, the 
highest 
concentration of 
total phenolic 
content in orange.

Del Razola-Díaz 
et al. (2023)

Air temperature: 
50, 60, and 70 ◦C 

Total phenolic 
content of paprika 

Sasikumar et al. 
(2023)

(continued on next page)
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Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

Air velocity: 1.5, 
2, and 2.5 m/s

was higher when 
drying was 
conducted at 
higher air velocity.

Air temperature: 
50, 60, 70, and 
80 ◦C 
Air velocity: 0.8, 
2.1, and 3.4 m/s

Lowering the air 
temperature and 
velocity resulted 
higher loss of total 
phenolic content in 
Turkey berry.

Rajendran et al. 
(2023)

Air temperature: 
60, 70, and 80 ◦C 
Relative 
humidity: 10, 20, 
and 30 %

Total phenolic 
content of 
pineapple slices 
was higher when 
drying was 
conducted at 
higher relative 
humidity.

Sarpong et al. 
(2021)

Air temperature: 
55, 70, and 85 ◦C 
Relative 
humidity: 1.5 and 
10 g/m3

Higher relative 
humidity was 
related to a higher 
total phenolic 
content in apple 
slices.

Matys et al. 
(2023)

Pigments Air temperature: 
55–95 ◦C

The higher 
temperature, the 
lower retention of 
chlorophyll in mint 
leaves.

Lu et al. (2015)

Air temperature: 
40, 50, and 60 ◦C

The highest loss of 
chlorophyll (36 %) 
in mint leaves was 
related to the air 
temperature of 
60 ◦C.

Beigi (2019)

Air temperature: 
40–60 ◦C

Chlorophyll 
content of green 
paprika decreased 
from 27.17 to 
16.88 μg/g dry 
matter when 
temperature 
increased.

Kheto et al. 
(2021)

Air temperature: 
50–70 ◦C

Chlorophyll 
retention in Jew’s 
mallow leaves 
increased as the air 
temperature 
increased.

Mokhtar and 
Morsy (2014)

Air temperature: 
50–100 ◦C

The higher 
temperature, the 
higher loss of 
lycopene and beta- 
carotene.

Demiray et al. 
(2013)

Air temperature: 
60–100 ◦C

Alpha- and beta- 
carotenes in 
pumpkin slices 
were found more 
thermostable than 
dihydroxy 
xanthophylls.

Ouyang et al. 
(2022)

Air temperature: 
65 ◦C

Losses over 50 % 
happened in alpha- 
carotene, beta- 
carotene, and 
lutein of pumpkin.

Piyarach et al. 
(2020)

Air temperature: 
60 and 70 ◦C

Apricot fruit dried 
at 60 and 70 ◦C 
showed beta- 
carotene losses of 
20 % and 40 %, 
respectively.

Albanese et al. 
(2013)

Air temperature: 
50–80 ◦C

The highest 
retention of beta- 
carotene in apricot 

Karabulut et al. 
(2007)

Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

happened when 
drying temperature 
increased from 50 
to 80 ◦C.

Pigments Air temperature: 
60–110 ◦C

Purple sweet potato 
dried at 110 ◦C 
contained the 
lowest 
concentration of 
anthocyanin.

Wang et al. 
(2020)

Air temperature: 
60, 70, and 80 ◦C

Raspberries dried 
at 70 ◦C had the 
highest retention 
(56 %) of 
anthocyanin.

Stamenković 
et al. (2019)

Air temperature: 
50 and 60 ◦C

Strawberries dried 
at 50 and 60 ◦C 
showed 26 % and 
45 % loss of 
anthocyanins.

Méndez-Lagunas 
et al. (2017)

Air temperature: 
40 and 80 ◦C

Anthocyanin loss 
increased from 48 
to 60 % as the 
temperature 
elevated.

Rodríguez et al. 
(2016)

Air temperature: 
50, 70, and 90 ◦C

Blueberries dried at 
90 ◦C showed a 
higher retention of 
anthocyanins

Zia and Alibas 
(2021)

Vitamin C Air temperature: 
25, 35, 45, 55, 
and 65 ◦C 
Relative 
humidity: 40, 55, 
70, and 85 
Air velocity: 0.3, 
0.6, and 0.9 m/s

Increasing the 
drying air 
temperature 
accelerates the 
degradation of 
vitamin C in dried 
kiwi fruits, while 
higher relative 
humidity of the 
drying air reduces 
this degradation.

Kaya et al. (2010)

Air temperature: 
40, 55, and 70 ◦C 
Relative 
humidity: 38, 
24.4, and 16.1

The retention of 
vitamin decreased 
from 72.8 to 12.5 % 
with increasing 
temperature

Ek et al. (2018)

Air temperature: 
60, 70, and 80 ◦C

The retention of 
vitamin C in mango 
during hot air 
drying was higher 
at 60 ◦C, while the 
differences in 
retention were not 
significant between 
70 ◦C and 80 ◦C.

Sehrawat et al. 
(2018)

Air temperature: 
60, 65, 70, and 
75 ◦C 
Air velocity: 9 m/ 
s 
Blanching: 90 s

Vitamin C of 
broccoli florets 
decreases rapidly 
as the drying 
temperature 
increases

Liu et al. (2019b)

Air temperature: 
40, 50, and 60 ◦C 
Air velocity: 1.5 
m/s

Vitamin C content 
of tomato and 
sweet pepper 
decreased with 
increasing 
temperature.

Kaur et al. (2020)

Air temperature: 
40, 50, 60, and 
70 ◦C 
Air velocity: 2 m/ 
s

Degradation of 
vitamin C content 
in spine gourd 
increases from 
46.30 to 84.84 % 
with higher drying 
temperatures.

Kumar et al. 
(2021)

Air temperature: 
50, 70, and 90 ◦C 

The total loss of 
ascorbic acid 

Parveez Zia and 
Alibas (2021)

(continued on next page)
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Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

Air velocity: 1 m/ 
s

during convective 
drying of cornelian 
cherry ranges 
between 79 % and 
87 %. Lower drying 
temperatures 
(50 ◦C) result in 
greater ascorbic 
acid loss compared 
to higher 
temperatures 
(90 ◦C).

Vitamin C Air temperature: 
50, 60, 70, 80, 
90, and 100 ◦C 
Air velocity: 0.5 
m/s

Increase in hot-air 
drying temperature 
from 50 ◦C to 
100 ◦C led to a 
considerable 
decrease in 
ascorbic acid levels 
of maoberry fruits

Kittibunchakul 
et al. (2023)

Air temperature: 
60, 70, and 80 ◦C 
Air velocity: 1.5 
m/s 
Blanching time: 
2.5 and 5 min 
Slice thicknesses: 
6, 8, and 10 mm

Increasing the 
blanching time 
from 0 to 5 min led 
to a decrease in 
vitamin C content 
except at 60 ◦C. 
Additionally, 
increasing the 
sample slice 
thickness resulted 
in increased 
vitamin C content 
of bitter gourd 
except at 80 ◦C.

Ozsan Kilic et al. 
(2023)

Air temperatures: 
55, 60, 65, 70, 
and 75 ◦C 
Relative 
humidity: 15, 20, 
25, 30, 35, and 
40 %

Relative humidity 
had little effect on 
ascorbic acid 
retention at 55 ◦C 
and 60 ◦C, but 
higher 
temperatures 
(65 ◦C, 70 ◦C, and 
75 ◦C) resulted in 
decreased retention 
with increased 
humidity.

Farias et al. 
(1999)

Aroma Air temperature: 
40, 50, and 60 ◦C 
Air velocity: 1.2 
m/s

At 50 ◦C, linalool, 
the primary aroma 
component of basil, 
exhibits a higher 
concentration 
compared to 
temperatures of 
40 ◦C and 60 ◦C.

Barbieri et al. 
(2004)

Air temperature: 
65 ◦C

In bell peppers, 
compounds such as 
(Z)-3-hexenal, (E)- 
2-hexenal, octanal, 
(Z)-3-hexenol, 
linalool and (Z)-2- 
hexenal decreased 
or disappeared, 
while compounds 
like 2-methylpro
panal, 2-and 3- 
methylbutanal 
increased during 
the drying process.

Luning et al. 
(1995)

Air temperature: 
40, 60, and 80 ◦C 
Air humidity:15 
%, 5 %, and 3 % 
Air velocity: 2 m/ 
s

A higher retention 
of aromatic 
compounds in 
banana was 
observed after 
drying at 40 ◦C. 
Isoamyl alcohol, 

Boudhrioua et al. 
(2003)

Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

isoamyl acetate, 
and butyl acetate 
showed a marked 
decrease after 24 h 
of drying, while 
elemicine levels 
remained stable.

Air temperature: 
38, 33, and 28 ◦C 
Relative 
humidity: 17, 20, 
and 32 %

In banana, the 
highest percentage 
of loss for all 
compounds, 
excluding hexanal, 
occurred at 33 ◦C. 
Conversely, 
isoamyl acetate and 
isobutyl acetate 
exhibited their 
highest retention at 
38 ◦C.

Saha et al. (2018)

Air temperature: 
60, 70, and 80 ◦C 
Air velocity: 1.5 
m/s

Peppers dried at 
70 ◦C or 80 ◦C had 
similar volatile 
flavor compounds, 
but both showed 
greater loss of these 
compounds 
compared to those 
dried at 60 ◦C

Ge et al. (2020)

Aroma Air temperature: 
60, 70, and 80 ◦C 
Air velocity: 1.5 
m/s

Peppers dried at 
70 ◦C or 80 ◦C had 
similar volatile 
flavor compounds, 
but both showed 
greater loss of these 
compounds 
compared to those 
dried at 60 ◦C

Ge et al. (2020)

Air temperature: 
50 ◦C 
Air velocity: 0.45 
m/s

Hot-air drying is a 
more effective 
method for 
producing the 
typical shiitake 
mushroom aroma 
compared to freeze 
drying and natural 
drying

Zhang et al. 
(2021a)

Air temperature: 
60, 70, and 80 ◦C

The highest trans- 
anethole content in 
dried star anise was 
observed at a 
drying temperature 
of 70 ◦C, while 
there was no 
significant 
difference in 
content between 
drying at 60 ◦C and 
80 ◦C.

Wen et al. (2020)

Air temperature: 
45 and 60 ◦C

Samples dried at 
45 ◦C retained a 
greater amount of 
the fruity and sweet 
aromas 
characteristic of 
strawberry fruits 
compared to those 
dried at 60 ◦C.

Abouelenein et al. 
(2021)

Air temperature: 
40, 50, 60, 70, 
and 80 ◦C

The aroma of S. 
granulatus varied 
with different 
drying 
temperatures. 
When dried at 
60 ◦C, S. granulatus 
exhibited a more 

Hou et al. (2022)

(continued on next page)

A. Arefi et al.                                                                                                                                                                                                                                    Journal of Food Engineering 404 (2026) 112770 

7 



are lower in cost and less computationally intensive than imaging 
techniques.

• Hyperspectral and multispectral imagings could be more reliable 
techniques for delivering information on micronutrients because 
other techniques such as microwave, Terahertz, and Nuclear Mag
netic Resonance (NMR) are highly sensitive to water molecules. 
Given the high water content in fruit vegetables, such a high sensi
tivity to water molecules can easily overshadow micronutrient sig
nals. Hyperspectral and multispectral imaging can easily address this 
issue by identifying the spectral regions where water molecules do 
not absorb light, for example, the ultraviolet spectral region and the 
fingerprint spectral region of mid-infrared. Raman spectroscopy is 
also a potential technique because water molecules are associated 
with weak Raman signals.

• From the viewpoint of sensors integration into a dryer, hyperspectral 
(if snapshot), color, multispectral cameras, and electronic noses are 
technically simpler to be integrated. There are some reports on inline 
applications of other sensors, however their integration based on the 
current technology, is still more complex.

• Electronic noses and color cameras are relatively lower cost sensors 
for monitoring volatiles and color changes, respectively.

• Hyperspectral, nuclear magnetic resonance, X-ray micro-computed 
tomography, and Terahertz sensors are expensive. Multispectral 
imaging systems and microwave sensing, as affordable alternatives, 
must be further investigated.

• Microwave and Terahertz sensing techniques are highly sensitive to 
moisture content. They are both emerging techniques, and further 
research is required. However, microwave sensing is superior to be 
considered as an online monitoring tool because it is more cost- 
effective.

• As a rule of thumb, multispectral cameras for micronutrients moni
toring, microwave sensors for moisture content, particularly when 
surface hardening limits the light penetration, color cameras for 

color monitoring, and electronic noses for volatiles can be considered 
as a fusion of sensors to be integrated into a hot-air dryer. It is 
noteworthy that microwave sensing is still emerging and future 
research is still required.

Table 2 summarizes the literature on sensors employed to monitor 
physicochemical attributes relevant to the drying process. Such realtime 
measurementds of physiochemical attributes together with drying con
dition (temperature, velocity, RH, …) data are required to be fed into 
data-driven/machine learning algorithms, presented in section 4.1.5, 
with the aim of quantitative estimations of quality attributes. Such es
timations will be used to adapt the fitting parameters of mathematical 
models (section 4.1) to improve their prediction accuracy.

4. High end model based process control

4.1. Models and approaches available

Models are described as mathematical representations of physical 
reality and real processes (Datta, 2016). Model-based studies have been 
used in different drying systems to gain better insight and understanding 
of the process, develop new designs, and optimize new and existing 
dryer designs (Defraeye, 2014). Models are alternatives to expensive and 
time-consuming experiments. Models can also be used to supplement 
experimental studies (Ramachandran et al., 2018). Drying is a complex 
process, and the detailed and accurate modeling of the process is com
plex. Modeling the drying process requires multidisciplinary knowledge, 
including transport phenomena (momentum, heat, and mass transfer), 
reaction kinetics, fluid and solid properties, and material science 
(Ramachandran et al., 2018). The drying process has been modeled 
using different approaches (Table 3). Depending on its accuracy and 
complexity, Khan et al. (2022a) categorized the available models into 
first, second, third, fourth, and fifth-generation models. First-generation 
models are basically constituted by empirical relationships; 
second-generation models include some physics-based knowledge of the 
empirical equations (semi-empirical); third-generation models are 
derived from physical principles; fourth-generation models describe the 
drying process at different spatial and time scales; and fifth-generation 
models integrate physics into data-driven relationships.

4.1.1. Empirical models
This type of model is developed by curve fitting the given expressions 

relating the process conditions and the relevant variables to the exper
imental data. For instance, the moisture ratio as a function of drying 
time, rate constant, and other constants. Well-known empirical drying 
models include Page, Modified Page, Lewis, Henderson and Pabis, 
modified Henderson and Pabis, Wang and Sing, logarithmic, two-term 
exponential, diffusion approach, Verma et al., and Midilli et al. (Khan 
et al., 2022a; Ramachandran et al., 2018), (Table 4). The basis for these 
model equations is Fick’s second law for moisture diffusion. These 
models assume that the thickness of the product bed is a thin layer that is 
homogenous and neglects the geometrical shape of the product. It has 
been proven that these models are capable of predicting the drying 
process under experimental operating conditions (product initial mois
ture content, temperature, relative humidity, drying air flow rate, and 
bed thickness). Empirical models have been used to study the drying 
kinetics of different food and agricultural products such as maize 
(Asemu et al., 2020), chili (Getahun et al., 2021), rough rice (Sadaka, 
2022), garlic (Chayjan et al., 2012), banana (Queiroz and Nebra, 2001), 
and potato (Akpinar et al., 2003). The main drawbacks of these types of 
models are: (i) the limited applicability and information about the flow, 
heat, and mass transfer characteristics (Prawiranto et al., 2021; Ram
achandran et al., 2018) and (ii) their predictive capabilities are limited 
to the range of experimental conditions used to obtain the data required 
to estimate the model parameters (they are not valid for extrapolation). 
In addition, empirical models do not provide spatial or temporal 

Table 1 (continued )

Physicochemical 
attributes 

Description Findings Reference

intense mushroom- 
like flavor.

Air temperature: 
35, 45, and 55 ◦C

An increase in D- 
carvone content 
while decreasing D- 
Limonene, cineole, 
and l- 
caryophyllene with 
higher drying 
temperatures.

Guo et al. (2022)

Air temperature: 
50, 60, and 70 ◦C

Drying 
strawberries at a 
low temperature 
(50 ◦C) preserved 
the highest levels of 
fresh strawberry 
volatiles, whereas 
at higher 
temperatures 
(60 ◦C and 70 ◦C), 
the volatile profiles 
of the dried 
strawberries 
exhibited a similar 
pattern.

Tekgül and Erten 
(2022)

Air temperature: 
40, 50, and 60 ◦C 
Air velocity: 1.5 
m/s

Increasing 
temperature leads 
to a reduction in 
the most prevalent 
components in 
cardamom, such as 
1,8-cineole and 
α-terpinyl acetate.

Mishra et al. 
(2022)
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Table 2 
An overview of non-invasive sensors investigated in the drying process monitoring.

Sensor Description Findings Reference

Hyperspectral imaging 
(HSI)

Apple slices undergoing hot-air drying were monitored 
using hyperspectral imaging in the 400–1700 nm range.

Prediction models built around the 1400 ± 4 nm 
wavelength accurately estimated shrinkage (R2 ≈ 0.95, 
RMSE ≈ 4 %), vitamin C content (R2 = 0.92, RMSE = 0.64 
mg/100 g FW), rehydration ratio (R2 = 0.67, RMSE = 2.07 
%), and total phenolic compounds (R2 = 0.63, RMSE =
17.3 mg/100 g dry matter).

Arefi et al. (2021)

Purple-speckled cocoyam slices were analyzed during 
hot-air drying using hyperspectral imaging across the 
400–1700 nm spectral range.

Wavelengths in the range of 951–999 nm significantly 
contributed to the prediction models for shrinkage, 
rehydration ratio, and moisture content.

Ndisya et al. (2021)

Hyperspectral images (400–1010 nm) were captured of 
apple slices dried at air temperatures of 60 ◦C and 70 ◦C.

The prediction model achieved an R-squared of 0.70 and 
RMSE of 0.040 for rehydration ratio, while moisture 
content was predicted with high accuracy (R-squared =
0.94, RMSE = 0.067 %). Shrinkage and color indices were 
also reliably estimated.

Shrestha et al. (2020)

Hyperspectral imaging (425–1700 nm) was employed to 
predict the quality attributes of celeriac during drying at 
temperatures of 50, 60, and 70 ◦C.

The rehydration ratio was predicted with R-squared =
0.89 and RMSE = 0.04. Moisture content prediction 
achieved R-squared = 1.00 and RMSE = 0.77. Total 
phenolic content was predicted with R-squared = 0.49 and 
RMSE = 0.15 mg GAE gds− 1. Color indices were predicted 
with R-squared values ranging from 0.80 to 0.93 and 
RMSE values between 0.71 and 1.45.

Nurkhoeriyati et al. 
(2023)

Hyperspectral images (950–1655 nm) were captured for 
four vegetables during hot-air drying.

Moisture content was estimated with an R-squared of 
0.974 and an RMSE of 4.70 %.

Lin and Sun (2022)

Persimmon undergoing the drying process was 
monitored using the spectral range of 470–900 nm.

Moisture content was accurately predicted with an R- 
squared of 0.857.

Chen et al. (2022)

Quality changes in carrots during drying at 50, 60, and 
70 ◦C were monitored in the spectral region of 400–1010 
nm.

Moisture content was best predicted with an R-squared of 
0.90 and an RMSE of 8.16 %. Predictions for color and 
total carotenoids showed lower accuracy.

Md Saleh et al. (2022)

Hyperspectral imaging 
(HSI)

Quality attributes of banana slices were monitored 
throughout the microwave vacuum drying process.

High prediction accuracy was achieved for moisture 
content (R-squared = 0.996). Good prediction accuracies 
were also obtained for hardness (R-squared =
0.886–0.927) and fracturability (R-squared =
0.930–0.961).

Pu et al. (2018)

Quality attributes of golden kiwi and purple carrot were 
monitored throughout the hot-air drying process.

Machine learning algorithms accuratly estimated 
chanches in pigments and moiture content.

Tayyab et al. (2025)

Nuclear Magnetic 
Resonance (NMR)/ 
Magnetic Resonance 
Imaging (MRI)

Low-field NMR was used to monitor moisture content of 
freeze-thaw pretreated lotus root slices exposed to 
infrared and convection drying processes.

Distribution of T2 identified the inflection point of water 
state transition.

Zhang et al. (2022)

Low-field NMR operating at 23.2 MHz was used to 
monitor microwave-vacuum drying of carrot slices.

The signal peak associated with free water gradually 
decreased as drying progressed, while the peaks for 
trapped and bound water initially increased before 
decreasing.

Sun et al. (2019b)

Low-field NMR at 23 MHz and spectral imaging within 
the 405–970 nm range were used to predict water 
fractions in mushrooms subjected to freeze-drying.

Both techniques, combined with learning algorithms, 
demonstrated promising results in estimating water 
fractions.

Younas et al. (2021)

Changes in the dielectric properties of Chinese yam slices 
during microwave-vacuum drying were investigated 
using NMR.

The prediction models accurately captured the dielectric 
changes, with R-squared values ≥ 0.921.

Li et al. (2019)

Low-field NMR at 20 MHz was used to study changes in 
water content of garlic slices subjected to four different 
drying processes.

Three peaks in the T2 distribution were identified at 
0.1–10 ms, 10–80 ms, and 80–600 ms, corresponding to 
bound, immobilized, and free water, respectively. 
Prolonged drying caused the peaks to shift leftward, and 
the overall signal peak decreased.

Chen et al. (2020b)

Apple slices dried at various air temperatures were 
evaluated using NMR.

Multi-exponential fitting of T2 revealed four peaks 
corresponding to strongly bound, lightly bound, trapped, 
and free water molecules. The NMR parameters showed 
correlations with changes in moisture content, color, and 
shear force.

Kamal et al. (2019)

Nuclear Magnetic 
Resonance (NMR)/ 
Magnetic Resonance 
Imaging (MRI) 

The effects of moisture content, number of scans, and 
sample quantity on NMR accuracy for estimating 
moisture content in carrot slices were investigated.

At the early stage of drying, the number of scans had no 
effect. When moisture content dropped below 20 %, 
increasing the number of scans to 16 improved NMR 
performance. In the late stage of drying, a higher number 
of scans and a sample quantity of 1.0–1.5 g were 
recommended.

Sun et al. (2021a)

– NMR/MRI depicted moisture migration from the interior 
to the exterior of carrot cubes during the drying process.

Gong et al. (2020)

The use of NMR and MRI to analyze moisture variation in 
green plums during oven drying was explored.

Signal peaks of A23 (representing free water) and A_total 
(representing all water states) showed correlation 
coefficients of 0.958 and 0.936 with water content 
changes, respectively.

Zhu et al. (2021)

NMR operating at 300 MHz was used to investigate 
cellular water transfer in apple tissues during the drying 
process.

Water transfer from the intracellular to intercellular space 
was primarily caused by cell rupture.

Khan et al. (2018)

(continued on next page)
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Table 2 (continued )

Sensor Description Findings Reference

NMR and MRI were utilized to investigate the drying 
kinetics of mulberries subjected to hot-blast air drying.

Water migration in its various states was traceable using 
NMR and MRI, with NMR/MRI data showing strong 
correlations with quality attributes.

Li et al. (2021b)

– MRI revealed enhanced water migration in kiwi slices at 
higher ultrasonic power levels.

Liu et al. (2019a)

NMR and MRI were employed to monitor the pulsed 
vacuum drying of blueberries.

MRI revealed that the higher water transfer during the 
early stage of drying was linked to the enlargement and 
interconnection of pores.

Liu et al. (2021)

NMR/MRI was used for real-time monitoring of moisture 
content in potato and broccoli stalks.

NMR/MRI signals showed a strong correlation with 
moisture content (R-squared >0.90). The detection limits 
were 11 % for NMR and 20 % for MRI.

Jiang et al. (2019)

NMR was used to determine the safe water activity levels 
in apple, carrot, white cabbage, cauliflower, and radish.

T21 proved to be a reliable indicator of safe water activity 
(below 0.6).

Chitrakar et al. (2019)

NMR was used to investigate moisture transfer in banana 
slices subjected to contact ultrasound-enhanced far- 
infrared radiation drying.

NMR analysis revealed a gradual decrease in free water, 
while trapped water initially increased before decreasing. 
Bound water showed no significant change.

Shi et al. (2020)

Nuclear Magnetic 
Resonance (NMR)/ 
Magnetic Resonance 
Imaging (MRI) 

NMR data were collected for carrot, banana, and an 
edible fungus during microwave-vacuum drying.

The models estimated moisture content with an R-squared 
of 0.9955 and an RMSE of 0.0211.

Sun et al. (2019c)

Low-field NMR was used to monitor moisture content and 
its states in raspberries during pulse-spouted microwave 
freeze drying.

Both free and trapped water decreased significantly, while 
bound water showed no significant change.

Sun et al. (2021c)

NMR was used to determine the drying end-point of 
asparagus leaves, stems, and roots.

The observation of a major peak at a relaxation time of 1 
ms indicated that water activity was below 0.6.

Chitrakar et al. (2021)

Various pretreatments enhanced the far-infrared drying 
of pumpkin.

Pretreatments accelerated the shift of T2 towards shorter 
relaxation times.

Chao et al. (2022)

– NMR showed potential for estimating flavor changes in 
garlic and ginger subjected to thermal processing.

(Sun et al., 2019d, 2021b)

Microwave sensing A review was presented on various antenna sensors and 
microwave-based methods used to measure the moisture 
content of grains and minerals.

The S-parameter was found to be more suitable for 
measuring moisture content than dielectric constant and 
impedance methods. Frequency selective surface (FSS) 
was identified as the most suitable portable sensor.

Javanbakht et al. (2021a)

A review was conducted on the dielectric properties of 
various foodstuffs.

The dielectric properties were found to depend on several 
factors, including frequency and temperature.

Bogale Teseme and 
Weldemichael 
Weldeselassie (2020)

The moisture content of paddy rice was correlated with 
microwave attenuation and phase changes at 3.00 GHz. 
Ambient temperature was included as an input in the 
prediction models to compensate for its effects.

The moisture content was predicted with low error. Liu et al. (2022)

A new frequency selective surface (FSS) antenna was 
used to measure moisture content (10–25 %) in barley 
grains.

The sensor was sensitive to small variations in moisture 
content.

Javanbakht et al. (2021b)

Horn antennas operating at 10.5 GHz were used to 
measure the moisture content of rice and corn.

Higher moisture content led to increased wave 
attenuation.

Li et al. (2021a)

Tomographic imaging systems were used to monitor the 
moisture content of corn kernels during fluidized drying.

Microwave tomography demonstrated greater sensitivity 
to changes in moisture content compared to capacitance 
tomography.

Lin et al. (2022)

Terahertz sensing (THz) The THz technique was reviewed for food safety and 
quality and soil sensing was also part of the review.

It is underrepresented compared to other spectroscopy 
techniques even though it is a promising method. 
Thickness dependency, scattering effect, particle size and 
surface roughness effects and high moisture content can 
challenge the THz technique.

Khushbu et al. (2022)

A review of THz technology was presented, highlighting 
its potential for monitoring moisture content during food 
drying, measuring sugars in osmotically dehydrated 
foods, analyzing proteins and amino acids in dried 
products, and detecting foreign bodies in dried foods.

The strong absorption of water molecules in the THz 
region limits the ability to monitor other chemical 
components during the drying process.

Zhang et al. (2021b)

The application of THz technology was reviewed for 
determining carbohydrate concentrations in liquids and 
powders, detecting foreign bodies and chemical residues 
in carbohydrate-based foods, monitoring carbohydrate 
fermentation, and assessing carbohydrate crystallinity.

THz application in dietary carbohydrates is still in its 
infancy. Its ability to measure the thickness and refractive 
index of the food matrix offers an advantage over NIR 
spectroscopy. However, the high initial cost and 
dependency on sample thickness remain significant 
challenges.

Li et al. (2023)

Water loss of Ginkgo seeds under ambient temperature 
was monitored in the frequency range up to 7 THz.

Seeds with higher moisture content showed higher 
absorption coefficients.

Gong et al. (2022)

Kiwi slices exposed to a combination of freeze-drying and 
microwave-vacuum drying methods were investigated 
using THz imaging.

THz signal amplitude was found to be related to the slice 
structure.

Huang et al. (2021)

In-situ microwave-vacuum drying of beef slices was 
conducted using the THz imaging technique.

Calibration models accurately predicted the changes in 
moisture content.

Ren and Sun (2022)

In-situ microwave-vacuum drying of beef and carrot 
slices was carried out using THz-TDS.

Moisture content was predicted with an R-squared value of 
0.995 and an RMSE of 0.0162.

Ren et al. (2023)

Spectral information of pork slices and leaves exposed to 
the drying process was captured in the frequency range of 
0.1–0.9 THz.

Low error estimation was achieved for moisture content. Borovkova et al. (2018)

(continued on next page)
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Table 2 (continued )

Sensor Description Findings Reference

Color/RGB camera Microwave drying was studied at different power levels 
and slice thicknesses, and changes in color kinetics were 
monitored using a color camera.

The study successfully determined variations in color 
kinetics in the CIELab space based on CVS data, which 
fitted well to first-order and zero-order models.

Nagvanshi et al. (2021)

RGB color imaging was conducted during drying of 
apples and carrots.

The quality parameters of apples and carrots during the 
drying process were successfully detected based on color 
attributes.

Sturm et al. (2018)

The computer-vision system effectively monitored 
quality degradation during the three-stage drying of 
ginseng at 50 ◦C.

The quality aspects such as actual moisture content and 
quality degradation of roots were monitored using a 
computer-vision system with high accuracy, achieving an 
error range of 8–14 % in moisture content estimation at 95 
% confidence.

Martynenko (2006)

The food drying process was analyzed using computer 
vision with three different heat sources while capturing 
images with RGB cameras during the process.

The study found that the lowest errors in training and test 
data were achieved using resistance drying and infrared 
methods to control the drying process. Resistance values 
showed the best results based on R-squared values.

Ozden (2022)

RGB camera imaging was used to monitor the quality of 
turmeric during the drying process.

Based on color information extracted from images in terms 
of CIELab values, moisture and product quality were 
successfully monitored.

Sharma et al. (2019)

The intervention in the study involved drying carrot 
slices at 35 ◦C for 36 h using a smart dryer equipped with 
a computer vision system and a load cell.

The color camera proved effective in monitoring drying 
processes, with linear models showing high prediction 
accuracy for moisture content and minimal impact of 
blanching treatment on model performance.

Moscetti et al. (2020)

Pea shrinkage was studied during fluidized bed drying. Offline color imaging data explored shrinkage with lower 
error, while real-time measurements showed slight 
deviations.

Iheonye et al. (2020)

Quality changes in carrot slices were studied during 
convective air drying.

The computer vision system effectively measured color 
changes and shrinkage, achieving a good RMSE range of 
0.005–0.007.

Chakravartula et al. 
(2023)

Color/RGB camera The application of a color camera for quality monitoring 
of apple slices during drying was investigated.

Morphological properties, moisture content, and CIELab 
values were measured with high efficiency, achieving R- 
squared values above 0.98 and low error.

Raponi et al. (2022)

The moisture ratio of thin layers of date fruit was 
analyzed based on real-time color attributes and 
environmental conditions during the drying process.

Moisture content was estimated with high accuracy using 
online image attributes and machine learning techniques.

Keramat-Jahromi et al. 
(2021)

X-ray micro-computed 
tomography (XCT)

XCT was used to study the freeze-drying process of 
maltodextrin solutions in situ. The resolution was 3 μm, 
and the measurement time was approximately 1.4 h.

A new method was presented to study microstructural 
changes during freeze-drying and analyze drying kinetics 
in situ using grayscale images obtained by XCT.

Gruber et al. (2021)

This study investigates how the spin freezing rate affects 
the characteristics of dried product layers in spin freeze- 
drying. 
Resolution: 4.5–8 μm 
Measurement time: ~0,7h

Utilizing high-resolution XCT, this research explores the 
relationship between spin-freezing rates and pore size, 
shape, mass transfer resistance, and solid-state properties 
of dried product layers. The results indicate that slower 
spin-freezing rates produce highly tortuous structures with 
greater mass-transfer resistance, while faster spin-freezing 
rates lead to lamellar structures with lower tortuosity and 
resistance.

Lammens et al. (2021)

This study investigates the impact of hot-air drying 
(HAD) on the structure of dried fruits and vegetables, 
with a particular focus on crust formation. Using a three- 
step process involving HAD, freezing, and freeze-drying, 
the development of a crust on carrot discs is examined. 
Resolution: 14 μm 
Measurement time: ~70 min

Results reveal that crust thickness increases significantly 
during HAD, with crust formation beginning before the 
relative moisture content reaches 0.5. XCT measurements 
provide detailed analysis of the crust structures formed 
during HAD.

Siebert et al. (2018)

X-ray micro-computed 
tomography (XCT)

This study examines the microstructure of spray-dried 
particles—commonly used in amorphous solid 
dispersions to enhance the performance of poorly water- 
soluble drugs—using XCT and other imaging techniques. 
Resolution: 0,8 μm 
Measurement time: 5h

Higher outlet temperatures during spray drying produce 
more spherical hollow particles with thinner walls, while 
lower temperatures generate raisin-like particles with 
thicker walls. Artificial intelligence–facilitated XCT image 
analysis enables quantitative assessment of thousands of 
individual particles, revealing envelope density as a 
sensitive indicator of process changes. Additionally, 
particle wall thickness correlates with tensile strength, 
highlighting potential implications for particle 
engineering and drug product optimization.

Xi et al. (2020)

In-situ XCT was utilized to observe microstructure 
development during freeze-drying of a dextrin solution 
using a specially designed freeze-drying stage. 
Resolution: ~3 μm 
Measurement time: 30s

XCT imaging captured frozen and dried microstructures, 
revealing an increase in ice crystal size and boundary 
formation between ice and freeze-concentrated phases 
after freezing annealing. Pore microstructures formed 
during freeze-drying replicated the original ice structures 
and generated new pores as water was removed, especially 
in non-annealed samples. Image analysis showed thicker 
pore walls in annealed samples compared to non-annealed 
ones, suggesting that annealing not only reduces drying 
time by modifying ice crystal morphology but also 
prevents structural deformation of glassy phases, thereby 
preserving product quality.

Nakagawa et al. (2018)

The study focuses on evaluating X-ray microtomography 
(XCT) as a method for characterizing the matrix of freeze- 

XCT provides uniform contrast and simplifies analysis. 
Results reveal two main structures: large pores separated 

Palmkron et al. (2023)

(continued on next page)
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Table 2 (continued )

Sensor Description Findings Reference

dried materials. 
Resolution: 0,657 μm 
Measurement time: 9h

by thin walls and a finer, honeycomb-like structure. 
Despite varying drying conditions, these structures show 
minimal variation.

X-ray micro-computed 
tomography (XCT)

This study examines the effects of freeze-drying, 
blanching, and freezing rate pre-treatments on the 
microstructure and rehydration properties of winter 
carrots using various imaging techniques. 
Resolution: 4 μm 
Measurement time: 50 min

The study finds that freezing rate influences ice crystal size 
and pore formation, while blanching does not affect pore 
size distribution. Rehydration leads to the formation of a 
porous network rather than restoration of cellular 
compartments. Blanching followed by fast freezing helps 
preserve more of the native cell wall morphology.

Voda et al. (2012)

Advanced X-ray Microscopy (XRM) combined with 
mathematical models correlates microstructure, drying 
kinetics, and reconstitution time. 
Resolution: 2 μm 
Measurement time: 4–8 h

The study reveals that normalized diffusion coefficients, 
derived from 3D microstructure reconstructions, correlate 
with the solid content of pre-lyophilization solutions, 
influencing pore size and volume. While mass transfer 
models accurately describe drying kinetics, formulation 
ingredients affect mass transfer mechanisms, complicating 
reconstitution process modeling. X-ray microscopy 
combined with mathematical models provides valuable 
insights into lyophilization processes.

Pu et al. (2023)

This study introduces a method to estimate mass transfer 
rates during primary drying using XCT measurements of 
freeze-dried cakes. 
Resolution: 1 μm 
Measurement time: ~2,5h

Solid concentration and annealing above Tg’ significantly 
influence pore size and drying rates. This highlights 
annealing as an effective method to accelerate primary 
drying, the most time-consuming step in lyophilization.

Foerst et al. (2019)

This study investigates the use of supercritical carbon 
dioxide (scCO2) for moisture removal from cylindrical 
carrot pieces, examining the effects of temperature and 
ethanol as a co-solvent at 20 MPa pressure. The results 
are compared with those of hot air drying. 
Resolution: 5 μm 
Measurement time: not given

Comparisons with air drying reveal differences in drying 
kinetics and mechanisms. Microstructural analysis using 
X-ray microtomography and light microscopy shows that 
carrots dried with supercritical fluids better retain their 
shape than those dried by air. Additionally, ethanol- 
modified scCO2 drying produces less dense structures and 
improves rehydrated textural properties.

Brown et al. (2008)

X-ray micro-computed 
tomography (XCT)

This study presents an analytical method employing four- 
dimensional micro-computed tomography (4D-XCT) to 
assess differences in intra-vial mass transfer resistance 
(Rp) of dried products during freeze-drying. 
Resolution: 30 μm 
Measurement time: ~3 min

By incorporating these Rp values into mechanistic models, 
the drying time distribution of spin-frozen vials can be 
predicted and experimentally verified using thermal 
imaging. Additionally, 4D-XCT enables measurement of 
key freeze-drying parameters, such as sublimation front 
movement and frozen product layer thickness, offering 
detailed process insights. Overall, the study accurately 
predicts primary drying time variations in individual vials 
using 4D-XCT, with validation provided by thermal 
imaging.

Vanbillemont et al. (2020)

Laser light backscattering 
imaging (LLBI)

The mango drying process was monitored at wavelengths 
of 450, 520, and 635 nm.

The model predicting moisture content at 635 nm was the 
most accurate.

Bai et al. (2021)

Banana slices dried at temperatures ranging from 50 ◦C to 
70 ◦C were monitored in the spectral range of 740–1700 
nm.

The strong NIR absorption spectrum shows wavelength 
shifts between 1064 and 1416 nm.

Siyum et al. (2023)

Images of ham slices were captured during the drying 
process.

The study revealed that a red laser (635 nm) is more 
practical than a green laser (532 nm). A decrease in 
scattering area was observed only when the water content 
decreased.

Fulladosa et al. (2017)

A 670 nm laser diode was used to monitor banana slices 
for moisture content.

Moisture content was significantly correlated with 
backscattered area.

Romano et al. (2008)

Sweet potato slices were monitored for moisture content 
and color using a combination of LLBI and computer 
vision.

Drying temperature and time had a significant effect on 
the parameters obtained from combined computer vision 
and backscattering imaging.

Onwude et al. (2018a)

Apple slices were monitored for moisture content at 
wavelengths of 635 nm, 980 nm, and 1450 nm.

These wavelengths were found to be highly correlated 
with changes in moisture content.

Arefi et al. (2023b)

Raman spectroscopy The feasibility of using in situ Raman spectroscopy for 
online monitoring of supercritical carbon dioxide (SC- 
CO2) drying processes in mango and persimmon fruits 
was investigated.

Raman spectroscopy effectively tracked the reduction of 
water content and changes in the fruit matrix structure 
during drying.

Braeuer et al. (2017)

The solid-state changes of Risedronate sodium granules 
during lab-scale Fluidized Bed Drying (FBD) are 
monitored, a crucial aspect for assessing the stability and 
efficacy of pharmaceutical formulations.

The hydration state of risedronate was successfully 
monitored using Raman spectroscopy, enabling effective 
identification of the process endpoint while ensuring 
product quality.

Hausman et al. (2005)

Three-dimensional maps of particle concentration and 
chemical structure in a fluidized bed were generated 
using Raman spectroscopy.

The composition of materials and particle distribution 
within a fluidized bed were successfully monitored within 
a 10-s interval.

Walker et al. (2009)

Raman spectroscopy was used to evaluate the carotenoid 
content in processed Bunchosia glandulifera.

A strong correlation between Raman spectroscopy results 
and carotenoid content was clearly demonstrated.

Carvalho et al. (2019)

Carotenoid degradation in sweet potatoes subjected to 
hot air and microwave drying processes was investigated.

Raman intensity showed a strong correlation with 
carotenoid degradation.

Sebben et al. (2018)

Multispectral Imaging 
(MSI)

A 980 nm LED array combined with a monochrome 
camera was integrated into a hot air dryer.

The system accurately monitored the moisture content of 
apple slices.

Arefi et al. (2023a)

Multispectral imaging and NMR were used to monitor the 
freeze-drying process of shiitake mushrooms.

Free, immobilized, bound, and total water contents were 
predicted with R2 values above 0.85 and RMSE below 
18.13 %.

Younas et al. (2021)
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information about the drying variables (Prawiranto et al., 2021).

4.1.2. Semi-empirical models
These models integrate physics-based knowledge within the empir

ical relationships described in the previous section to minimize their 
drawbacks (Khan et al., 2022a; Putranto et al., 2011). The evaporation 
of moisture during drying was modeled as a first-order reaction with 
activation energy, whereas condensation was modeled as a zero-order 
reaction. Compared to the empirical models, these models produced 
slightly better results. However, these models are still dependent on 
product type and drying conditions and are still unable to take into 
account the complete physics of the drying process (Khan et al., 2022a). 
Semi-empirical models have been applied to study the drying charac
teristics of different products such as wood particles (Kharaghani et al., 
2019), carrots (Yang et al., 2021), and kiwi (Chen et al., 2001). The 
relevant semi-empirical model equations could be found in Yang et al. 
(2021).

4.1.3. Physics based models
These are advanced drying models that are derived from the 

fundamental laws of physics, mathematics, chemistry, and biology, and 
are capable of capturing real drying phenomena. Physics-based models 
have been developed based on the conservation of mass, energy, and 
momentum, Navier-Stokes equations for fluid flow, and Newton’s law of 
motion (Khan et al., 2022a). The details of the air and product side 
drying model equations can be found in Delele et al. (2023).

These models could provide a high-resolution spatial and temporal 
distribution of the drying parameters (temperature, relative humidity, 
moisture content, air velocity, and product quality). The information 
could be used for a fundamental understanding of the drying process, 
optimization of the design and operating conditions of the dryer, and the 
development of new dryer designs (Khan et al., 2022a; Prawiranto et al., 
2021). The approach includes Computational Fluid Dynamics (CFD) and 
CFD-Discrete Element method (DEM). CFD is the most commonly 
applied physics-based modeling technique for drying processes study 
(Defraeye, 2014; Ramachandran et al., 2018). CFD has been used to 
study the drying phenomena of different products and dryers. For 
instance, CFD has been applied to study apricot drying using an infrared 
dryer (Aktaş et al., 2017), soya meal drying using a fluidized bed (Da 
Silva et al., 2012), convective drying of quince slices (Tzempelikos et al., 
2015), sweet potato drying using a combined convective infrared dryer 
(Onwude et al., 2018b), rough rice drying using a convective mixed-flow 

dryer (Delele et al., 2023), moist object drying (Chandramohan, 2016), 
and ellipsoidal particle drying in a fluidized bed dryer where CFD is 
coupled with DEM (Handayani et al., 2023). The multiscale, multi
physics, and multiphase nature of the drying process makes it chal
lenging to develop purely physics-based models. Therefore, some 
commonly used assumptions are still made during the derivation of 
physics-based models in the macroscale drying process (Defraeye, 
2014). There has been a recent development in multiphase 
physics-based drying models, considering the irregular pore space inside 
the product, capillary and binary diffusion of liquid, and mass transfer of 
the vapor (Lu et al., 2021). However, this model is still incapable of 
capturing microscale transport (Khan et al., 2020).

4.1.4. Multiscale models
Drying is associated with a transport process that occurs on different 

spatial and temporal scales (Defraeye, 2014). Multiscale drying models 
are the most advanced physics-based models used to study the transport 
of water from cellular (microscale) to tissue (macroscale) scales (Khan 
et al., 2020). Different cellular environments (intercellular, intracel
lular, and cell wall) contain different amounts of water, resulting in the 
transport of water from different cellular environments (Khan and 
Karim, 2017). In addition, different cells exhibit different water trans
port characteristics. These inhomogeneous water transport characteris
tics at the microscale (cellular) level affect macroscale water transport 
characteristics. It is extremely important to consider the microscale 
properties and transport characteristics to fully understand the drying 
process, accurately predict the drying process, and optimize the 
full-scale dryer. Because multiscale models describe transport at both 
micro and macro levels, the number of assumptions made during the 
derivation is lower than that of the previous alternatives. Although these 
models provide better insight and high-resolution (spatial and temporal) 
information about the drying process, their development and solutions 
are challenging and computationally demanding (Khan et al., 2020). 
Despite these challenges, encouraging studies have been reported on the 
multiscale modeling of drying and dehydration processes (Aregawi 
et al., 2014; Ho et al., 2011; Welsh et al., 2021).

4.1.5. Machine learning models for spatial and temporal dynamics
The application of machine learning models from high-dimensional 

sensor data to food-drying processes has emerged as a key strategy for 
developing Digital Twins that enable real-time monitoring and control. 
These models leverage various data structures ranging from two- 

Table 2 (continued )

Sensor Description Findings Reference

The study aimed to evaluate the quality of carrot slices 
subjected to a drying process.

Moisture content (R-squared = 0.953, RMSE = 0.0902 %) 
and shrinkage (R-squared = 0.942, RMSE = 0.0808 %) 
were accurately predicted.

Yu et al. (2020)

Moisture and carotenoid contents of carrot slices were 
monitored.

A model developed using seven optimal wavelengths 
achieved coefficients of determination of 0.991 and 0.968, 
and relative percentage deviations of 10.318 and 5.337 for 
moisture content and carotenoid, respectively.

Long et al. (2021)

Spectral images of mango slices were captured during 
drying at temperatures ranging from 40 ◦C to 80 ◦C and 
air humidities between 5 % and 30 %.

Soluble solids content, pH value, and moisture content 
were accurately predicted.

Jödicke et al. (2020)

Electronic nose (E-nose) Detection of volatile organic compounds during hot air 
drying of mint.

E-nose based principal component analysis successfully 
reflected variations in volatile organic compounds.

Kiani et al. (2018)

Flavor analysis of golden pompano fillets subjected to 
different drying methods.

Volatile compounds of samples dried by four different 
methods were clearly differentiated using E-nose and E- 
tongue systems.

Zhang et al. (2019)

Determination of volatile compounds in shiitake 
mushrooms at different drying stages.

E-nose successfully classified samples according to 
different drying stages.

Zhang et al. (2020)

Assessment of volatile profiles in green tea during the 
drying process.

Gas-phase electronic nose captured the dynamic changes 
occurring under different drying conditions.

Yang et al. (2022)

The composition and aroma profiles of button 
mushrooms were monitored at different drying stages 
using a metal-oxide semiconductor (MOS) sensor.

Button mushroom samples subjected to different drying 
durations were successfully discriminated.

Pei et al. (2016)

Aroma assessment of garlic subjected to different drying 
methods was conducted.

Samples subjected to different drying methods were 
successfully discriminated using an electronic nose.

Makarichian et al. (2021)

A. Arefi et al.                                                                                                                                                                                                                                    Journal of Food Engineering 404 (2026) 112770 

13 



Table 3 
An overview of recent studies and the corresponding models and approaches in 
the drying process.

Model Description Findings References

Empirical 
model

The impact of rice 
layer thickness on 
drying rate and 
moisture diffusivity 
was studies.

Drying rate and 
moisture diffusivity 
increased with an 
increase in air 
temperature and a 
decrease in layer 
thickness. Page 
model produced the 
best fit.

Sadaka (2022)

The effect of maize 
load and mixing 
time interval on 
drying time of solar 
bubble dryer was 
investigated.

Drying time 
decreased with a 
decrease in product 
load and mixing 
interval. The study 
recommended 
Verma et al. and 
diffusion approach 
models.

Asemu et al. (2020)

Used double tunnel 
solar dryer and 
investigated 
collector efficiency, 
carbon footprint 
and the effect chili 
variety and layer 
density on drying 
time.

There was an 
improvement in 
drying rate 
compared to sun 
drying and a 
significant CO2 
mitigation because 
of the solar dryer. 
Modified 
Henderson and 
Pabis and Verma 
et al. models were 
recommended.

Getahun et al. 
(2021)

The effect of drying 
air temperature on 
drying time, 
moisture diffusivity 
and specific energy 
consumption during 
garlic drying using 
fluidized and semi 
fluidized bed dryer 
was investigated.

An increase in 
drying air 
temperature 
increased the drying 
rate, moisture 
diffusivity and 
specific energy 
consumption. Page 
model gave the best 
fit.

Chayjan et al. 
(2012)

Semi- 
empirical 
model

The applicability of 
reaction 
engineering 
approach in 
predicting 
temperature and 
moisture 
distributions of 
shrinkable food 
(carrot) at different 
drying temperature 
was evaluated.

The model was 
capable of 
predicting 
temperature and 
moisture 
distribution with R2 
> 0.98. Drying rate 
increased with 
drying temperature.

Yang et al. (2021)

The accuracy of 
reaction 
engineering 
approach in 
predicting drying 
behaviour of 
kiwifruit was 
assessed.

The model was 
capable of 
predicting the 
moisture content 
with R2 > 0.93. 
Drying rate 
increased with 
temperature.

Chen et al. (2001)

Physics 
based 
model

The study used CFD 
model to steady the 
heat and mass 
transfer 
characteristics 
during apricot 
drying using 
Infrared dryer, and 
analyzed the effect 
of product 
temperature and air 

CFD model was 
capable of 
predicting drying 
airflow velocity, 
temperature and 
product moisture 
content with an 
acceptable 
accuracy. The 
highest energy 
efficiency was 
obtained for the 

Aktaş et al. (2017)

Table 3 (continued )

Model Description Findings References

velocity on dryer 
efficiency.

highest temperature 
and lowest air 
velocity.

Multiphase CFD 
model was used to 
predict the drying 
behaviour of 
soybean meal using 
a fluidized bed 
dryer.

The model was 
capable of 
predicting the 
transient 
temperature, 
velocity and 
porosity 
distributions. 
Temperature was 
the variable with 
the most significant 
effect on the drying 
characteristics.

Da Silva et al. 
(2012)

Physics 
based 
model

CFD model was 
used to study the 
heat and mass 
transfer process 
during the 
convective drying 
of cylindrical 
quince slices.

The time evolution 
of temperature and 
moisture content 
was well predicted. 
Drying rate 
increased with 
temperature and air 
velocity.

Tzempelikos et al. 
(2015)

Validated CFD 
model was applied 
to evaluate the 
performance and 
improve the design 
of a prototype rice 
husk fuelled mixed 
flow rice dryer.

The model was 
capable of 
predicting the 
airflow, 
temperature, 
relative humidity 
and grain moisture 
content and it was 
used to develop 
better alternative 
designs and 
operations.

Delele et al. (2023)

Multiscale 
model

Coupled CFD-DEM 
model was used to 
study the drying 
behaviour of 
ellipsoidal particles 
in fluidized bed 
dryer, and used to 
study the effect of 
particle aspect 
ratio.

The model was 
capable of 
predicting the heat 
and mass transfer 
process, and 
observed higher 
drying rate in 
spherical particles 
compared to 
ellipsoidal particles

Handayani et al. 
(2023)

2D multiscale water 
transport and 
mechanical model 
was applied to 
predict water loss 
and deformation of 
apple tissue.

The multiscale 
model was capable 
of predicting the 
dynamics of the 
dehydration process 
and the mechanical 
deformation at 
different 
microstructural 
compartments.

Aregawi et al. 
(2014)

Physics 
informed 
hybrid 
models

A multiscale 
homogenization 
model was 
developed on the 
cellular structure of 
apple tissue 
considering 
intracellular water 
and free water 
separately to 
calculate the 
effective diffusivity 
for convective 
drying

This multiscale 
model was capable 
of predicting the 
diffusivity and gave 
a new insight of the 
homogenization 
approach.

Welsh et al. (2021)

Physics-based and 
Monte Carlo 
simulations were 
used to predict 
natural variability 
in carrot slices 

A reduction of 45 % 
in drying time and 
27 % in the required 
energy, and an 
improvement of 8 % 
in β-carotene can be 

Schemminger et al. 
(2024)
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dimensional representations (e.g., NIR spectra, where rows represent 
samples and columns represent features) to more complex tensor data 
structures (e.g., hyperspectral images). A common approach to simplify 
data complexity, especially in hyperspectral imaging, is to fuse spatial 
information using mean spectra, allowing for a focus on overall quality 
metrics and system dynamics.

Machine learning models employed in these contexts are generally 
categorized into static models, which capture spatial dynamics, and time 
series models, which account for both spatial and temporal patterns. 
However, most studies continue to employ static machine learning 
models to estimate the system states (Przybył and Koszela, 2023). 

Despite this, static models, such as multilinear regression, support vector 
machines (SVM), k-nearest neighbors (KNN), and artificial neural net
works (ANN), have been effective in identifying key parameters that 
influence product quality during the drying process (Deng et al., 2010). 
These methods are often enhanced by preprocessing techniques such as 
denoising, feature extraction, and feature selection to address the 
challenges of noisy data and the curse of dimensionality.

A significant advancement in this field is the application of deep 
learning architectures, particularly Convolutional Neural Networks 
(CNNs) and hybrid CNN-Long Short-Term Memory (CNN-LSTM) 
models, which have been successfully applied to monitor spatial food- 
quality dynamics. CNNs extract and learn spatial features from im
ages, including hyperspectral and RGB images, whereas LSTMs effec
tively capture temporal trends. The integration of these models has 
demonstrated promising results, improving both the prediction accuracy 
and computational efficiency of drying kinetics (George et al., 2022). 
For instance, the moisture content of potato slices during the drying 
process was monitored using image chromatic features, with LSTM 
models achieving higher accuracy, as demonstrated by a Root Mean 
Square Error (RMSE) of 13 × 10− 2 (Sabat et al., 2022). Similarly, Zhou 
et al. (2022) employed CNN-LSTM to monitor the moisture content in 
carrot slices using hyperspectral images, achieving high accuracy with 
an RMSEP of 0.08 %. Other applications of these hybrid models have 
been demonstrated in the drying of various products such as corn 
(Simonič and Klančnik, 2024), sweet potatoes (Su et al., 2020), and tea 
leaves (Xie et al., 2013).

Despite the extensive focus on moisture content, other quality pa
rameters, such as antioxidant retention and vitamin preservation, 
remain underexplored in studies that incorporate spatial and temporal 
features. An emerging trend in food drying monitoring is predictive 
maintenance, in which models are designed to predict product quality 
and maintain the optimal functioning of the drying equipment. How
ever, the approach of predictive maintenance within the drying process 
has been the focus of few studies (Rahman et al., 2023). Furthermore, a 
few studies have investigated monitoring the dynamics of the thermo
physical and mechanical properties of products using machine learning 
(Khan et al., 2022b). This gap in the literature highlights the need for 
future research to extend machine-learning applications to broader 
quality metrics during the drying process. Expanding research in this 
direction could lead to more resilient and adaptable machine-learning 
models capable of optimizing both product quality and operational 
efficiency.

Recent literature suggests a growing interest in the generalizability 
and robustness of machine-learning models across diverse conditions 
and datasets. Feature selection and model robustness remain key chal
lenges, as variations in raw materials, processing conditions, and sensor 
data quality can significantly impact the performance of machine 
learning models in Digital Twins. The future of this research lies in 
expanding the focus beyond moisture content, enhancing model 
generalizability in monitoring nutritional components and thermo
physical and mechanical properties with spatial and temporal features, 
and exploring the potential of predictive maintenance in the drying 
process.

4.1.6. Physics informed machine learning models
Progress in digitalization and advances in sensors and computational 

and cloud computing resources have created a massive set of data in 
different applications (Ritto and Rochinha, 2021). The conventional 
machine-learning approach is one of the most effective data-driven 
models that has been applied in different applications. However, to 
obtain an accurate prediction, such conventional machine learning 
models require a clean dataset as the model input, which means that the 
raw data should be extracted and processed before it is fed to the model. 
A data-driven model recommended for automatic real-time raw data 
processing is a deep learning neural network model (Alzubaidi et al., 
2021). Such a model has gained more attention in the drying processes 

Table 3 (continued )

Model Description Findings References

exposed to hot-air 
drying process.

achieved by 
increasing the 
drying air 
temperature from 
50 ◦C to 70 ◦C.

Physics 
informed 
machine 
learning 
model

A physics-informed 
deep-learning 
framework capable 
of encoding the 
Navier-Stokes 
equations into the 
neural networks 
was developed

The applicability of 
the approach in 
several physical and 
medical flow 
problems was tested

Raissi et al. (2020)

A physics-informed 
Neural Network- 
based model was 
implemented to 
predict moisture 
concentration and 
moisture-content- 
based shrinkage of a 
plant cell during 
drying

The approach was 
capable of 
predicting moisture 
concentration and 
shrinkage, 
indicating that the 
approach is a 
powerful tool for 
investigating 
complicated drying 
mechanisms

Batuwatta-Gamage 
et al. (2022)

Table 4 
Examples of the commonly used empirical drying model equations.

Model Equation Reference

Page MR = exp( − ktn)
Page (1949)

Modified Page MR = exp((− kt)n
)

Yaldiz et al. 
(2001)

Lewis MR = exp( − kt)
Lewis (1921)

Henderson and Pabis MR = aexp( − kt)
Getahun et al. 
(2021)

Modified Henderson and 
Pabis

MR = aexp( − kt)+ bexp( − gt) +
cexp( − ht) Getahun et al. 

(2021)
Wang and Singh MR = 1+ at+ bt2 Getahun et al. 

(2021)
Logarithmic MR = exp( − kt)+ c

Omolola et al. 
(2014)

Two term exponential MR = aexp( − kt)+ (1 − a)exp( −
kat) Yaldiz et al. 

(2001)
Diffusion approach MR = aexp( − kt)+ (1 − a)exp( −

kbt) Getahun et al. 
(2021)

Verma et al. MR = aexp( − kt)+ (1 − a)exp( −
gbt) Verma et al. 

(1985)
Midilli et al. MR = aexp( − ktn)+ bt

Midilli et al. 
(2002)

where, MR is the moisture ratio, t is the drying time, k, g, and h are drying 
constants, n is the order, and a, b, and c are dimensionless constants.
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(Fabani et al., 2021; Martynenko and Misra, 2020; Qadri et al., 2020; 
Sun et al., 2019a). However, these driven models completely depend on 
the collected dataset and do not have any physical meaning. Errors 
during data collection produce inaccurate model predictions 
(Batuwatta-Gamage et al., 2022; Karniadakis et al., 2021). To increase 
the accuracy of such data-driven models, there has been a recent 
development in coupling data-driven models with physics-based models 
in what is known as Physics-Informed Neural Networks (PINN) 
(Batuwatta-Gamage et al., 2022; Raissi et al., 2020). The residual losses 
from the physics-based models were coupled with the losses from the 
machine learning models through the loss function. The iterative process 
continues until the loss function satisfies convergence criteria. Studies 
on the application of PINN in drying are limited (Khan et al., 2020) and 
further research is required to narrow this knowledge gap. To narrow 
this knowledge gap, more research on the development and application 
of a physics-informed machine-learning model is recommended. Such 
coupled models could help us gain insight into the complex drying 
process and obtain more accurate predictions of the drying process for 
optimizing the design, operation, and control of the dryer and 
troubleshooting.

Mathematical models are capable of predicting the dynamic 
behavior the drying process, including quality attributes. Furthermore, 
the models could be timely updated with the real-time data to adapt 
themselves to the current state of dynamic changes. However, there is 
still a need to compute the optimal drying trajectories. To this end, the 
following section presents the dynamic optimization that could be used 
to compute the optimal drying trajectories. It is followed by subsection 
4.2.2 on advanced control required to apply such optimal trajectories.

4.2. Dynamic optimization and advanced control

4.2.1. Dynamic optimization
The problem of Dynamic Optimization (DO), also known as Optimal 

Control (OC), involves finding the time profile of the control/decision 
variables (u(t)) that minimize (or maximize) a function representing a 
performance index of the process. Such an index, defined by the plant 
operator according to the company’s goals, should consider all the 
relevant product and/or process variables. For instance, the process 
operator may aim to maximize product quality, minimize process time, 
energy/resource consumption, or a combination of several factors. 
Control variables can be manipulated in the process to achieve the 
desired results. Typical examples in a drying process include inlet air 
temperature, air flow rate, and humidity of the drying agent. The vari
ables that define the performance of a process are usually related to the 
state (x(t)). In addition, bounds on the decision variables and constraints 
of the state variables may be considered. Some examples of constraints 
during the drying process might be that the drying temperature cannot 
exceed the capacity of the heating system, the solution found must fulfill 
the model equations, and/or the product humidity at the end of the 
process must be below a predefined value. Mathematically, the DO 
problem can be expressed as: 

min
u(t)

J(x(t), u(t)); with J(x, u)= f
(
x
(
tf
))

+

∫ tf

t0
g(x(t), u(t))dt 1 

Subject to: 

• The model equations (please refer to Section 4.1)
• Algebraic constraints. Equality and inequality constraints can be 

considered:

p(x(t), u(t))=0 2 

q(x(t), u(t)) ≤ 0 3 

• Bounds on the control variables

xL ≤ x(t) ≤ xU 4 

uL ≤ u(t) ≤ uU 5 

The functions f
(
x
(
tf
))

and g(x(t), u(t)) are defined according to the 
criteria used to characterize the performance index.

For illustrative purposes, let us consider a particular drying case in 
which the aim is to determine the time profile of the drying temperature 
(T(t)) that minimizes the browning of the product at the end of the 
process 

(
B
(
tf
))

while maintaining the product moisture content at the 
end of the process 

(
M
(
tf
))

below 14 %. In addition, the drying tem
perature must be maintained between 40◦ and 80◦ ◦C. The DO problem 
can be formulated as 

min
T(t)

B
(
tf
)

6 

Subject to: 

• The model equations (Kaymak-Ertekin and Gedik, 2005):

dB
dt

= k0 exp
(

−
Ea

RT

)

7 

with initial conditions B(t= 0) = B0, M(t = 0) = M0, and: 

k0 = c1M(t)c2 ; Ea = c3 + c4M(t) 8 

• Algebraic constraints on the moisture content

M
(
tf
)
≤ 14% 9 

• Bounds on the control variable

40 ◦C≤T(t) ≤ 80 ◦C 10 

Several methods exist for solving DO problems (Eqs. (1)–(5)). Banga 
et al. (2005) reviewed the different methods available to address this 
issue. Typically, these methods are classified into three groups. 

• Dynamic Programming (DP) (Grüne, 2019). The DO problem 
(possibly infinite dimensional) is split into auxiliary problems, which 
include information about the future of optimal trajectories and 
where the time horizons are shorter. Although the exact solution is 
characterized by this approach, the number of auxiliary optimization 
problems may be large, and their formulation is generally involved.

• Indirect methods (Biegler, 2010). In this approach, the DO problem is 
transformed into a two-point boundary-value problem using Pon
tryagin conditions. However, the resulting problem can be solved, as 
in the previous case. This is particularly true if the state constraints 
are considered.

• Direct methods (Balsa Canto et al., 2002; Kameswaran and Biegler, 
2006). The DO problem is transformed into a non-linear program
ming problem by discretizing time and approximating either (i) both 
control and state variables or (ii) only the control variables using 
particular basis functions (for instance, low-order polynomials). The 
former approach is known as complete parameterization (CP), 
whereas the latter is known as control vector parameterization 
(CVP). The CP approach typically results in a large-scale NLP. 
However, as shown in (Biegler, 2010), the problem structure and 
sparsity can be exploited to develop efficient strategies that can 
maintain a reasonable computational effort.

Table 5 presents the main features of the different studies found in 
the literature dealing with the DO problem in the context of food drying, 
particularly for fruits and vegetables. Note that there exist general works 
that do not focus on food products, whose results can be applied to food 
matrices. For instance, Kowalski et al. (2013) presented an approach for 
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DO in the drying of porous materials, which is typical in food matrices; 
Barttfeld et al. (2006) dealt with the DO problem of multiple-zone air 
impingement driers for drying thin liquid films on continuous sub
strates. However, these studies were not included in this review. As 
listed in Table 1, the inlet air temperature (Tin

air) was the main control 
variable. The humidity of the drying agent (Xda

w ), drying agent flow rate 
(Fda), and drying time (tf ) have also been considered. The drying agent 
was air. Regarding the selection of the objective function to be opti
mized in the DO problem, the preferred option is to maximize the 
product quality at the end of the process (Qp

(
tf
)
), which is equivalent to 

minimizing quality degradation. Typically, studies have focused on a 
general quality concept described by first- or second-order kinetics, 
although some studies have considered a particular quality indicator, 
such as nutrients (N

(
tf
)
) or enzymes (E

(
tf
)
). The minimization of energy 

consumption (Ec), process cost (Cp), and drying time are also objectives 
considered in the literature. The most widely considered constraint is 
the moisture content in the product at the end of the process (Xp

w
(
tf
)
). 

Other constraints considered in the literature are the product tempera
ture, both during the process (Tp(t)) and at the end of the process 
(Tp

(
tf
)
), and the wet-milling quality (Wm

(
tf
)
). Finally, as shown in 

Table 5, the CVP method was the preferred approach for solving the DO 
problem in the context of fruit and vegetable drying.

4.2.2. Advanced control
The approach described in the previous section allows the compu

tation of drying policies that result in the optimization of one or several 
relevant variables (product quality, energy consumption, process time, 
etc.). However, as the reader might notice, there was no feedback from 
the plant. Therefore, in DO, issues such as plant-model mismatch, un
measured process disturbances, and differences between the optimal 
control obtained and the implemented control, among others, have an 
impact on the process that cannot be corrected online. Therefore, the 
control scheme must consider the feedback from the plant. PID 

controllers are the most typical type of controller used in the drying 
process. Although, in general, PID provide good results, the combination 
of plant information and mathematical models allow for different con
trol schemes that can improve the performance of PID controllers has 
been studied in the last decades. Note that a mathematical model allows 
us to predict the evolution of different variables and react beforehand.

One of the main advanced control strategies used in the context of 
the drying process is Model Predictive Control (MPC) (García et al., 
1989). The problem to be solved is the DO problem, as discussed in the 
previous section. Time discretization and approximation of the control 
variables using low-order polynomials were also used in the MPC. 
However, in the case of MPC, the DO problem is solved over a finite 
horizon, and although different cost functions might be used, they 
typically consider two terms: (i) a measure of the distance between the 
state variables and the reference trajectory for such variables, and (ii) a 
penalty on the control effort. Mathematically, the optimization problem 
to be solved is as follows: 

min
u(t)

J(x, u); with J(x, u)=
∑N

i=1

[(
x(tk+i) − xref (tk+i)

)2
+ωiΔu(tk+i)

2
]

11 

Subject, as in the previous section, to constraints such as the model 
equations, bounds on the decision variables, and other constraints on the 
state variables. In Eq. (11), N is the number of control sequences, k is the 
current time step, and xref (t) is the value of the reference trajectory. In 
addition, in contrast to the DO problem, the MPC strategy receives 
feedback from the system. Only the first step of control discretization is 
applied to the system from the optimal profile obtained after solving the 
DO problem. At the end of that step, the state of the process is measured, 
this information is used to compute a new profile of the control vari
ables, and the procedure is repeated.

Regarding the application of MPC to the drying process, Han et al. 
(2012) developed an MPC strategy based on neural networks for drying 
grains. The authors also used the PDE model to describe the drying 
process. The controller improved the uniformity of the moisture content, 
ensuring grain quality. More recently, an MPC strategy for the inter
mittent drying of paddy rice with the objective of maximizing head rice 
yield (HRY) was considered (Song et al., 2022). The idea was to use the 
adjusted evaluation index of the predicted HRY as the performance 
index to calculate the optimal control trajectories in real-time. Arun 
Jayakar et al. (2021) developed a mathematical model for a hot-air 
generator using a transfer function model. The authors also developed 
PID and MPC strategies to control the drying of tea leaves based on this 
model. Disturbances in environmental temperature and blower speed 
were considered. The exact transfer function model was obtained by 
conducting open-loop tests. The model was fine-tuned, and integer and 
non-integer models were obtained using different optimization tech
niques. Cristea (2015) developed an MPC strategy to control product 
temperature and improve the drying process of slab-shaped food prod
ucts. Ramp-constant temperature setpoints are also considered.

From another point of view, Fuzzy Logic concepts were also used to 
design efficient controllers for the drying process. Boeri et al. (2013)
developed a nonlinear MIMO fuzzy logic controller composed of four 
fuzzy controllers to track temperature, relative humidity, and air ve
locity. Their controller showed much better performance than a PID 
controller. Liu et al. (2006) used the Principal Component Analysis 
(PCA) concept to design a control strategy for maize drying that can deal 
with nonlinearity, long delay, and multi-variable issues. In this study, a 
PCA model was developed. The predicted scores were fed to a predictive 
model that was developed using the neural network partial least squares. 
These predicted scores were used as indicators of process performance. 
Vega et al. (2016) proposed a lumped parameter model based on 
experimental results for both the drying process of apple slices and the 
automatic control functionality. The simulation model showed a close 
correlation with the experimental data and thus could be used to 

Table 5 
Main features of the different approaches found in the literature to deal with the 
dynamic optimization problem in the context of fruits and vegetables drying.

Objectives Control 
var.

Constraints Material Approach Reference

Qp
(
tf
)
: 

First 
order 
kinetics

Tin
air ; Xda

w Xp
w
(
tf
)
; Tp

(
tf
)

Granular 
bioproduct

Not 
specified Kamiński 

(1992)

N
(
tf
)
; tf ; 

Ec

Tin
air Xp

w
(
tf
)
; N

(
tf
)
; 

Tp(t)
Thin slab 
of cellulose

Indirect 
method Banga 

and Singh 
(1994)

N
(
tf
)
; 

E
(
tf
)

Tin
air Xp

w
(
tf
)
; Tin

air Broccoli Not 
specified Jin et al. 

(2014a)
Qp

(
tf
)
: 

Second 
order 
kinetics

Tin
air ; 

Xda
w ; tf

Xp
w
(
tf
)

Rice Direct 
(CVP) Wongrat 

et al. 
(2011)

Drying 
process 
cost

Tin
air Xp

w
(
tf
)
; 

Wm
(
tf
)
; Tin

air

Corn Direct 
(CVP) Trelea 

et al. 
(1997)

Qp
(
tf
)
: 

Second 
order 
kinetics

Tin
air ; Xda

w Xp
w
(
tf
)

Rice Direct 
(CVP) Olmos 

et al. 
(2002)

tf Tin
air Xp

w
(
tf
)
; 

Wm
(
tf
)

Corn Direct 
(CVP) TRELEA 

et al. 
(1999)

Qp
(
tf
)
: 

first 
order 
kinetics

Tin
air ; Fda Xp

w
(
tf
)
; Tin

air ; 
Fda

Broccoli Direct 
(CVP) Jin et al. 

(2014b)
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determine the optimum control and process parameters for the 
convective drying of apple slices. Application of this strategy led to a 
significant decrease in drying time and, potentially, an increase in pro
cess efficiency and product quality.

5. Future research needs

Digital Twins-based smart food drying is still in its infancy. The 
literature review is more limited to the development of digital models. 
Further research is required to develop digital shadows and future 
Digital Twins. The main reason for postponing the appearance of Digital 
Twins-based smart food dryers is the interdisciplinary nature of the 
topic, which requires knowledge from different areas. The current paper 
aims to provide a better insight into the concept and lightens the way 
how Digital Twins can be brought into drying technology. To reach this 
goal, future research should focus on: 

• A clearer understanding of the interdependencies between product 
changes, process settings, and physical setup is required. Based on 
these new indicators, it may be necessary to make the machine more 
readable.

• Noninvasive monitoring of chemical compounds needs to be further 
developed. Even though there is a wealth of studies on the moni
toring of moisture content, color, shrinkage, and some other physical 
attributes, many of the core nutritional components, so far, have not 
been sufficiently included. Although there have been some studies on 
pigments and polyphenols, more investigation is needed to extend 
the monitoring process to include more chemical components, such 
as vitamins.

• Most previous studies were conducted under static drying condi
tions, where the drying process was conducted under a constant air 
temperature, humidity, and velocity. There are few studies on dy
namic/variable drying conditions, particularly with respect to the 
drying process of fruits and vegetables. As in a Digital Twins-based 
smart food dryer, the strategy is to tune the drying conditions 
throughout the process, there is still room for the dynamic optimi
zation of the fruit and vegetable drying process.

• Other tools from the Process Engineering field should be integrated 
into Digital Twins (Prada et al., 2022) of the drying process. In this 
regard, the development of State Observers that combine mathe
matical models and plant information to reduce plant-model 
mismatch and their integration into advanced control schemes 
must be studied. Fault detection strategies that allow the identifi
cation of problems in sensors should be studied and implemented 
during the drying process. In addition, a Digital Twins-based smart 
food drying process should also consider Data Reconciliation tech
niques that allow the consideration and improvement of coherence 
among measurements and between measurements and model pre
dictions, compute key performance indexes, or estimate unknown 
magnitudes. Finally, a Digital Twins-based smart food drying process 
should include a database capable of managing large quantities of 
data and Big Data analysis tools that allow for easy and fast inter
pretation of such data.

• The concept presented in this study is based on the hybrid applica
tion of data-driven and mathematical models. First, real-time data 
collected by the sensors are fed to data-driven models to estimate the 
quality attributes. Next, those estimations are fed to the mathemat
ical models. Subsequently, dynamic optimization compute the 
optimal trajectories. Finally, the optimal trajectories are fed back to 
an advanced control unit. Currently, given the rapid growth of ma
chine learning algorithms and their huge potential to learn deeply 
from data, it is a potential research topic to leave everything to 
machine learning algorithms. In other words, the machine learning 
algorithms perform both prediction and decision-making tasks. 
Learning from data could be advantageous over the mathematical 

modeling of the process in which some parameters could be simpli
fied or overlooked.

• Finally, Jones et al. (2020) identified perceived benefits, Digital 
Twins across the product lifecycle, technical implementations, levels 
of fidelity, data ownership, and integration between virtual entities 
as knowledge gaps and topics for future research.
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Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J., 1999. Nonlinear 
predictive control and moving horizon estimation—an introductory overview. 
Advances in control: Highlights of ECC’ 99, 391–449.

Alonzo-Macías, M., Montejano-Gaitán, G., Allaf, K., 2014. Impact of drying processes on 
strawberry (Fragaria var. C amarosa) texture: identification of crispy and crunchy 
features by instrumental measurement. J. Texture Stud. 45, 246–259. https://doi. 
org/10.1111/jtxs.12070.

A. Arefi et al.                                                                                                                                                                                                                                    Journal of Food Engineering 404 (2026) 112770 

18 

http://refhub.elsevier.com/S0260-8774(25)00305-X/sref1
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref1
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref1
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref1
https://doi.org/10.1080/07373937.2016.1212871
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref3
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref3
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref3
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref4
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref4
http://refhub.elsevier.com/S0260-8774(25)00305-X/sref4
https://doi.org/10.1111/jtxs.12070
https://doi.org/10.1111/jtxs.12070


Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., 
Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L., 2021. Review of deep 
learning: concepts, CNN architectures, challenges, applications, future directions. 
Journal of big data 8, 1–74. am Goula, Adamopoulos, KG, 2006. Retention of 
ascorbic acid during drying of tomato halves and tomato pulp. Dry. Technol. 24, 
57–64.

Antal, T., Kerekes, B., Sikolya, L., Tarek, M., 2015. Quality and drying characteristics of 
apple cubes subjected to combined drying (FD pre-drying and HAD finish-drying). 
J. Food Process. Preserv. 39, 994–1005. https://doi.org/10.1111/jfpp.12313.

Aradwad, P.P., Thirumani Venkatesh, A.K., Mani, I., 2023. Infrared drying of apple 
(Malus domestica) slices: effect on drying and color kinetics, texture, rehydration, 
and microstructure. J. Food Process. Eng. 46, e14218.
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In: Raković, S.V., Levine, W.S. (Eds.), Handbook of Model Predictive Control. 
Springer International Publishing, Cham, pp. 29–52.
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