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ARTICLE INFO ABSTRACT
Keywords: Digital Twins technology is rapidly growing and has the potential to revolutionize traditional food-processing
Digital Twins-based smart food drying methods. However, their application in food-drying processes is still in its infancy. This study aimed to

Non-invasive measurements
Dynamic optimization
Mathematical models
Advanced control

explore how Digital Twins can be applied to food drying process. Traditionally, food drying is performed under
constant conditions, where air temperature and velocity remain constant. However, the literature review shows
that variable drying conditions (trajectories) can improve both energy efficiency and product quality. The
challenge is that the trajectories are calculated based on what happened in the process, not what is currently
happening. Digital Twins address this shortcoming by enabling decision making based on real-time data. In this
conceptual review paper, physiochemical parameters as an element of the physical world of a Digital Twins-
based smart food dryer is first presented. Next, potential sensors for building a digital counterpart of the
physiochemical parameters are discussed. This is followed by mathematical models, dynamic optimization, and
advanced control, which are the core elements of a decision-making and control unit. Finally, future research
needs are discussed. This conceptual review paper will guide and give a solid insight to academic researchers,
companies, and other potential stakeholders on merging Digital Twins and food drying technologies.

This article is part of a special issue entitled: Digital Twins published in Journal of Food Engineering.
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1. Introduction

The high water content in fruits and vegetables provides a potential
growing environment for microorganisms to accelerate spoilage. To
mitigate microbial spoilage, drying technology has been of great inter-
est, as water activity is reduced to hinder the growth of microorganisms.
Dried fruits and vegetables are not only associated with a longer shelf
life, but also lower expenses for transportation, storage, and packaging
(Mousakhani-Ganjeh et al., 2021). Nevertheless, the drying process has
been criticized for its negative impact on nutrients; dried apple slices, for
instance, contain 70 % less vitamin C compared to fresh ones (Arefi
et al.,, 2021) in convective drying. The advent of smart processing
practices in the manufacturing industry in the context of the Industry 4.0
and 5.0 concepts promises to significantly advance the understanding of
product-process interactions and the dynamics of changes of products in
food processing (Sturm, 2018). In this context, the emerging concept of
Digital Twins plays a crucial role. Digital Twins are defined as the virtual
replica of real world (Verboven et al., 2020). In its first maturity stage, it
was limited to simulating the physical entity, the so-called Digital
Model. A digital model considers scenarios that could occur in the
physical entity instead of the current state. To address this shortcoming,
the digital model was further extended to a Digital Shadow by enabling
real-time data transfer from the physical entity to the model. Never-
theless, the communication between physical and virtual entities was
unidirectional. In other words, it was the physical world affecting the
digital shadow, and not vice versa. Real-time optimization and control of
a physical process is possible only if there exists bidirectional commu-
nication by which the digital shadow can send its feedback to the
physical entity, which is called Digital Twins. Digital Twins resemble
their physical counterparts in a way their appearance is not only similar
but also show the same behavior, like a mirror (Kritzinger et al., 2018).
Digital Twins consist of a physical entity, digital entity, and bidirectional
communication between them. Indeed, in contrast to the traditional
drying process, which usually relies on constant process conditions
irrespective of the varations in raw material quality, Digital Twins-based
smart food drying employs dynamic/variable drying conditions found to
be superior to constant drying conditions (Jin et al., 2014b; Chen et al.,
2020a; Olmos et al., 2002; Sturm, 2010; Sturm et al., 2009; Sujinda
et al., 2021).

1.1. The-state-of-the-art of Digital Twins in food drying process

Digital Twins-based drying is still in its infancy, and in-depth
research is needed to bring it to the real world. Martynenko (2017)
highlighted the interdisciplinary nature of the research topic as a chal-
lenge postponing the development of intelligent dryers, as it requires
knowledge of drying principles, Artificial Intelligence, computer vision,
mathematical modeling, dynamic optimization, real-time control, and
process automation. The earliest and unique effort given to the devel-
opment of a Digital Twins-based dryer dates back to 2007, when Mar-
tynenko and Yang (2007) integrated a machine vision system into a pilot
dryer to optimize both the drying time and quality index of ginseng
roots. Their proposed system reduced the drying time from 240 to
90-110 h whilst meeting the quality criterion. Concurrently, Sturm and
Hofacker (2007) proposed a system integrating a machine vision for a
better understanding of the dynamic changes within the process based
on the continuous monitoring of color changes. They found that product
temperature-controlled drying has significant advantages over air tem-
perature control in terms of the reduction of color changes, drying time,
and thermal stress of the product. Based on the continuous measurement
of color changes, they determined the inflection points in the degree of
change in AE at the phase transition. This information was used in a
follow-up study to change processing conditions in a stepwise manner
(Sturm and Hofacker, 2010).

Most of existing studies have focused on individual components of a
Digital Twins-based smart food drying rather than developing a fully
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integrated system. Prawiranto et al., (2021) developed a digital model
for solar drying, combining a mechanistic drying model with fruit
quality degradation models to assess the impact of weather variations on
drying time and final product quality. The model effectively demon-
strated differences in drying outcomes across various drying runs. They
further proposed integrating real-time or forecasted weather data into
the model to enable real-time control of solar dryers. A recent study by
Schemminger et al. (2024) developed a physics-based model enhanced
with Monte Carlo simulations to capture the natural variability in fresh
carrot slices and during convective drying. The model provided
non-invasive insights into hygrothermal dynamics and p-carotene
degradation. To reduce the computational burden of mechanistic drying
models, Ghosh and Datta (2023) developed a deep learning-based sur-
rogate model by training on simulation data from a multiphysics drying
model. This approach maintained high spatial and temporal resolution
while significantly improving computational efficiency. A dynamic
optimization approach was applied to enhance both energy efficiency
and vitamin C retention during the drying of broccoli (Jin et al., 2014b).
By modeling the kinetics of moisture loss and nutrient degradation,
optimal trajectories for air temperature and flow rate were identified.
The optimized strategy, featuring a descending-ascending temperature
profile and a gradually reduced airflow, achieved significantly higher
energy efficiency (65 %) and vitamin C retention (55 %) compared to
conventional static drying (28 % and 32 %, respectively). Sabat et al.
(2022) integrated a computer vision system into a dryer for inline
monitoring of potato slice color changes during drying. The extracted
chromatic features served as input to a Long Short-Term Memory
(LSTM) model, which accurately predicted the corresponding moisture
content, demonstrating the effectiveness of combining vision-based
sensing with deep learning for non-destructive moisture estimation.
Advanced non-invasive sensors, such as near- and mid-infrared hyper-
spectral imaging (Su et al., 2020) and low-field nuclear magnetic reso-
nance (Sun et al., 2021c), have shown promising results for monitoring
moisture content changes during drying.

With the rapid advancement of Artificial Intelligence, non-invasive
sensors, and computing powers, the emergence of digital twin-based
approaches in food drying processes is increasingly anticipated. How-
ever, there remains ambiguity regarding the integration of Digital Twins
into food drying systems. This paper seeks to clarify this gap by pre-
senting a structured framework for implementing Digital Twins in food
drying applications. It offers a step-by-step guide to assist researchers
and practitioners in developing a smart dryer powered by digital twin
technology.

1.2. How to integrate Digital Twins components to develop a smart food
drying process

Fig. 1 shows a schematic representation of Digital Twins-based smart
food drying process. The Physical entity (red dashed rectangle) consists
of the environment where the drying process is carried out (chamber,
tunnel, etc.); the product to be dried; and the sensors (see Section 3) used
to measure the relevant process/product variables (Section 2). If the
available sensors are able to measure the relevant process variables,
then such measurements can be fed directly to the Virtual entity (see
Section 4.1). If this is not the case (for example when only temperature
measurements are available), a software sensor (Lara-Cisneros and
Dochain, 2018), that combines mathematical models and hardware
sensor measurements, can be used to estimate unmeasured process/-
product variables, which are fed to the Virtual entity. A dynamic opti-
mization procedure (Section 4.2.1) can be used to compute the optimal
trajectories or set points of the variables to be controlled in the process
(Section 2). Once such reference trajectories are computed, they are sent
to a controller (Section 4.2.2) to compute the values of the variables that
can be manipulated in the process (input variables/controls) such as air
velocity, chamber temperature, etc. The output of the controller is sent
to the process so that the reference trajectories/set points are met. To
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minimize the impact of modeling errors, the above-mentioned proced-
ure can be performed recursively. In this regard, when new process
measurements are available, they are fed to the Virtual entity to
recompute the reference trajectories. Besides, such measurements can
be also used to update the model parameters and improve its predictive
capabilities by fitting the model predictions to the experimental data.
The Digital Twins can integrate other modules to identify hardware
malfunctions (Fault detection (Massei et al., 2025)); to ensure consis-
tency among the sensor measurements (Data reconciliation (Pitarch
et al., 2019)); to estimate states (Kalman filter or Moving horizon Esti-
mation (Allgower et al., 1999)); or to estimate and account for process
product variability (Oliveira-Silva et al., 2021), among other.

1.3. Challenges of Digital Twins-based smart food drying systems

The number of parameters transferred between physical and virtual
entities and their accuracy, the so-called fidelity, is foreseen as a chal-
lenge. Fruits and vegetables are complex matrices containing a number
of micronutrients. However, the low concentration of micronutrients,
given the high amount of water, raises concerns about their accurate
prediction. A digital replica of the full spectrum of micronutrients, if not
impossible, requires a number of sensors. As a result, the initial cost of a
digital twin-based drying process can be high. Moreover, the develop-
ment of robust predictive models requires a reasonable number of
tedious and costly quality measurements. Furthermore, the high-tech
level of the Digital twins-based smart food drying process brings about
special maintenance and operator training. The data storage cost is
another issue. Another challenge is the expandability of a Digital Twins-
based dryer for a broad spectrum of fruits and vegetables. Nevertheless,
Digital-Twins is seen as the future of food processing systems, and the
above-mentioned challenges need to be addressed.
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2. Physicochemical parameters

During the drying of fruits and vegetables, a range of quality attri-
butes, such as water activity, color, texture, rehydration capacity,
shrinkage, total phenolic content, pigments (e.g., anthocyanins, chlo-
rophyll, and carotenoids), vitamin C, and aroma, undergo significant
changes. These attributes are not only critical for consumer acceptance
but also reflect the nutritional and functional value of the final product.
Their retention or degradation depends heavily on the drying method
and conditions, including temperature, air velocity, and humidity. Un-
derstanding how these attributes respond to different drying conditions
is essential for optimizing the process and ensuring product quality.
Table 1 summarizes findings from the literature on how these attributes
are impacted across various drying studies. As presented in Table 1, the
quality attributes show different behaviors which can be mathematically
modeled as presented in section 4.1. However, such models are often
limited in their generalizability, as their accuracy depends on factors
such as drying conditions, raw material properties, and processing pa-
rameters. To address this shortcoming, it is essential to continuously
update these models using real-time sensor data. To this end, potential
sensors for real-time monitoring are presented in the following section.

3. Potential sensors for Digital Twins-based food drying system

Overall, a fusion of sensors is expected to result in a reliable and
comprehensive digital representation of quality attributes. Nevertheless,
the following points are worth considering.

e Imaging techniques are preferred over point-based techniques
because they deliver spatial information and their field of view is
larger, by which several samples can be simultaneously monitored.
Furthermore, shrinkage/bending causes changes in the distance and/
or angle between the point-based optical probes and samples, which
can influence the received light. However, point-based techniques
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Fig. 1. The concept of Digital Twins-based smart food drying process.
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Table 1

The impact of drying parameters on quality attributes of fruits and vegetables.

Physicochemical
attributes

Description

Findings

Reference

Water activity

Color

Air temperature:
40, 50, and 60 °C
Final dried
condition:
moiture content
(MC) of 10 % w.b
Air temperature:
313.15-373.15K
Final dried
condition:
constant final
weight

Air temperature:
40, 50, and 60 °C
Drying time: 24,
30, and 36 h
Final dried
condition:
unspecified

Air temperature:
40, 50, 60, 70,
and 80 °C

Air velocity: 1.0
and 1.5 m/s
Final dried
condition:
constant final
weight

Air temperature:
45, 55, and 65 °C
Sample
thicknesses: 1.5
and 5 mm

Air velocity: 0.2
m/s

Final dried
condition:
unspecified

Air temperature:
50, 60, and 70 °C
Air velocity: 0.5
and 1 m/s

Final dried
condition:
constant final
weight

Air temperature:
40, 50, 60, and
70°C

Air velocity: 0.5,
1, and 2 m/s
Final dried
condition:
constant final
weight

Air temperature:
60, 70, and 80 °C

Air temperature:
50, 60, and 70 °C

Air temperature:
50, 60, and 70 °C

Water activity of
beetroot pulp dried
at high
temperatures was
low.

Water activity of
dried guabiju pulp
was low with high
drying
temperature.

The drying
conditions with
higher
temperatures

(60 °C and 70 °C)
and longer times
(30 h and 36 h)
resulted in lower
water activity in
onion.

Higher
temperatures
correlated with
lower water
activity in dried
red-fleshed dragon.
Air velocity did not
have a significant
effect on water
activity.

Higher air
temperature and
air velocity settings
correlated with
lower water
activity in dried
apple chips.
Thicker samples
exhibited higher
water activity.
Higher
temperature and
air velocity settings
parameters settings
correlated with
lower water
activity in dried
feijoa fruit.

Higher air velocity
correlated with
lower water
activity in dried
lemongrass leaves.
Air temperature did
not significantly (p
> 0.05) influence
the water activity
in the dried leaves.
As the air
temperature
increased, the color
changes of kiwi
slices increased
Color changes of
yam slices
increased as the
temperature
increased.
Pomegranate color
changes increased

Preethi et al.
(2020)

Bombana et al.
(2023)

Sarkar et al.
(2023)

Mahayothee et al.
(2019)

Demiray et al.
(2023)

Castro et al.
(2023)

Mujaffar and
John (2018)

Tepe et al. (2022)

Sahoo et al.
(2022)

Kaveh et al.
(2021)

Table 1 (continued)
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Physicochemical
attributes

Description

Findings

Reference

Texture

Rehydration

Air temperature:
40, 55, and 70 °C

Air temperature:
50, 60, 70, 80,
and 90 °C

Air temperature:
110, 115, and
120 °C

Air temperature:
75°C

Air temperature:
40, 50, 60, 70,
and 80 °C

Air temperature:
50 °C

Slice thickness:
4-5 mm

Air velocity: 1.2
m/s

Final dried
condition: MC 3
% d.b.

Air temperature
60, 65, and 75 °C

Air temperature:
50, 60, and 70 °C

Air temperature:
50, 60, and 70 °C

Air temperature:
50-70 °C

with an increase in
the temperature.
The color changes
in blood-flesh
peach were
negatively
correlated with
temperature.
Temperature
exposure reduced
firmness of pepino
fruit (Solanum after
convective drying.
Fracturability and
crispness were
shown to be higher
while hardness was
slower at higher
temperatures in
convectively dried
apple slices.

The firmness of
apple cubes
convectively dried
at 75 °C was higher
than in fresh cubes.
Hardness,
cohesiveness,
chewiness, and
resilience were
lower while
springiness and
adhesiveness were
higher in
convectively dried
maqui berry than in
fresh samples at all
temperature
settings.
Springiness,
cohesiveness, and
gumminess of the
samples at 80 °C
were notably
similar to fresh
samples.

Hot-air drying
increased the
hardness and
brittleness in
strawberry fruit
and in turn the
crunchiness and
crispiness in the
dried slices.
Rehydration ratio
of apple slices
increased with
increasing
temperature.
Wormwood leaves
dried at higher air
temperature
exhibited higher
rehydration ratio.
Hawthorn samples
dried at higher air
temperature
showed higher
rehydration ratio.
The lowest
rehydration ratio of
yam slices was
associated with

50 °C.

Tan et al. (2022)

Di Scala et al.
(2011)

Kian-Pour and

Karatas (2019)

Antal et al. (2015)

Quispe-Fuentes
et al. (2017)

Alonzo-Macias
et al. (2014)

Aradwad et al.
(2023)

Beigi (2017)

Aral and Bese
(2016)

Sahoo et al.
(2022)

(continued on next page)
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Table 1 (continued)

Table 1 (continued)
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Physicochemical Description Findings Reference Physicochemical Description Findings Reference
attributes attributes
Air temperature: The higher Xu et al. (2022) 0.5, 0.9, and 1.3 decreasing drying
45, 50, 55, and temperature, the m/s. temperature and
60 °C higher rehydration air velocity.
ratio mushroom Total phenolic Air temperature: The total phenolic Chikpah et al.
had. content 50, 60, and 70 °C content of pumpkin (2022)
Air temperature: As the temperature 1zli and Polat increased as the
45, 55, 65, and increased, the (2019) temperature
75°C rehydration ratio of increased.
quince decreased. Air temperature: Kiwi slices dried at (Izli et al., 2017;
Air temperature: With the increase Huang et al. 60, 70, and 80 °C  high temperature Tepe et al., 2022)
60, 65, 70, and of temperature, (2023) were associated
75°C rehydration ratio of with a higher
Phyllanthus concentration of
emblica decreased. total phenolic
Air temperature: Mint leaves dried at Beigi (2017) content.
of 50, 60, and higher air Air temperature: The increase in Kheto et al.
70 °C. temperature 40, 50, and 60 °C  drying temperature  (2021)
exhibited lower increased total
rehydration ratio. phenolic content of
Air temperature: The highest Ojediran et al. paprika.
50, 60, and 70 °C  rehydration ratio of ~ (2020) Air temperature: As the temperature Preethi et al.
Air velocity: 0.5, yam slices was 40, 50, and 60 °C increased, total (2020)
1,and 1.5m/s associated with the phenolic content of
Slice thickness: 3,  highest air velocity. beetroots
6, and 9 mm decreased.
Air temperature: With the increase Goli et al. (2023) Air temperature: Increasing air Kamble et al.
50, 60, and 70 °C of air velocity, the 60 and 80 °C temperature (2022)
Air velocity: 5,7,  rehydration ratio of decreased total
and 9 m/s quince slices phenolic content of
increased. green banana.
Rehydration Air temperature: An increase in the Balzarini et al. Air temperature: High temperature Joshi et al. (2011)
60 and 80 °C temperature and (2018) 20, 40, and 70 °C lead to high
Air velocity: 0.2 air velocity caused degradation of
and 0.7 m/s a decrease in phenolic contents
rehydration ratio of compared to low
chicory roots. temperature drying
Air temperature: Air temperaturedid ~ Ndisya et al. and freeze drying.
40, 60, and 75 °C  not influence the (2020) Air temperature: Hot air drying at Guiné et al.
Air velocity: 0.6 rehydration ratio of 60-70 °C 60-70 °C resulted (2015)
m/s purple-speckled in approximately
Material cocoyam 40 % decrease in
thickness:4, 7, both total
and 10 mm phenolics and
Shrinkage Air temperature: Pomegranate Sufer and antioxidant
55, 65, and 75 °C  shrinkage Palazoglu (2019) activity.
increased with Air temperature: Increasing drying Da Cruz et al.
increasing drying 55-75°C temperature up to (2012)

Air temperature:
50, 60, 70 and
80°C

Air temperatures
50, 60, and 70 °C

Air temperatures
of 40, 50, 60, and
70 °C

Air temperatures:
50, 60, and 70 °C.

Air temperatures:
50, 60, 70, and
80°C

Air velocity: 0.5,
1, and 1.5 m/s

Air temperatures
50, 60, and 70 °C
Air velocities of

temperature

As the temperature
increased, the
potato shrinkage
increased
Shrinkage of
papaya increased
as temperature
increased
Shrinkage of melon
slices decreased as
the temperature
increased.
Shrinkage of plum
increased with
decreasing drying
temperature

An increase in
temperature caused
an increase in pear
slices shrinkage,
but the air velocity
did not have a
significant effect on
shrinkage.
Shrinkage of
hawthorn fruit
increased with

Thuy et al. (2022)

Islam et al. (2019)

Darvishi et al.
(2015)

Ojediran et al.
(2021)

Kalantari et al.
(2023)

Aral and Bese
(2016)

Total phenolic
content

Air temperature:
55-75 °C

Air temperature:
50-90 °C

Air temperature:
40, 60, and 80 °C
Air velocity: 0,
0.8, and 1.6 m/s

Air temperature:
50, 60, and 70 °C

75 °C resulted in
higher levels of
phenolic
compounds and
lycopene in the
dried tomatoes.
Increasing drying
temperature up to
75 °C resulted in
higher levels of
phenolic
compounds and
lycopene in the
dried tomatoes.
Higher the drying
temperature
resulting in lower
the value of
phenolic
components.

The higher air
velocity, the
highest
concentration of
total phenolic
content in orange.
Total phenolic
content of paprika

Da Cruz et al.
(2012)

Lopez et al.
(2010)

Del Razola-Diaz
et al. (2023)

Sasikumar et al.
(2023)

(continued on next page)
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Table 1 (continued)

Table 1 (continued)
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Physicochemical Description Findings Reference Physicochemical Description Findings Reference
attributes attributes

Air velocity: 1.5, was higher when happened when

2, and 2.5 m/s drying was drying temperature
conducted at increased from 50
higher air velocity. to 80 °C.

Air temperature: Lowering the air Rajendran et al. Pigments Air temperature: Purple sweet potato ~ Wang et al.

50, 60, 70, and temperature and (2023) 60-110 °C dried at 110 °C (2020)

80 °C velocity resulted contained the

Air velocity: 0.8, higher loss of total lowest

2.1, and 3.4 m/s phenolic content in concentration of
Turkey berry. anthocyanin.

Air temperature: Total phenolic Sarpong et al. Air temperature: Raspberries dried Stamenkovic¢

60, 70, and 80 °C content of (2021) 60, 70, and 80 °C at 70 °C had the et al. (2019)

Relative pineapple slices highest retention

humidity: 10, 20, was higher when (56 %) of

and 30 % drying was anthocyanin.
conducted at Air temperature: Strawberries dried Méndez-Lagunas
higher relative 50 and 60 °C at 50 and 60 °C et al. (2017)
humidity. showed 26 % and

Air temperature: Higher relative Matys et al. 45 % loss of

55, 70, and 85 °C humidity was (2023) anthocyanins.

Relative related to a higher Air temperature: Anthocyanin loss Rodriguez et al.

humidity: 1.5 and total phenolic 40 and 80 °C increased from 48 (2016)

10 g/m3 content in apple to 60 % as the
slices. temperature

Pigments Air temperature: The higher Lu et al. (2015) elevated.

55-95 °C temperature, the Air temperature: Blueberries dried at Zia and Alibas
lower retention of 50, 70, and 90 °C 90 °C showed a (2021)
chlorophyll in mint higher retention of
leaves. anthocyanins

Air temperature: The highest loss of Beigi (2019) Vitamin C Air temperature: Increasing the Kaya et al. (2010)

40, 50, and 60 °C chlorophyll (36 %) 25, 35, 45, 55, drying air
in mint leaves was and 65 °C temperature
related to the air Relative accelerates the
temperature of humidity: 40, 55,  degradation of
60 °C. 70, and 85 vitamin C in dried

Air temperature:
40-60 °C

Air temperature:
50-70 °C

Air temperature:
50-100 °C

Air temperature:
60-100 °C

Air temperature:
65 °C

Air temperature:
60 and 70 °C

Air temperature:
50-80 °C

Chlorophyll
content of green
paprika decreased
from 27.17 to
16.88 pg/g dry
matter when
temperature
increased.
Chlorophyll
retention in Jew’s
mallow leaves
increased as the air
temperature
increased.

The higher
temperature, the
higher loss of
lycopene and beta-
carotene.

Alpha- and beta-
carotenes in
pumpkin slices
were found more
thermostable than
dihydroxy
xanthophylls.
Losses over 50 %
happened in alpha-
carotene, beta-
carotene, and
lutein of pumpkin.
Apricot fruit dried
at 60 and 70 °C
showed beta-
carotene losses of
20 % and 40 %,
respectively.

The highest
retention of beta-
carotene in apricot

Kheto et al.
(2021)

Mokhtar and
Morsy (2014)

Demiray et al.
(2013)

Ouyang et al.
(2022)

Piyarach et al.
(2020)

Albanese et al.
(2013)

Karabulut et al.
(2007)

Air velocity: 0.3,
0.6, and 0.9 m/s

Air temperature:
40, 55, and 70 °C
Relative
humidity: 38,
24.4, and 16.1
Air temperature:
60, 70, and 80 °C

Air temperature:
60, 65, 70, and
75°C

Air velocity: 9 m/
s

Blanching: 90 s
Air temperature:
40, 50, and 60 °C
Air velocity: 1.5
m/s

Air temperature:
40, 50, 60, and
70 °C

Air velocity: 2 m/
s

Air temperature:
50, 70, and 90 °C

kiwi fruits, while
higher relative
humidity of the
drying air reduces
this degradation.
The retention of
vitamin decreased
from 72.8 t0 12.5 %
with increasing
temperature

The retention of
vitamin C in mango
during hot air
drying was higher
at 60 °C, while the
differences in
retention were not
significant between
70 °C and 80 °C.
Vitamin C of
broccoli florets
decreases rapidly
as the drying
temperature
increases

Vitamin C content
of tomato and
sweet pepper
decreased with
increasing
temperature.
Degradation of
vitamin C content
in spine gourd
increases from
46.30 to 84.84 %
with higher drying
temperatures.

The total loss of
ascorbic acid

Ek et al. (2018)

Sehrawat et al.
(2018)

Liu et al. (2019b)

Kaur et al. (2020)

Kumar et al.
(2021)

Parveez Zia and
Alibas (2021)

(continued on next page)
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Table 1 (continued) Table 1 (continued)

Physicochemical Description Findings Reference Physicochemical Description Findings Reference
attributes attributes
Air velocity: 1 m/  during convective isoamyl acetate,
s drying of cornelian and butyl acetate
cherry ranges showed a marked
between 79 % and decrease after 24 h
87 %. Lower drying of drying, while
temperatures elemicine levels
(50 °C) result in remained stable.
greater ascorbic Air temperature: In banana, the Saha et al. (2018)
acid loss compared 38,33,and 28 °C  highest percentage
to higher Relative of loss for all
temperatures humidity: 17, 20,  compounds,
(90 °Q). and 32 % excluding hexanal,
Vitamin C Air temperature: Increase in hot-air Kittibunchakul occurred at 33 °C.
50, 60, 70, 80, drying temperature et al. (2023) Conversely,
90, and 100 °C from 50 °C to isoamyl acetate and
Air velocity: 0.5 100 °Cled to a isobutyl acetate
m/s considerable exhibited their
decrease in highest retention at
ascorbic acid levels 38 °C.
of maoberry fruits Air temperature: Peppers dried at Ge et al. (2020)
Air temperature: Increasing the Ozsan Kilic et al. 60, 70, and 80 °C 70 °C or 80 °C had
60, 70, and 80 °C blanching time (2023) Air velocity: 1.5 similar volatile
Air velocity: 1.5 from 0 to 5 min led m/s flavor compounds,
m/s to a decrease in but both showed
Blanching time: vitamin C content greater loss of these
2.5 and 5 min except at 60 °C. compounds
Slice thicknesses: Additionally, compared to those
6, 8, and 10 mm increasing the dried at 60 °C
sample slice Aroma Air temperature: Peppers dried at Ge et al. (2020)
thickness resulted 60, 70, and 80 °C 70 °C or 80 °C had
in increased Air velocity: 1.5 similar volatile
vitamin C content m/s flavor compounds,
of bitter gourd but both showed
except at 80 °C. greater loss of these
Air temperatures:  Relative humidity Farias et al. compounds
55, 60, 65, 70, had little effect on (1999) compared to those
and 75 °C ascorbic acid dried at 60 °C
Relative retention at 55 °C Air temperature: Hot-air drying is a Zhang et al.
humidity: 15, 20, and 60 °C, but 50 °C more effective (2021a)
25, 30, 35, and higher Air velocity: 0.45 method for
40 % temperatures m/s producing the
(65 °C, 70 °C, and typical shiitake
75 °C) resulted in mushroom aroma
decreased retention compared to freeze
with increased drying and natural
humidity. drying
Aroma Air temperature: At 50 °C, linalool, Barbieri et al. Air temperature: The highest trans- Wen et al. (2020)

40, 50, and 60 °C
Air velocity: 1.2
m/s

Air temperature:
65 °C

Air temperature:
40, 60, and 80 °C
Air humidity:15
%, 5 %, and 3 %
Air velocity: 2 m/
s

the primary aroma
component of basil,
exhibits a higher
concentration
compared to
temperatures of
40 °C and 60 °C.
In bell peppers,
compounds such as
(Z)-3-hexenal, (E)-
2-hexenal, octanal,
(Z)-3-hexenol,
linalool and (Z)-2-
hexenal decreased
or disappeared,
while compounds
like 2-methylpro-
panal, 2-and 3-
methylbutanal
increased during
the drying process.
A higher retention
of aromatic
compounds in
banana was
observed after
drying at 40 °C.
Isoamyl alcohol,

(2004)

Luning et al.
(1995)

Boudhrioua et al.

(2003)

60, 70, and 80 °C

Air temperature:
45 and 60 °C

Air temperature:
40, 50, 60, 70,
and 80 °C

anethole content in
dried star anise was
observed at a
drying temperature
of 70 °C, while
there was no
significant
difference in
content between
drying at 60 °C and
80 °C.

Samples dried at
45 °C retained a
greater amount of
the fruity and sweet
aromas
characteristic of
strawberry fruits
compared to those
dried at 60 °C.

The aroma of S.
granulatus varied
with different
drying
temperatures.
When dried at

60 °C, S. granulatus
exhibited a more

Abouelenein et al.
(2021)

Hou et al. (2022)

(continued on next page)
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Table 1 (continued)

Physicochemical
attributes

Description

Findings

Reference

Air temperature:
35, 45, and 55 °C

Air temperature:
50, 60, and 70 °C

Air temperature:
40, 50, and 60 °C
Air velocity: 1.5
m/s

intense mushroom-
like flavor.

An increase in D-
carvone content
while decreasing D-
Limonene, cineole,
and 1-
caryophyllene with
higher drying
temperatures.
Drying
strawberries at a
low temperature
(50 °C) preserved
the highest levels of
fresh strawberry
volatiles, whereas
at higher
temperatures

(60 °C and 70 °QC),
the volatile profiles
of the dried
strawberries
exhibited a similar
pattern.

Increasing
temperature leads
to a reduction in
the most prevalent

Guo et al. (2022)

Tekgiil and Erten
(2022)

Mishra et al.
(2022)

components in
cardamom, such as
1,8-cineole and
o-terpinyl acetate.

are lower in cost and less computationally intensive than imaging
techniques.
Hyperspectral and multispectral imagings could be more reliable
techniques for delivering information on micronutrients because
other techniques such as microwave, Terahertz, and Nuclear Mag-
netic Resonance (NMR) are highly sensitive to water molecules.
Given the high water content in fruit vegetables, such a high sensi-
tivity to water molecules can easily overshadow micronutrient sig-
nals. Hyperspectral and multispectral imaging can easily address this
issue by identifying the spectral regions where water molecules do
not absorb light, for example, the ultraviolet spectral region and the
fingerprint spectral region of mid-infrared. Raman spectroscopy is
also a potential technique because water molecules are associated
with weak Raman signals.

e From the viewpoint of sensors integration into a dryer, hyperspectral

(if snapshot), color, multispectral cameras, and electronic noses are

technically simpler to be integrated. There are some reports on inline

applications of other sensors, however their integration based on the
current technology, is still more complex.

Electronic noses and color cameras are relatively lower cost sensors

for monitoring volatiles and color changes, respectively.

Hyperspectral, nuclear magnetic resonance, X-ray micro-computed

tomography, and Terahertz sensors are expensive. Multispectral

imaging systems and microwave sensing, as affordable alternatives,
must be further investigated.

e Microwave and Terahertz sensing techniques are highly sensitive to
moisture content. They are both emerging techniques, and further
research is required. However, microwave sensing is superior to be
considered as an online monitoring tool because it is more cost-
effective.

e As a rule of thumb, multispectral cameras for micronutrients moni-
toring, microwave sensors for moisture content, particularly when
surface hardening limits the light penetration, color cameras for

Journal of Food Engineering 404 (2026) 112770

color monitoring, and electronic noses for volatiles can be considered
as a fusion of sensors to be integrated into a hot-air dryer. It is
noteworthy that microwave sensing is still emerging and future
research is still required.

Table 2 summarizes the literature on sensors employed to monitor
physicochemical attributes relevant to the drying process. Such realtime
measurementds of physiochemical attributes together with drying con-
dition (temperature, velocity, RH, ...) data are required to be fed into
data-driven/machine learning algorithms, presented in section 4.1.5,
with the aim of quantitative estimations of quality attributes. Such es-
timations will be used to adapt the fitting parameters of mathematical
models (section 4.1) to improve their prediction accuracy.

4. High end model based process control
4.1. Models and approaches available

Models are described as mathematical representations of physical
reality and real processes (Datta, 2016). Model-based studies have been
used in different drying systems to gain better insight and understanding
of the process, develop new designs, and optimize new and existing
dryer designs (Defraeye, 2014). Models are alternatives to expensive and
time-consuming experiments. Models can also be used to supplement
experimental studies (Ramachandran et al., 2018). Drying is a complex
process, and the detailed and accurate modeling of the process is com-
plex. Modeling the drying process requires multidisciplinary knowledge,
including transport phenomena (momentum, heat, and mass transfer),
reaction kinetics, fluid and solid properties, and material science
(Ramachandran et al., 2018). The drying process has been modeled
using different approaches (Table 3). Depending on its accuracy and
complexity, Khan et al. (2022a) categorized the available models into
first, second, third, fourth, and fifth-generation models. First-generation
models are basically constituted by empirical relationships;
second-generation models include some physics-based knowledge of the
empirical equations (semi-empirical); third-generation models are
derived from physical principles; fourth-generation models describe the
drying process at different spatial and time scales; and fifth-generation
models integrate physics into data-driven relationships.

4.1.1. Empirical models

This type of model is developed by curve fitting the given expressions
relating the process conditions and the relevant variables to the exper-
imental data. For instance, the moisture ratio as a function of drying
time, rate constant, and other constants. Well-known empirical drying
models include Page, Modified Page, Lewis, Henderson and Pabis,
modified Henderson and Pabis, Wang and Sing, logarithmic, two-term
exponential, diffusion approach, Verma et al., and Midilli et al. (Khan
et al., 2022a; Ramachandran et al., 2018), (Table 4). The basis for these
model equations is Fick’s second law for moisture diffusion. These
models assume that the thickness of the product bed is a thin layer that is
homogenous and neglects the geometrical shape of the product. It has
been proven that these models are capable of predicting the drying
process under experimental operating conditions (product initial mois-
ture content, temperature, relative humidity, drying air flow rate, and
bed thickness). Empirical models have been used to study the drying
kinetics of different food and agricultural products such as maize
(Asemu et al., 2020), chili (Getahun et al., 2021), rough rice (Sadaka,
2022), garlic (Chayjan et al., 2012), banana (Queiroz and Nebra, 2001),
and potato (Akpinar et al., 2003). The main drawbacks of these types of
models are: (i) the limited applicability and information about the flow,
heat, and mass transfer characteristics (Prawiranto et al., 2021; Ram-
achandran et al., 2018) and (ii) their predictive capabilities are limited
to the range of experimental conditions used to obtain the data required
to estimate the model parameters (they are not valid for extrapolation).
In addition, empirical models do not provide spatial or temporal
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Table 2

An overview of non-invasive sensors investigated in the drying process monitoring.
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Sensor

Description

Findings

Reference

Hyperspectral imaging
(HSD

Hyperspectral imaging
(HSI)

Nuclear Magnetic
Resonance (NMR)/
Magnetic Resonance
Imaging (MRI)

Nuclear Magnetic
Resonance (NMR)/
Magnetic Resonance
Imaging (MRI)

Apple slices undergoing hot-air drying were monitored
using hyperspectral imaging in the 400-1700 nm range.

Purple-speckled cocoyam slices were analyzed during
hot-air drying using hyperspectral imaging across the
400-1700 nm spectral range.

Hyperspectral images (400-1010 nm) were captured of
apple slices dried at air temperatures of 60 °C and 70 °C.

Hyperspectral imaging (425-1700 nm) was employed to
predict the quality attributes of celeriac during drying at
temperatures of 50, 60, and 70 °C.

Hyperspectral images (950-1655 nm) were captured for
four vegetables during hot-air drying.

Persimmon undergoing the drying process was
monitored using the spectral range of 470-900 nm.
Quality changes in carrots during drying at 50, 60, and
70 °C were monitored in the spectral region of 400-1010
nm.

Quality attributes of banana slices were monitored
throughout the microwave vacuum drying process.

Quality attributes of golden kiwi and purple carrot were
monitored throughout the hot-air drying process.
Low-field NMR was used to monitor moisture content of
freeze-thaw pretreated lotus root slices exposed to
infrared and convection drying processes.

Low-field NMR operating at 23.2 MHz was used to
monitor microwave-vacuum drying of carrot slices.

Low-field NMR at 23 MHz and spectral imaging within
the 405-970 nm range were used to predict water
fractions in mushrooms subjected to freeze-drying.
Changes in the dielectric properties of Chinese yam slices
during microwave-vacuum drying were investigated
using NMR.

Low-field NMR at 20 MHz was used to study changes in
water content of garlic slices subjected to four different
drying processes.

Apple slices dried at various air temperatures were
evaluated using NMR.

The effects of moisture content, number of scans, and
sample quantity on NMR accuracy for estimating
moisture content in carrot slices were investigated.

The use of NMR and MRI to analyze moisture variation in
green plums during oven drying was explored.

NMR operating at 300 MHz was used to investigate
cellular water transfer in apple tissues during the drying
process.

Prediction models built around the 1400 + 4 nm
wavelength accurately estimated shrinkage (R? ~ 0.95,
RMSE =~ 4 %), vitamin C content R?= 0.92, RMSE = 0.64
mg/100 g FW), rehydration ratio (R* = 0.67, RMSE = 2.07
%), and total phenolic compounds (R? = 0.63, RMSE =
17.3 mg/100 g dry matter).

Wavelengths in the range of 951-999 nm significantly
contributed to the prediction models for shrinkage,
rehydration ratio, and moisture content.

The prediction model achieved an R-squared of 0.70 and
RMSE of 0.040 for rehydration ratio, while moisture
content was predicted with high accuracy (R-squared =
0.94, RMSE = 0.067 %). Shrinkage and color indices were
also reliably estimated.

The rehydration ratio was predicted with R-squared =
0.89 and RMSE = 0.04. Moisture content prediction
achieved R-squared = 1.00 and RMSE = 0.77. Total
phenolic content was predicted with R-squared = 0.49 and
RMSE = 0.15 mg GAE gds . Color indices were predicted
with R-squared values ranging from 0.80 to 0.93 and
RMSE values between 0.71 and 1.45.

Moisture content was estimated with an R-squared of
0.974 and an RMSE of 4.70 %.

Moisture content was accurately predicted with an R-
squared of 0.857.

Moisture content was best predicted with an R-squared of
0.90 and an RMSE of 8.16 %. Predictions for color and
total carotenoids showed lower accuracy.

High prediction accuracy was achieved for moisture
content (R-squared = 0.996). Good prediction accuracies
were also obtained for hardness (R-squared =
0.886-0.927) and fracturability (R-squared =
0.930-0.961).

Machine learning algorithms accuratly estimated
chanches in pigments and moiture content.

Distribution of T, identified the inflection point of water
state transition.

The signal peak associated with free water gradually
decreased as drying progressed, while the peaks for
trapped and bound water initially increased before
decreasing.

Both techniques, combined with learning algorithms,
demonstrated promising results in estimating water
fractions.

The prediction models accurately captured the dielectric
changes, with R-squared values > 0.921.

Three peaks in the T, distribution were identified at
0.1-10 ms, 10-80 ms, and 80-600 ms, corresponding to
bound, immobilized, and free water, respectively.
Prolonged drying caused the peaks to shift leftward, and
the overall signal peak decreased.

Multi-exponential fitting of T revealed four peaks
corresponding to strongly bound, lightly bound, trapped,
and free water molecules. The NMR parameters showed
correlations with changes in moisture content, color, and
shear force.

At the early stage of drying, the number of scans had no
effect. When moisture content dropped below 20 %,
increasing the number of scans to 16 improved NMR
performance. In the late stage of drying, a higher number
of scans and a sample quantity of 1.0-1.5 g were
recommended.

NMR/MRI depicted moisture migration from the interior
to the exterior of carrot cubes during the drying process.
Signal peaks of Ay3 (representing free water) and A_total
(representing all water states) showed correlation
coefficients of 0.958 and 0.936 with water content
changes, respectively.

Water transfer from the intracellular to intercellular space
was primarily caused by cell rupture.

Arefi et al. (2021)

Ndisya et al. (2021)

Shrestha et al. (2020)

Nurkhoeriyati et al.
(2023)

Lin and Sun (2022)
Chen et al. (2022)

Md Saleh et al. (2022)

Pu et al. (2018)

Tayyab et al. (2025)

Zhang et al. (2022)

Sun et al. (2019b)

Younas et al. (2021)

Li et al. (2019)

Chen et al. (2020b)

Kamal et al. (2019)

Sun et al. (2021a)

Gong et al. (2020)

Zhu et al. (2021)

Khan et al. (2018)

(continued on next page)
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Sensor

Description

Findings

Reference

Nuclear Magnetic
Resonance (NMR)/
Magnetic Resonance
Imaging (MRI)

Microwave sensing

Terahertz sensing (THz)

NMR and MRI were utilized to investigate the drying
kinetics of mulberries subjected to hot-blast air drying.

NMR and MRI were employed to monitor the pulsed
vacuum drying of blueberries.

NMR/MRI was used for real-time monitoring of moisture
content in potato and broccoli stalks.

NMR was used to determine the safe water activity levels
in apple, carrot, white cabbage, cauliflower, and radish.
NMR was used to investigate moisture transfer in banana
slices subjected to contact ultrasound-enhanced far-
infrared radiation drying.

NMR data were collected for carrot, banana, and an
edible fungus during microwave-vacuum drying.
Low-field NMR was used to monitor moisture content and
its states in raspberries during pulse-spouted microwave
freeze drying.

NMR was used to determine the drying end-point of
asparagus leaves, stems, and roots.

Various pretreatments enhanced the far-infrared drying
of pumpkin.

A review was presented on various antenna sensors and
microwave-based methods used to measure the moisture
content of grains and minerals.

A review was conducted on the dielectric properties of
various foodstuffs.

The moisture content of paddy rice was correlated with
microwave attenuation and phase changes at 3.00 GHz.
Ambient temperature was included as an input in the
prediction models to compensate for its effects.

A new frequency selective surface (FSS) antenna was
used to measure moisture content (10-25 %) in barley
grains.

Horn antennas operating at 10.5 GHz were used to
measure the moisture content of rice and corn.
Tomographic imaging systems were used to monitor the
moisture content of corn kernels during fluidized drying.

The THz technique was reviewed for food safety and
quality and soil sensing was also part of the review.

A review of THz technology was presented, highlighting
its potential for monitoring moisture content during food
drying, measuring sugars in osmotically dehydrated
foods, analyzing proteins and amino acids in dried
products, and detecting foreign bodies in dried foods.
The application of THz technology was reviewed for
determining carbohydrate concentrations in liquids and
powders, detecting foreign bodies and chemical residues
in carbohydrate-based foods, monitoring carbohydrate
fermentation, and assessing carbohydrate crystallinity.

Water loss of Ginkgo seeds under ambient temperature
was monitored in the frequency range up to 7 THz.
Kiwi slices exposed to a combination of freeze-drying and
microwave-vacuum drying methods were investigated
using THz imaging.

In-situ microwave-vacuum drying of beef slices was
conducted using the THz imaging technique.

In-situ microwave-vacuum drying of beef and carrot
slices was carried out using THz-TDS.

Spectral information of pork slices and leaves exposed to
the drying process was captured in the frequency range of
0.1-0.9 THz.

10

Water migration in its various states was traceable using
NMR and MRI, with NMR/MRI data showing strong
correlations with quality attributes.

MRI revealed enhanced water migration in kiwi slices at
higher ultrasonic power levels.

MRI revealed that the higher water transfer during the
early stage of drying was linked to the enlargement and
interconnection of pores.

NMR/MRI signals showed a strong correlation with
moisture content (R-squared >0.90). The detection limits
were 11 % for NMR and 20 % for MRI.

T proved to be a reliable indicator of safe water activity
(below 0.6).

NMR analysis revealed a gradual decrease in free water,
while trapped water initially increased before decreasing.
Bound water showed no significant change.

The models estimated moisture content with an R-squared
of 0.9955 and an RMSE of 0.0211.

Both free and trapped water decreased significantly, while
bound water showed no significant change.

The observation of a major peak at a relaxation time of 1
ms indicated that water activity was below 0.6.
Pretreatments accelerated the shift of T, towards shorter
relaxation times.

NMR showed potential for estimating flavor changes in
garlic and ginger subjected to thermal processing.

The S-parameter was found to be more suitable for
measuring moisture content than dielectric constant and
impedance methods. Frequency selective surface (FSS)
was identified as the most suitable portable sensor.

The dielectric properties were found to depend on several
factors, including frequency and temperature.

The moisture content was predicted with low error.

The sensor was sensitive to small variations in moisture
content.

Higher moisture content led to increased wave
attenuation.

Microwave tomography demonstrated greater sensitivity
to changes in moisture content compared to capacitance
tomography.

It is underrepresented compared to other spectroscopy
techniques even though it is a promising method.
Thickness dependency, scattering effect, particle size and
surface roughness effects and high moisture content can
challenge the THz technique.

The strong absorption of water molecules in the THz
region limits the ability to monitor other chemical
components during the drying process.

THz application in dietary carbohydrates is still in its
infancy. Its ability to measure the thickness and refractive
index of the food matrix offers an advantage over NIR
spectroscopy. However, the high initial cost and
dependency on sample thickness remain significant
challenges.

Seeds with higher moisture content showed higher
absorption coefficients.

THz signal amplitude was found to be related to the slice
structure.

Calibration models accurately predicted the changes in
moisture content.

Moisture content was predicted with an R-squared value of
0.995 and an RMSE of 0.0162.

Low error estimation was achieved for moisture content.

Li et al. (2021b)

Liu et al. (2019a)

Liu et al. (2021)

Jiang et al. (2019)

Chitrakar et al. (2019)

Shi et al. (2020)

Sun et al. (2019¢)

Sun et al. (2021c)

Chitrakar et al. (2021)
Chao et al. (2022)
(Sun et al., 2019d, 2021b)

Javanbakht et al. (2021a)

Bogale Teseme and
Weldemichael
Weldeselassie (2020)
Liu et al. (2022)

Javanbakht et al. (2021b)

Li et al. (2021a)

Lin et al. (2022)

Khushbu et al. (2022)

Zhang et al. (2021b)

Li et al. (2023)

Gong et al. (2022)

Huang et al. (2021)

Ren and Sun (2022)
Ren et al. (2023)

Borovkova et al. (2018)

(continued on next page)
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Sensor

Description

Findings

Reference

Color/RGB camera

Color/RGB camera

X-ray micro-computed
tomography (XCT)

X-ray micro-computed
tomography (XCT)

Microwave drying was studied at different power levels
and slice thicknesses, and changes in color kinetics were
monitored using a color camera.

RGB color imaging was conducted during drying of
apples and carrots.

The computer-vision system effectively monitored
quality degradation during the three-stage drying of
ginseng at 50 °C.

The food drying process was analyzed using computer
vision with three different heat sources while capturing
images with RGB cameras during the process.

RGB camera imaging was used to monitor the quality of
turmeric during the drying process.

The intervention in the study involved drying carrot
slices at 35 °C for 36 h using a smart dryer equipped with
a computer vision system and a load cell.

Pea shrinkage was studied during fluidized bed drying.

Quality changes in carrot slices were studied during
convective air drying.

The application of a color camera for quality monitoring
of apple slices during drying was investigated.

The moisture ratio of thin layers of date fruit was
analyzed based on real-time color attributes and
environmental conditions during the drying process.
XCT was used to study the freeze-drying process of
maltodextrin solutions in situ. The resolution was 3 pm,
and the measurement time was approximately 1.4 h.
This study investigates how the spin freezing rate affects
the characteristics of dried product layers in spin freeze-
drying.

Resolution: 4.5-8 pm

Measurement time: ~0,7h

This study investigates the impact of hot-air drying
(HAD) on the structure of dried fruits and vegetables,
with a particular focus on crust formation. Using a three-
step process involving HAD, freezing, and freeze-drying,
the development of a crust on carrot discs is examined.
Resolution: 14 ym

Measurement time: ~70 min

This study examines the microstructure of spray-dried
particles—commonly used in amorphous solid
dispersions to enhance the performance of poorly water-
soluble drugs—using XCT and other imaging techniques.
Resolution: 0,8 ym

Measurement time: 5h

In-situ XCT was utilized to observe microstructure
development during freeze-drying of a dextrin solution
using a specially designed freeze-drying stage.
Resolution: ~3 pm

Measurement time: 30s

The study focuses on evaluating X-ray microtomography
(XCT) as a method for characterizing the matrix of freeze-

11

The study successfully determined variations in color
kinetics in the CIELab space based on CVS data, which
fitted well to first-order and zero-order models.

The quality parameters of apples and carrots during the
drying process were successfully detected based on color
attributes.

The quality aspects such as actual moisture content and
quality degradation of roots were monitored using a
computer-vision system with high accuracy, achieving an
error range of 8-14 % in moisture content estimation at 95
% confidence.

The study found that the lowest errors in training and test
data were achieved using resistance drying and infrared
methods to control the drying process. Resistance values
showed the best results based on R-squared values.

Based on color information extracted from images in terms
of CIELab values, moisture and product quality were
successfully monitored.

The color camera proved effective in monitoring drying
processes, with linear models showing high prediction
accuracy for moisture content and minimal impact of
blanching treatment on model performance.

Offline color imaging data explored shrinkage with lower
error, while real-time measurements showed slight
deviations.

The computer vision system effectively measured color
changes and shrinkage, achieving a good RMSE range of
0.005-0.007.

Morphological properties, moisture content, and CIELab
values were measured with high efficiency, achieving R-
squared values above 0.98 and low error.

Moisture content was estimated with high accuracy using
online image attributes and machine learning techniques.

A new method was presented to study microstructural
changes during freeze-drying and analyze drying kinetics
in situ using grayscale images obtained by XCT.

Utilizing high-resolution XCT, this research explores the
relationship between spin-freezing rates and pore size,
shape, mass transfer resistance, and solid-state properties
of dried product layers. The results indicate that slower
spin-freezing rates produce highly tortuous structures with
greater mass-transfer resistance, while faster spin-freezing
rates lead to lamellar structures with lower tortuosity and
resistance.

Results reveal that crust thickness increases significantly
during HAD, with crust formation beginning before the
relative moisture content reaches 0.5. XCT measurements
provide detailed analysis of the crust structures formed
during HAD.

Higher outlet temperatures during spray drying produce
more spherical hollow particles with thinner walls, while
lower temperatures generate raisin-like particles with
thicker walls. Artificial intelligence-facilitated XCT image
analysis enables quantitative assessment of thousands of
individual particles, revealing envelope density as a
sensitive indicator of process changes. Additionally,
particle wall thickness correlates with tensile strength,
highlighting potential implications for particle
engineering and drug product optimization.

XCT imaging captured frozen and dried microstructures,
revealing an increase in ice crystal size and boundary
formation between ice and freeze-concentrated phases
after freezing annealing. Pore microstructures formed
during freeze-drying replicated the original ice structures
and generated new pores as water was removed, especially
in non-annealed samples. Image analysis showed thicker
pore walls in annealed samples compared to non-annealed
ones, suggesting that annealing not only reduces drying
time by modifying ice crystal morphology but also
prevents structural deformation of glassy phases, thereby
preserving product quality.

XCT provides uniform contrast and simplifies analysis.
Results reveal two main structures: large pores separated

Nagvanshi et al. (2021)

Sturm et al. (2018)

Martynenko (2006)

Ozden (2022)

Sharma et al. (2019)

Moscetti et al. (2020)

Theonye et al. (2020)
Chakravartula et al.
(2023)

Raponi et al. (2022)
Keramat-Jahromi et al.
(2021)

Gruber et al. (2021)

Lammens et al. (2021)

Siebert et al. (2018)

Xi et al. (2020)

Nakagawa et al. (2018)

Palmkron et al. (2023)
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Sensor

Description

Findings

Reference

X-ray micro-computed
tomography (XCT)

X-ray micro-computed
tomography (XCT)

Laser light backscattering
imaging (LLBI)

Raman spectroscopy

Multispectral Imaging
(MSI)

dried materials.

Resolution: 0,657 pm

Measurement time: Sh

This study examines the effects of freeze-drying,
blanching, and freezing rate pre-treatments on the
microstructure and rehydration properties of winter
carrots using various imaging techniques.
Resolution: 4 pm

Measurement time: 50 min

Advanced X-ray Microscopy (XRM) combined with
mathematical models correlates microstructure, drying
kinetics, and reconstitution time.

Resolution: 2 pm

Measurement time: 4-8 h

This study introduces a method to estimate mass transfer
rates during primary drying using XCT measurements of
freeze-dried cakes.

Resolution: 1 pm

Measurement time: ~2,5h

This study investigates the use of supercritical carbon
dioxide (scCO2) for moisture removal from cylindrical
carrot pieces, examining the effects of temperature and
ethanol as a co-solvent at 20 MPa pressure. The results
are compared with those of hot air drying.

Resolution: 5 pm

Measurement time: not given

This study presents an analytical method employing four-
dimensional micro-computed tomography (4D-XCT) to
assess differences in intra-vial mass transfer resistance
(Rp) of dried products during freeze-drying.

Resolution: 30 pm

Measurement time: ~3 min

The mango drying process was monitored at wavelengths
of 450, 520, and 635 nm.

Banana slices dried at temperatures ranging from 50 °C to
70 °C were monitored in the spectral range of 740-1700
nm.

Images of ham slices were captured during the drying
process.

A 670 nm laser diode was used to monitor banana slices
for moisture content.

Sweet potato slices were monitored for moisture content
and color using a combination of LLBI and computer
vision.

Apple slices were monitored for moisture content at
wavelengths of 635 nm, 980 nm, and 1450 nm.

The feasibility of using in situ Raman spectroscopy for
online monitoring of supercritical carbon dioxide (SC-
CO2) drying processes in mango and persimmon fruits
was investigated.

The solid-state changes of Risedronate sodium granules
during lab-scale Fluidized Bed Drying (FBD) are
monitored, a crucial aspect for assessing the stability and
efficacy of pharmaceutical formulations.
Three-dimensional maps of particle concentration and
chemical structure in a fluidized bed were generated
using Raman spectroscopy.

Raman spectroscopy was used to evaluate the carotenoid
content in processed Bunchosia glandulifera.

Carotenoid degradation in sweet potatoes subjected to
hot air and microwave drying processes was investigated.
A 980 nm LED array combined with a monochrome
camera was integrated into a hot air dryer.
Multispectral imaging and NMR were used to monitor the
freeze-drying process of shiitake mushrooms.

by thin walls and a finer, honeycomb-like structure.
Despite varying drying conditions, these structures show
minimal variation.

The study finds that freezing rate influences ice crystal size
and pore formation, while blanching does not affect pore
size distribution. Rehydration leads to the formation of a
porous network rather than restoration of cellular
compartments. Blanching followed by fast freezing helps
preserve more of the native cell wall morphology.

The study reveals that normalized diffusion coefficients,
derived from 3D microstructure reconstructions, correlate
with the solid content of pre-lyophilization solutions,
influencing pore size and volume. While mass transfer
models accurately describe drying kinetics, formulation
ingredients affect mass transfer mechanisms, complicating
reconstitution process modeling. X-ray microscopy
combined with mathematical models provides valuable
insights into lyophilization processes.

Solid concentration and annealing above Tg’ significantly
influence pore size and drying rates. This highlights
annealing as an effective method to accelerate primary
drying, the most time-consuming step in lyophilization.

Comparisons with air drying reveal differences in drying
kinetics and mechanisms. Microstructural analysis using
X-ray microtomography and light microscopy shows that
carrots dried with supercritical fluids better retain their
shape than those dried by air. Additionally, ethanol-
modified scCO2 drying produces less dense structures and
improves rehydrated textural properties.

By incorporating these Rp values into mechanistic models,
the drying time distribution of spin-frozen vials can be
predicted and experimentally verified using thermal
imaging. Additionally, 4D-XCT enables measurement of
key freeze-drying parameters, such as sublimation front
movement and frozen product layer thickness, offering
detailed process insights. Overall, the study accurately
predicts primary drying time variations in individual vials
using 4D-XCT, with validation provided by thermal
imaging.

The model predicting moisture content at 635 nm was the
most accurate.

The strong NIR absorption spectrum shows wavelength
shifts between 1064 and 1416 nm.

The study revealed that a red laser (635 nm) is more
practical than a green laser (532 nm). A decrease in
scattering area was observed only when the water content
decreased.

Moisture content was significantly correlated with
backscattered area.

Drying temperature and time had a significant effect on
the parameters obtained from combined computer vision
and backscattering imaging.

These wavelengths were found to be highly correlated
with changes in moisture content.

Raman spectroscopy effectively tracked the reduction of
water content and changes in the fruit matrix structure
during drying.

The hydration state of risedronate was successfully
monitored using Raman spectroscopy, enabling effective
identification of the process endpoint while ensuring
product quality.

The composition of materials and particle distribution
within a fluidized bed were successfully monitored within
a 10-s interval.

A strong correlation between Raman spectroscopy results
and carotenoid content was clearly demonstrated.
Raman intensity showed a strong correlation with
carotenoid degradation.

The system accurately monitored the moisture content of
apple slices.

Free, immobilized, bound, and total water contents were
predicted with R? values above 0.85 and RMSE below
18.13 %.

Voda et al. (2012)

Pu et al. (2023)

Foerst et al. (2019)

Brown et al. (2008)

Vanbillemont et al. (2020)

Bai et al. (2021)

Siyum et al. (2023)

Fulladosa et al. (2017)

Romano et al. (2008)

Onwude et al. (2018a)

Arefi et al. (2023b)

Braeuer et al. (2017)

Hausman et al. (2005)

Walker et al. (2009)

Carvalho et al. (2019)
Sebben et al. (2018)
Arefi et al. (2023a)

Younas et al. (2021)
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Findings Reference

The study aimed to evaluate the quality of carrot slices
subjected to a drying process.

Moisture and carotenoid contents of carrot slices were
monitored.

Spectral images of mango slices were captured during
drying at temperatures ranging from 40 °C to 80 °C and
air humidities between 5 % and 30 %.

Detection of volatile organic compounds during hot air
drying of mint.

Flavor analysis of golden pompano fillets subjected to
different drying methods.

Electronic nose (E-nose)

Determination of volatile compounds in shiitake
mushrooms at different drying stages.

Assessment of volatile profiles in green tea during the
drying process.

The composition and aroma profiles of button
mushrooms were monitored at different drying stages
using a metal-oxide semiconductor (MOS) sensor.
Aroma assessment of garlic subjected to different drying
methods was conducted.

Moisture content (R-squared = 0.953, RMSE = 0.0902 %) Yu et al. (2020)
and shrinkage (R-squared = 0.942, RMSE = 0.0808 %)
were accurately predicted.

A model developed using seven optimal wavelengths
achieved coefficients of determination of 0.991 and 0.968,
and relative percentage deviations of 10.318 and 5.337 for
moisture content and carotenoid, respectively.

Soluble solids content, pH value, and moisture content
were accurately predicted.

Long et al. (2021)

Jodicke et al. (2020)

E-nose based principal component analysis successfully Kiani et al. (2018)
reflected variations in volatile organic compounds.
Volatile compounds of samples dried by four different
methods were clearly differentiated using E-nose and E-
tongue systems.

E-nose successfully classified samples according to
different drying stages.

Gas-phase electronic nose captured the dynamic changes
occurring under different drying conditions.

Button mushroom samples subjected to different drying
durations were successfully discriminated.

Zhang et al. (2019)

Zhang et al. (2020)
Yang et al. (2022)

Pei et al. (2016)

Samples subjected to different drying methods were Makarichian et al. (2021)

successfully discriminated using an electronic nose.

information about the drying variables (Prawiranto et al., 2021).

4.1.2. Semi-empirical models

These models integrate physics-based knowledge within the empir-
ical relationships described in the previous section to minimize their
drawbacks (Khan et al., 2022a; Putranto et al., 2011). The evaporation
of moisture during drying was modeled as a first-order reaction with
activation energy, whereas condensation was modeled as a zero-order
reaction. Compared to the empirical models, these models produced
slightly better results. However, these models are still dependent on
product type and drying conditions and are still unable to take into
account the complete physics of the drying process (Khan et al., 2022a).
Semi-empirical models have been applied to study the drying charac-
teristics of different products such as wood particles (Kharaghani et al.,
2019), carrots (Yang et al., 2021), and kiwi (Chen et al., 2001). The
relevant semi-empirical model equations could be found in Yang et al.
(2021).

4.1.3. Physics based models

These are advanced drying models that are derived from the
fundamental laws of physics, mathematics, chemistry, and biology, and
are capable of capturing real drying phenomena. Physics-based models
have been developed based on the conservation of mass, energy, and
momentum, Navier-Stokes equations for fluid flow, and Newton’s law of
motion (Khan et al., 2022a). The details of the air and product side
drying model equations can be found in Delele et al. (2023).

These models could provide a high-resolution spatial and temporal
distribution of the drying parameters (temperature, relative humidity,
moisture content, air velocity, and product quality). The information
could be used for a fundamental understanding of the drying process,
optimization of the design and operating conditions of the dryer, and the
development of new dryer designs (Khan et al., 2022a; Prawiranto et al.,
2021). The approach includes Computational Fluid Dynamics (CFD) and
CFD-Discrete Element method (DEM). CFD is the most commonly
applied physics-based modeling technique for drying processes study
(Defraeye, 2014; Ramachandran et al., 2018). CFD has been used to
study the drying phenomena of different products and dryers. For
instance, CFD has been applied to study apricot drying using an infrared
dryer (Aktas et al., 2017), soya meal drying using a fluidized bed (Da
Silva et al., 2012), convective drying of quince slices (Tzempelikos et al.,
2015), sweet potato drying using a combined convective infrared dryer
(Onwude et al., 2018b), rough rice drying using a convective mixed-flow
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dryer (Delele et al., 2023), moist object drying (Chandramohan, 2016),
and ellipsoidal particle drying in a fluidized bed dryer where CFD is
coupled with DEM (Handayani et al., 2023). The multiscale, multi-
physics, and multiphase nature of the drying process makes it chal-
lenging to develop purely physics-based models. Therefore, some
commonly used assumptions are still made during the derivation of
physics-based models in the macroscale drying process (Defraeye,
2014). There has been a recent development in multiphase
physics-based drying models, considering the irregular pore space inside
the product, capillary and binary diffusion of liquid, and mass transfer of
the vapor (Lu et al., 2021). However, this model is still incapable of
capturing microscale transport (Khan et al., 2020).

4.1.4. Multiscale models

Drying is associated with a transport process that occurs on different
spatial and temporal scales (Defraeye, 2014). Multiscale drying models
are the most advanced physics-based models used to study the transport
of water from cellular (microscale) to tissue (macroscale) scales (Khan
et al., 2020). Different cellular environments (intercellular, intracel-
lular, and cell wall) contain different amounts of water, resulting in the
transport of water from different cellular environments (Khan and
Karim, 2017). In addition, different cells exhibit different water trans-
port characteristics. These inhomogeneous water transport characteris-
tics at the microscale (cellular) level affect macroscale water transport
characteristics. It is extremely important to consider the microscale
properties and transport characteristics to fully understand the drying
process, accurately predict the drying process, and optimize the
full-scale dryer. Because multiscale models describe transport at both
micro and macro levels, the number of assumptions made during the
derivation is lower than that of the previous alternatives. Although these
models provide better insight and high-resolution (spatial and temporal)
information about the drying process, their development and solutions
are challenging and computationally demanding (Khan et al., 2020).
Despite these challenges, encouraging studies have been reported on the
multiscale modeling of drying and dehydration processes (Aregawi
et al., 2014; Ho et al., 2011; Welsh et al., 2021).

4.1.5. Machine learning models for spatial and temporal dynamics

The application of machine learning models from high-dimensional
sensor data to food-drying processes has emerged as a key strategy for
developing Digital Twins that enable real-time monitoring and control.
These models leverage various data structures ranging from two-
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Table 3

An overview of recent studies and the corresponding models and approaches in

the drying process.

Model Description Findings References
Empirical The impact of rice Drying rate and Sadaka (2022)
model layer thickness on moisture diffusivity
drying rate and increased with an
moisture diffusivity increase in air
was studies. temperature and a
decrease in layer
thickness. Page
model produced the
best fit.
The effect of maize Drying time Asemu et al. (2020)
load and mixing decreased with a
time interval on decrease in product
drying time of solar load and mixing
bubble dryer was interval. The study
investigated. recommended
Verma et al. and
diffusion approach
models.
Used double tunnel There was an Getahun et al.
solar dryer and improvement in (2021)
investigated drying rate
collector efficiency, compared to sun
carbon footprint drying and a
and the effect chili significant CO2
variety and layer mitigation because
density on drying of the solar dryer.
time. Modified
Henderson and
Pabis and Verma
et al. models were
recommended.
The effect of drying  An increase in Chayjan et al.
air temperature on drying air (2012)
drying time, temperature
moisture diffusivity increased the drying
and specific energy rate, moisture
consumption during  diffusivity and
garlic drying using specific energy
fluidized and semi consumption. Page
fluidized bed dryer model gave the best
was investigated. fit.
Semi- The applicability of =~ The model was Yang et al. (2021)
empirical reaction capable of
model engineering predicting
approach in temperature and
predicting moisture
temperature and distribution with R2
moisture > 0.98. Drying rate
distributions of increased with
shrinkable food drying temperature.
(carrot) at different
drying temperature
was evaluated.
The accuracy of The model was Chen et al. (2001)
reaction capable of
engineering predicting the
approach in moisture content
predicting drying with R2 > 0.93.
behaviour of Drying rate
kiwifruit was increased with
assessed. temperature.
Physics The study used CFD  CFD model was Aktas et al. (2017)
based model to steady the capable of
model heat and mass predicting drying
transfer airflow velocity,
characteristics temperature and
during apricot product moisture
drying using content with an

Infrared dryer, and
analyzed the effect
of product
temperature and air

acceptable
accuracy. The
highest energy
efficiency was
obtained for the
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Model Description Findings References
velocity on dryer highest temperature
efficiency. and lowest air
velocity.
Multiphase CFD The model was Da Silva et al.
model was used to capable of (2012)
predict the drying predicting the
behaviour of transient
soybean meal using temperature,
a fluidized bed velocity and
dryer. porosity
distributions.
Temperature was
the variable with
the most significant
effect on the drying
characteristics.

Physics CFD model was The time evolution Tzempelikos et al.
based used to study the of temperature and (2015)
model heat and mass moisture content

transfer process was well predicted.

during the Drying rate

convective drying increased with

of cylindrical temperature and air

quince slices. velocity.

Validated CFD The model was Delele et al. (2023)

model was applied capable of

to evaluate the predicting the

performance and airflow,

improve the design temperature,

of a prototype rice relative humidity

husk fuelled mixed and grain moisture

flow rice dryer. content and it was
used to develop
better alternative
designs and
operations.

Multiscale Coupled CFD-DEM The model was Handayani et al.
model model was used to capable of (2023)

study the drying predicting the heat
behaviour of and mass transfer
ellipsoidal particles process, and
in fluidized bed observed higher
dryer, and used to drying rate in
study the effect of spherical particles
particle aspect compared to
ratio. ellipsoidal particles
2D multiscale water ~ The multiscale Aregawi et al.
transport and model was capable (2014)
mechanical model of predicting the
was applied to dynamics of the
predict water loss dehydration process
and deformation of and the mechanical
apple tissue. deformation at
different
microstructural
compartments.

Physics A multiscale This multiscale Welsh et al. (2021)
informed homogenization model was capable
hybrid model was of predicting the
models developed on the diffusivity and gave

cellular structure of
apple tissue
considering
intracellular water
and free water
separately to
calculate the
effective diffusivity
for convective
drying
Physics-based and
Monte Carlo
simulations were
used to predict
natural variability
in carrot slices

a new insight of the
homogenization
approach.

A reduction of 45 %
in drying time and
27 % in the required
energy, and an
improvement of 8 %
in B-carotene can be

Schemminger et al.
(2024)

(continued on next page)



A. Arefi et al.

Table 3 (continued)

Model Description Findings References
exposed to hot-air achieved by
drying process. increasing the
drying air
temperature from
50 °C to 70 °C.
Physics A physics-informed The applicability of ~ Raissi et al. (2020)
informed deep-learning the approach in
machine framework capable several physical and
learning of encoding the medical flow
model Navier-Stokes problems was tested
equations into the
neural networks
was developed
A physics-informed The approach was Batuwatta-Gamage
Neural Network- capable of et al. (2022)
based model was predicting moisture
implemented to concentration and
predict moisture shrinkage,
concentration and indicating that the
moisture-content- approach is a
based shrinkageofa  powerful tool for
plant cell during investigating
drying complicated drying
mechanisms
Table 4
Examples of the commonly used empirical drying model equations.
Model Equation Reference
Page MR = exp(— kt")

Page (1949)

Modified Page MR = exp((—kt)")

Yaldiz et al.

(2001)

Lewis MR = exp(— kt) Lewis (1921)

Henderson and Pabis MR = aexp( — kt)

Getahun et al.
(2021)
Modified Henderson and ~ MR = aexp( — kt) + bexp( — gt) +
: Getahun et al.
Pabis cexp( — ht)
(2021)
Wi d Singh =
ang anc Sing MR =1+ at+ bt’ Getahun et al.
(2021)

Logarithmic MR = exp(— k) + ¢ Omolola et al
(2014)
Two term exponential MR = aexp(— kt)+ (1 — a)exp(— YValdiz et al
kat) aldiz et al.
(2001)
Diffusion approach MR = aexp(— kt)+ (1 — a)exp(— Getahun et al
kbt) - o
(2021)
Verma et al. MR = aexp(— kt) + (1 — a)exp(—
gbt) Verma et al.
(1985)
Midilli et al. MR = aexp(— kt") + bt Midilli et al
d et al.
(2002)

where, MR is the moisture ratio, t is the drying time, k, g, and h are drying
constants, n is the order, and a, b, and c are dimensionless constants.

dimensional representations (e.g., NIR spectra, where rows represent
samples and columns represent features) to more complex tensor data
structures (e.g., hyperspectral images). A common approach to simplify
data complexity, especially in hyperspectral imaging, is to fuse spatial
information using mean spectra, allowing for a focus on overall quality
metrics and system dynamics.

Machine learning models employed in these contexts are generally
categorized into static models, which capture spatial dynamics, and time
series models, which account for both spatial and temporal patterns.
However, most studies continue to employ static machine learning
models to estimate the system states (Przybyt and Koszela, 2023).
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Despite this, static models, such as multilinear regression, support vector
machines (SVM), k-nearest neighbors (KNN), and artificial neural net-
works (ANN), have been effective in identifying key parameters that
influence product quality during the drying process (Deng et al., 2010).
These methods are often enhanced by preprocessing techniques such as
denoising, feature extraction, and feature selection to address the
challenges of noisy data and the curse of dimensionality.

A significant advancement in this field is the application of deep
learning architectures, particularly Convolutional Neural Networks
(CNNs) and hybrid CNN-Long Short-Term Memory (CNN-LSTM)
models, which have been successfully applied to monitor spatial food-
quality dynamics. CNNs extract and learn spatial features from im-
ages, including hyperspectral and RGB images, whereas LSTMs effec-
tively capture temporal trends. The integration of these models has
demonstrated promising results, improving both the prediction accuracy
and computational efficiency of drying kinetics (George et al., 2022).
For instance, the moisture content of potato slices during the drying
process was monitored using image chromatic features, with LSTM
models achieving higher accuracy, as demonstrated by a Root Mean
Square Error (RMSE) of 13 x 1072 (Sabat et al., 2022). Similarly, Zhou
et al. (2022) employed CNN-LSTM to monitor the moisture content in
carrot slices using hyperspectral images, achieving high accuracy with
an RMSEP of 0.08 %. Other applications of these hybrid models have
been demonstrated in the drying of various products such as corn
(Simonic and Klancnik, 2024), sweet potatoes (Su et al., 2020), and tea
leaves (Xie et al., 2013).

Despite the extensive focus on moisture content, other quality pa-
rameters, such as antioxidant retention and vitamin preservation,
remain underexplored in studies that incorporate spatial and temporal
features. An emerging trend in food drying monitoring is predictive
maintenance, in which models are designed to predict product quality
and maintain the optimal functioning of the drying equipment. How-
ever, the approach of predictive maintenance within the drying process
has been the focus of few studies (Rahman et al., 2023). Furthermore, a
few studies have investigated monitoring the dynamics of the thermo-
physical and mechanical properties of products using machine learning
(Khan et al., 2022b). This gap in the literature highlights the need for
future research to extend machine-learning applications to broader
quality metrics during the drying process. Expanding research in this
direction could lead to more resilient and adaptable machine-learning
models capable of optimizing both product quality and operational
efficiency.

Recent literature suggests a growing interest in the generalizability
and robustness of machine-learning models across diverse conditions
and datasets. Feature selection and model robustness remain key chal-
lenges, as variations in raw materials, processing conditions, and sensor
data quality can significantly impact the performance of machine
learning models in Digital Twins. The future of this research lies in
expanding the focus beyond moisture content, enhancing model
generalizability in monitoring nutritional components and thermo-
physical and mechanical properties with spatial and temporal features,
and exploring the potential of predictive maintenance in the drying
process.

4.1.6. Physics informed machine learning models

Progress in digitalization and advances in sensors and computational
and cloud computing resources have created a massive set of data in
different applications (Ritto and Rochinha, 2021). The conventional
machine-learning approach is one of the most effective data-driven
models that has been applied in different applications. However, to
obtain an accurate prediction, such conventional machine learning
models require a clean dataset as the model input, which means that the
raw data should be extracted and processed before it is fed to the model.
A data-driven model recommended for automatic real-time raw data
processing is a deep learning neural network model (Alzubaidi et al.,
2021). Such a model has gained more attention in the drying processes
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(Fabani et al., 2021; Martynenko and Misra, 2020; Qadri et al., 2020;
Sun et al., 2019a). However, these driven models completely depend on
the collected dataset and do not have any physical meaning. Errors
during data collection produce inaccurate model predictions
(Batuwatta-Gamage et al., 2022; Karniadakis et al., 2021). To increase
the accuracy of such data-driven models, there has been a recent
development in coupling data-driven models with physics-based models
in what is known as Physics-Informed Neural Networks (PINN)
(Batuwatta-Gamage et al., 2022; Raissi et al., 2020). The residual losses
from the physics-based models were coupled with the losses from the
machine learning models through the loss function. The iterative process
continues until the loss function satisfies convergence criteria. Studies
on the application of PINN in drying are limited (Khan et al., 2020) and
further research is required to narrow this knowledge gap. To narrow
this knowledge gap, more research on the development and application
of a physics-informed machine-learning model is recommended. Such
coupled models could help us gain insight into the complex drying
process and obtain more accurate predictions of the drying process for
optimizing the design, operation, and control of the dryer and
troubleshooting.

Mathematical models are capable of predicting the dynamic
behavior the drying process, including quality attributes. Furthermore,
the models could be timely updated with the real-time data to adapt
themselves to the current state of dynamic changes. However, there is
still a need to compute the optimal drying trajectories. To this end, the
following section presents the dynamic optimization that could be used
to compute the optimal drying trajectories. It is followed by subsection
4.2.2 on advanced control required to apply such optimal trajectories.

4.2. Dynamic optimization and advanced control

4.2.1. Dynamic optimization

The problem of Dynamic Optimization (DO), also known as Optimal
Control (OC), involves finding the time profile of the control/decision
variables (u(t)) that minimize (or maximize) a function representing a
performance index of the process. Such an index, defined by the plant
operator according to the company’s goals, should consider all the
relevant product and/or process variables. For instance, the process
operator may aim to maximize product quality, minimize process time,
energy/resource consumption, or a combination of several factors.
Control variables can be manipulated in the process to achieve the
desired results. Typical examples in a drying process include inlet air
temperature, air flow rate, and humidity of the drying agent. The vari-
ables that define the performance of a process are usually related to the
state (x(t)). In addition, bounds on the decision variables and constraints
of the state variables may be considered. Some examples of constraints
during the drying process might be that the drying temperature cannot
exceed the capacity of the heating system, the solution found must fulfill
the model equations, and/or the product humidity at the end of the
process must be below a predefined value. Mathematically, the DO
problem can be expressed as:

it
m(i)n.](x(t)7 u(t)); with Jx,u)=f(x(t)) + / g(x(),u(r))de 1
u(t, t
Subject to:
e The model equations (please refer to Section 4.1)

e Algebraic constraints. Equality and inequality constraints can be
considered:

e Bounds on the control variables
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x<x(t) <xY 4

v <u(t) <u? 5

The functions f(x(t)) and g(x(t),u(t)) are defined according to the
criteria used to characterize the performance index.

For illustrative purposes, let us consider a particular drying case in
which the aim is to determine the time profile of the drying temperature
(T(t)) that minimizes the browning of the product at the end of the
process (B(t;)) while maintaining the product moisture content at the
end of the process (M(t;)) below 14 %. In addition, the drying tem-
perature must be maintained between 40° and 80° °C. The DO problem
can be formulated as
minB () 6

Subject to:

e The model equations (Kaymak-Ertekin and Gedik, 2005):

dB E,
a = ko exp (—R—) 7
with initial conditions B(t= 0) = By, M(t = 0) = M, and:

k() = C]M(t)cz; E,=c3+ C4M(t) 8

e Algebraic constraints on the moisture content

M(t) < 14% 9

e Bounds on the control variable

40°C<T() <80°C 10

Several methods exist for solving DO problems (Egs. (1)-(5)). Banga
et al. (2005) reviewed the different methods available to address this
issue. Typically, these methods are classified into three groups.

e Dynamic Programming (DP) (Griine, 2019). The DO problem
(possibly infinite dimensional) is split into auxiliary problems, which
include information about the future of optimal trajectories and
where the time horizons are shorter. Although the exact solution is
characterized by this approach, the number of auxiliary optimization
problems may be large, and their formulation is generally involved.
Indirect methods (Biegler, 2010). In this approach, the DO problem is
transformed into a two-point boundary-value problem using Pon-
tryagin conditions. However, the resulting problem can be solved, as
in the previous case. This is particularly true if the state constraints
are considered.

Direct methods (Balsa Canto et al., 2002; Kameswaran and Biegler,
2006). The DO problem is transformed into a non-linear program-
ming problem by discretizing time and approximating either (i) both
control and state variables or (ii) only the control variables using
particular basis functions (for instance, low-order polynomials). The
former approach is known as complete parameterization (CP),
whereas the latter is known as control vector parameterization
(CVP). The CP approach typically results in a large-scale NLP.
However, as shown in (Biegler, 2010), the problem structure and
sparsity can be exploited to develop efficient strategies that can
maintain a reasonable computational effort.

Table 5 presents the main features of the different studies found in
the literature dealing with the DO problem in the context of food drying,
particularly for fruits and vegetables. Note that there exist general works
that do not focus on food products, whose results can be applied to food
matrices. For instance, Kowalski et al. (2013) presented an approach for
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Table 5
Main features of the different approaches found in the literature to deal with the
dynamic optimization problem in the context of fruits and vegetables drying.

Objectives Control Constraints Material Approach  Reference
var.
Q) T4ixE  X(g): T(y) Gramlar  Not i
First bioproduct specified
(1992)
order
kinetics
N(t); tf; T X, (t): N(t); Thin slab Indirect Banga
E. To(t) of cellulose ~ method
and Singh
(1994)
N(tf); Tg:r X,’;,(tf); Tg;r Broccoli Not - Jin et al.
E(ty) specified (20142
a
Q(ty): Ths X () Rice Direct Wongrat
Second X% ¢ (CvP) :
order etal
kinetics (2011)
Drying T AR Corn Direct o
Trelea
process Wa(t7); T (Cvp)
cost et al.
(1997)
Q(1): T Xt X (ty) Rice Direct Olmos
Second (CvP) |
ot al.
order 5
kinetics (2002)
t L8 );"/? (t); Corn ]()Clz;};)t TRELEA
t
m ( d ) et al.
(1999)
Qp('tf): T"I"ir; Fda Xﬁ,(tf); TTir; Broccoli Direct Jin et al.
first Fda (CVP) 20145)
order
kinetics

DO in the drying of porous materials, which is typical in food matrices;
Barttfeld et al. (2006) dealt with the DO problem of multiple-zone air
impingement driers for drying thin liquid films on continuous sub-
strates. However, these studies were not included in this review. As

listed in Table 1, the inlet air temperature (T};.) was the main control
variable. The humidity of the drying agent (X), drying agent flow rate
(F17), and drying time (&) have also been considered. The drying agent
was air. Regarding the selection of the objective function to be opti-
mized in the DO problem, the preferred option is to maximize the
product quality at the end of the process (Q, (tr)), which is equivalent to
minimizing quality degradation. Typically, studies have focused on a
general quality concept described by first- or second-order kinetics,
although some studies have considered a particular quality indicator,
such as nutrients (N(t)) or enzymes (E(t;)). The minimization of energy
consumption (E.), process cost (Cp), and drying time are also objectives
considered in the literature. The most widely considered constraint is
the moisture content in the product at the end of the process (X, (t7)).
Other constraints considered in the literature are the product tempera-
ture, both during the process (T,(t)) and at the end of the process
(T (t)), and the wet-milling quality (W ()). Finally, as shown in
Table 5, the CVP method was the preferred approach for solving the DO
problem in the context of fruit and vegetable drying.

4.2.2. Advanced control

The approach described in the previous section allows the compu-
tation of drying policies that result in the optimization of one or several
relevant variables (product quality, energy consumption, process time,
etc.). However, as the reader might notice, there was no feedback from
the plant. Therefore, in DO, issues such as plant-model mismatch, un-
measured process disturbances, and differences between the optimal
control obtained and the implemented control, among others, have an
impact on the process that cannot be corrected online. Therefore, the
control scheme must consider the feedback from the plant. PID
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controllers are the most typical type of controller used in the drying
process. Although, in general, PID provide good results, the combination
of plant information and mathematical models allow for different con-
trol schemes that can improve the performance of PID controllers has
been studied in the last decades. Note that a mathematical model allows
us to predict the evolution of different variables and react beforehand.
One of the main advanced control strategies used in the context of
the drying process is Model Predictive Control (MPC) (Garcia et al.,
1989). The problem to be solved is the DO problem, as discussed in the
previous section. Time discretization and approximation of the control
variables using low-order polynomials were also used in the MPC.
However, in the case of MPC, the DO problem is solved over a finite
horizon, and although different cost functions might be used, they
typically consider two terms: (i) a measure of the distance between the
state variables and the reference trajectory for such variables, and (ii) a
penalty on the control effort. Mathematically, the optimization problem

to be solved is as follows:
N
minJ(x,u); with J(x,u)= Z [(x(tkﬂ-) - xfef(tk“.))2 + 0 AU(tr)?
i=1

u(t) :

11

Subject, as in the previous section, to constraints such as the model
equations, bounds on the decision variables, and other constraints on the
state variables. In Eq. (11), N is the number of control sequences, k is the
current time step, and xX'¥ (t) is the value of the reference trajectory. In
addition, in contrast to the DO problem, the MPC strategy receives
feedback from the system. Only the first step of control discretization is
applied to the system from the optimal profile obtained after solving the
DO problem. At the end of that step, the state of the process is measured,
this information is used to compute a new profile of the control vari-
ables, and the procedure is repeated.

Regarding the application of MPC to the drying process, Han et al.
(2012) developed an MPC strategy based on neural networks for drying
grains. The authors also used the PDE model to describe the drying
process. The controller improved the uniformity of the moisture content,
ensuring grain quality. More recently, an MPC strategy for the inter-
mittent drying of paddy rice with the objective of maximizing head rice
yield (HRY) was considered (Song et al., 2022). The idea was to use the
adjusted evaluation index of the predicted HRY as the performance
index to calculate the optimal control trajectories in real-time. Arun
Jayakar et al. (2021) developed a mathematical model for a hot-air
generator using a transfer function model. The authors also developed
PID and MPC strategies to control the drying of tea leaves based on this
model. Disturbances in environmental temperature and blower speed
were considered. The exact transfer function model was obtained by
conducting open-loop tests. The model was fine-tuned, and integer and
non-integer models were obtained using different optimization tech-
niques. Cristea (2015) developed an MPC strategy to control product
temperature and improve the drying process of slab-shaped food prod-
ucts. Ramp-constant temperature setpoints are also considered.

From another point of view, Fuzzy Logic concepts were also used to
design efficient controllers for the drying process. Boeri et al. (2013)
developed a nonlinear MIMO fuzzy logic controller composed of four
fuzzy controllers to track temperature, relative humidity, and air ve-
locity. Their controller showed much better performance than a PID
controller. Liu et al. (2006) used the Principal Component Analysis
(PCA) concept to design a control strategy for maize drying that can deal
with nonlinearity, long delay, and multi-variable issues. In this study, a
PCA model was developed. The predicted scores were fed to a predictive
model that was developed using the neural network partial least squares.
These predicted scores were used as indicators of process performance.
Vega et al. (2016) proposed a lumped parameter model based on
experimental results for both the drying process of apple slices and the
automatic control functionality. The simulation model showed a close
correlation with the experimental data and thus could be used to
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determine the optimum control and process parameters for the
convective drying of apple slices. Application of this strategy led to a
significant decrease in drying time and, potentially, an increase in pro-
cess efficiency and product quality.

5. Future research needs

Digital Twins-based smart food drying is still in its infancy. The
literature review is more limited to the development of digital models.
Further research is required to develop digital shadows and future
Digital Twins. The main reason for postponing the appearance of Digital
Twins-based smart food dryers is the interdisciplinary nature of the
topic, which requires knowledge from different areas. The current paper
aims to provide a better insight into the concept and lightens the way
how Digital Twins can be brought into drying technology. To reach this
goal, future research should focus on:

e A clearer understanding of the interdependencies between product
changes, process settings, and physical setup is required. Based on
these new indicators, it may be necessary to make the machine more
readable.

Noninvasive monitoring of chemical compounds needs to be further
developed. Even though there is a wealth of studies on the moni-
toring of moisture content, color, shrinkage, and some other physical
attributes, many of the core nutritional components, so far, have not
been sufficiently included. Although there have been some studies on
pigments and polyphenols, more investigation is needed to extend
the monitoring process to include more chemical components, such
as vitamins.

e Most previous studies were conducted under static drying condi-
tions, where the drying process was conducted under a constant air
temperature, humidity, and velocity. There are few studies on dy-
namic/variable drying conditions, particularly with respect to the
drying process of fruits and vegetables. As in a Digital Twins-based
smart food dryer, the strategy is to tune the drying conditions
throughout the process, there is still room for the dynamic optimi-
zation of the fruit and vegetable drying process.

Other tools from the Process Engineering field should be integrated
into Digital Twins (Prada et al., 2022) of the drying process. In this
regard, the development of State Observers that combine mathe-
matical models and plant information to reduce plant-model
mismatch and their integration into advanced control schemes
must be studied. Fault detection strategies that allow the identifi-
cation of problems in sensors should be studied and implemented
during the drying process. In addition, a Digital Twins-based smart
food drying process should also consider Data Reconciliation tech-
niques that allow the consideration and improvement of coherence
among measurements and between measurements and model pre-
dictions, compute key performance indexes, or estimate unknown
magnitudes. Finally, a Digital Twins-based smart food drying process
should include a database capable of managing large quantities of
data and Big Data analysis tools that allow for easy and fast inter-
pretation of such data.

The concept presented in this study is based on the hybrid applica-
tion of data-driven and mathematical models. First, real-time data
collected by the sensors are fed to data-driven models to estimate the
quality attributes. Next, those estimations are fed to the mathemat-
ical models. Subsequently, dynamic optimization compute the
optimal trajectories. Finally, the optimal trajectories are fed back to
an advanced control unit. Currently, given the rapid growth of ma-
chine learning algorithms and their huge potential to learn deeply
from data, it is a potential research topic to leave everything to
machine learning algorithms. In other words, the machine learning
algorithms perform both prediction and decision-making tasks.
Learning from data could be advantageous over the mathematical
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modeling of the process in which some parameters could be simpli-
fied or overlooked.

e Finally, Jones et al. (2020) identified perceived benefits, Digital
Twins across the product lifecycle, technical implementations, levels
of fidelity, data ownership, and integration between virtual entities
as knowledge gaps and topics for future research.
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