

UNIVERSITI PUTRA MALAYSIA

DETERMINATION OF SOIL MOISTURE CONTENT USING PULSE INFRARED RADIATION

SUZILASAHIBATUL AKHMAR BT AHMAD

FK 2003 32

DETERMINATION OF SOIL MOISTURE CONTENT USING PULSE INFRARED RADIATION

SUZILASAHIBATUL AKHMAR BT AHMAD

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2003

DETERMINATION OF SOIL MOISTURE CONTENT USING PULSE INFRARED RADIATION

By

SUZILASAHIBATUL AKHMAR BT AHMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirement for the Degree of Master of Science

Mei 2002

Specially Dedicated to My Beloved

Late Mother

Late Father

Late Brother

Salmi Ahmad Sarimah Ahmad Suria Ahmad Za Asmadi Ahmad Shileey Lizam Ahmad Zaizul Harby Ahmad

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

DETERMINATION OF SOIL MOISTURE CONTENT USING PULSE INFRARED RADIATION

By

SUZILASAHIBATUL AKHMAR BT AHMAD

Mei 2002

Chairman : Dr. Rosely Ab Malik, Ph.D.

Faculty : Engineering

Moisture content determination is a routine laboratory test to determine the amount of water present in a quantity of soil sample. It is normally being expressed in terms of the dry mass of soil. The standard practice for moisture content determination of soil can be determined, e.g., using electrical oven (ASTM D 2216) or microwave oven (ASTM D 4643). This study presents a unique equipment developed for the determination of soil moisture content using far infrared radiation (FIR). The pulse infrared radiation is generated by passing the conventional electric heater tube through a thin film of specific powdered ceramic radicals.

By applying experimental design matrix to minimise the number of test and using SPSS Programme to analyse the linear regression, the formula of time for complete drying is compared to the time measured in experiment. The correlation

of time by formula and time measured proved the reliability of the formula developed in this study.

Throughout the study, the results of time in moisture content determination using the application of FIR ranges from 20 minutes (0.33 hour) to 180 minutes (3 hour). The developed equipment can also be used for rapid moisture content determination. This is particularly useful for high volume repeated testing such as in highway construction.

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENENTUAN KANDUNGAN AIR DALAM TANAH MENGGUNAKAN RADIASI INFRA MERAH

Oleh

SUZILASAHIBATUL AKHMAR BT AHMAD

Mei 2002

Pengerusi : Dr. Rosely Ab Malik, Ph.D.

Fakuti : Kejuruteraan

Purata kandungan air dalam tanah adalah salah satu daripada ujian makmal yang penting. Ia biasanya diuji berdasarkan kepada berat kering tanah. Berdasarkan amali piawai untuk menentukan kandungan air tanah, penggunaan oven elektrik (ASTM D2216) dan juga oven gelombang mikro (ASTM D4643) digunakan sebagai alat pengering. Di dalam kajian ini satu kaedah unik digunakan untuk proses pengeringan, iaitu dengan menggunakan radiasi infra merah jauh. Dengan menyadurkan lapisan nipis serbuk seramik khas di permukaan tiub pemanas elektrik yang digunakan, gelombang infra merah jauh akan dipancarkan.

Daripada aplikasi matrik rekabentuk pengujian, yang mana dapat meminimakan jumlah ujian yang terlibat dan menggunakan perisian SPSS untuk menganalisa regrasi lurus, rumus yang diperolehi kemudiannya diuji dengan membandingkan

dengan masa yang diperolehi dalam ujian makmal. Berdasarkan perbandingan dan kaitan nilai antara masa yang diperolehi di dalam makmal dan masa yang diperolehi berdasarkan rumus, terbukti bahawa rumus yang dibina adalah boleh dipercayai.

Berdasarkan keputusan daripada kajian ini, masa yang digunakan untuk menentukan kandungan air tanah adalah di antara 20 minit (0.33 jam) hingga 180 minit (3.00 jam). Rekaan alat pengeringan di dalam kajian ini boleh digunakan untuk memendekkan masa yang digunakan dalam penentuan kandungan air dalam tanah. Ianya sangat berguna untuk ujikaji yang dilakukan dalam kekerapan yang tinggi seperti didalam pembinaan lebuhraya.

ACKNOWLEDGMENT

In the Name of Allah Most Merciful & Most Compassionate

I would like to express my appreciation for the advice, guidance and valuable criticism given by my supervisor, Dr. Rosely Ab. Malik throughout this study. I am also grateful to my supervisory committee, Dr. Husaini Omar and En. Zainuddin Md. Yusoff for their comments and suggestions.

Special thanks to my sponsor, Universiti Putra Malaysia for funding my studies under Graduate Research Assistantship Scheme. Also my sincere appreciation to all staff at GeoEnTech Sdn. Bhd., and my colleagues at Civil Engineering Department, and all staff at Mountainous Terrain Development Research Centre (MTD-RC). I also like to acknowledge members of Civil Engineering Laboratory staff for their assistance and support, especially to En. Razali Rahman and En. Zainudin.

Finally, my deep appreciation goes to all my family members, for their encourage. Most of all to Almighty Allah who has given me strength and His blessing. Amin.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	х
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	xviii

CHAPTER

1.0	INTR	ODUCTION	1	
1.1	Gener	al	1	
1.2	Objec	tive	3	
1.3	Scope	and Limitations	3	
1.4	Struct	ure of Thesis	4	
2.0	LITE	RATURE REVIEW	5	
2.1	Histor	ry of Infrared Radiation	5	
2.2	The D	Definition of Infrared Radiation	5	
2.3	Sourc	es of Infrared Radiation	8	
2.4	Moist	ure	10	
	2.4.1	General	10	
	2.4.2	Methods for Determining Moisture Content in Particulate	11	
		System		
	2.4.3	Bound Water and Adhesive Water	12	
2.5	Dryin	Drying		
	2.5.1	General	17	
	2.5.2	The Drying of Solids	18	
	2.5.3	Typical Drying Curve	22	
2.6	Heat 7	Transfer	24	
2.7	Radia	tion Heat Transfer	25	
	2.7.1	General	25	
	2.7.2	Radiative Properties	26	
2.8	Electr	omagnetic Radiation Spectrum	28	
	2.8.1	General	28	
	2.8.2	Electromagnetic Wave Energy in Drying Processes	29	
2.9	Infrar	Infrared Dryers		
	2.9.1	General	30	
	2.9.2	IR Bands	34	
	2.9.3	Emissivity	34	

	2.9.4 Emitters	35
2.10	Far Infrared	36
	2.10.1 General	36
	2.10.2 We Live in FIR Temperature Range	37
	2.10.3 Generating FIR Waves	38
	2.10.4 FIR Wave is the Safest Energy Source	40
2.11	Microwave Applications	40
	2.11.1 General	40
	2.11.2 Microwave Heating	41
	2.11.3 Domestic Microwave Ovens	41
3.0	METHODOLOGY	46
3.1	General	46
3.2	Experimental Works	48
3.3	Oven	49
	3.3.1 General	49
	3.3.2 Preliminary Model of Oven	49
	3.3.3 Heater Tube	52
	3.3.4 Temperature Controller	55
3.4	Experimental Design Matrix	56
3.5	Soil Sample Preparation	58
3.6	Soil Classification	60
	3.6.1 General	60
3.7	Moisture Content Determination	63
3.8	Discussion	65
4.0	RESULT AND DISCUSSION	66
4.1	Introduction	66
4.2	Soil Classification Result	66
	4.2.1 Sieve Analysis Result	67
	4.2.2 Atterberg Limit Result	69
	4.2.2.1 Liquid Limit Determination	69
	4.2.2.2 Plastic Limit Determination	70
	4.2.2.3 Plasticity Determination	71
	4.2.2.4 Computation for W_L and W_p	71
4.3	Summary Result of Soil Classification	72
4.4	Moisture Content Determination Result	74
4.5	Drying Time	76
4.6	Experimental Design Matrix Analysis	78
	4.6.1 T Calculation for IRO	78
	4.6.2 T Calculation for NIRO	85
4.7	Reliability of T Calculated Formula	94
	4.7.1 For IRO	94
	4.7.2 For NIRO	96
4.8	Effectiveness of IRO	98
4.9	Reliability Value of Moisture Content	99
4.10	Discussion	102

5.0	CON	NCLUSSION AND RECOMMENDATION	103
5.1	Cone	clusion	103
5.2	Recommendation for Further Study		106
REF	EREN	CES	107
APP]	ENDIC	CES	
	А	Drying Time	111
	В	Linear Regression Analysis using SPSS Programme	174
	С	Moisture Content Determination	228
	D	Drawing of Oven	232
	E	Soil Test	238
VITA	A		245

LIST OF TABLES

Table		Page
2.1	Water held in materials	21
3.1	List of independent variables	56
3.2	ASTM recommendations	59
3.3	British Soil Classification for Engineering Purposed	61
3.4	Groups symbols	62
4.1	Particle size distribution of Soil C1	67
4.2	Particle size distribution of Soil C2	68
4.3	Particle size distribution of Soil C3	68
4.4	Result of liquid limit determination	69
4.5	Result of plastic limit determination	70
4.6	Particle size distribution result	72
4.7	Classification of soil sample	74
4.8	Drying time for IRO	78
4.9	β_0 , β_1 and β_2 value at different C (IRO)	80
4.10	Ratio $T_{\text{calculated}}$ and T_{measured} at different P (IRO)	84
4.11	Drying time for NIRO	86
4.12	β_0 , β_1 and β_2 value at different <i>C</i> (NIRO)	88
4.13	Ratio $T_{\text{calculated}}$ and T_{measured} at different P (NIRO)	91
4.14	Comparison between T calculated and T measured for IRO	94
4.15	Comparison between T calculated and T measured for NIRO	96

,

4.16	List of T measured by IRO and NIRO	98
4.17	List of moisture content value for IRO and conventional oven	100

LIST OF FIGURES

Figure

2.1	Electromagnetic spectrum	7
2.2	The emission of hot 'black body'	10
2.3	Existing form of water	14
2.4	Typical drying curves	23
2.5	Bell curves	38
2.6	Basic construction of a microwave	42
2.7	Basic choke arrangement for microwave oven door	44
2.8	Variation on the basic choke arrangement	45
3.1	Flow chart of experimental works	48
3.2	Preliminary model of IRO and NIRO	50
3.3	The picture showing the inner part of oven	50
3.4	The oven showing the lower part of heater tube	51
3.5	The oven showing the upper part of heater tube	51
3.6	(a) A heater tube coated with special ceramic powder (for IRO);	53
	(b) Three heater tube coated with special ceramic powder (for IRO)	53
3.7	(a) A heater tube (for NIRO); (b) Three heater tube (for NIRO)	54
3.8	Temperature controller	55
3.9	Partial factorial experimental design matrix to determine drying time	57
3.10	Soil sample	58
3.11	Plasticity chart	63

4.1	Liquid limit (W_L) at N = 25 blows	70
4.2	Summary of moisture content of soil sample (%)	75
4.3	Summary of drying time for each sample (hr)	77
4.4	Graph of T against W at different C (IRO)	79
4.5	Graph of β_0 , β_1 and β_2 against <i>C</i> (IRO)	81
4.6	Graph of ratio of $T_{\text{calculated}}$ and T_{measured} against P (IRO)	84
4.7	Graph of T against W at different C (NIRO)	86
4.8	Graph of β_0 , β_1 and β_2 against <i>C</i> (NIRO)	88
4.9	Ratio of $T_{\text{calculated}}$ and T_{measured} against P (NIRO)	92
4.10	Correlation between T calculated and T measured (IRO)	95
4.11	Correlation between T calculated and T measure (NIRO)	97
4.12	Correlation between T measured by IRO and NIRO	99
4.13	Correlation between M.C value by IRO and conventional oven	101

LIST OF ABBREVIATIONS

- w Water content
- M_w Mass of water present in the soil mass
- M_s Mass of soil solid
- λ Wavelength
- v Frequency
- c Speed of electromagnetic radiation
- v Wave number
- ΔE Energy of wave
- W Power
- T Temperature
- T_E Absolute temperature
- T_S Absolute surface temperature
- I Intensity of radiation
- I_{max} Maximum intensity of radiation
- V Amount of adsorption water
- V_m The adsorption capability
- β BET constant
- H Relative humidity
- S_0 The specific surface area
- ϵ_0 The thickness of a single molecular layer
- p Vapour pressure

- p_s Saturated vapour pressure of free water
- p_{ice} Saturated vapour pressure of ice
- $\alpha\lambda$ Spectral absorptivity
- W_L Liquid limit
- W_p Plastic limit
- P.I. Plasticity index
- F_I Flow index
- I_p Plasticity index

CHAPTER 1

INTRODUCTION

1.1 General

Moisture content or water content is the amount of water absorbed in the sample under certain constant condition. According to Axtel and Bush (1991) the moisture content of a material can be defined in two ways, on a wet or dry basis. The wetweight basis moisture content is defined as the weight of water in a sample divided by the total weight of the sample (water plus dry material) While the dry- weight basis expresses the moisture in a material as a percentage of the weight of bone-dry weight (ASTM D2216, ASTM D 4643). At present our routine laboratory test of moisture content has been defined in term of its dry-weight basis.

For determination of moisture content in term of its dry-weight basis, the soil need to be dried at certain temperature so that most of the water present will evaporate, and after some times the mass of soil solid (without water present) and moisture content will be determined. By definition (Bowles, 1992; Okazaki, 1991; Axtel and Bush, 1991; Gardner 1971),

Water content,
$$w = \frac{M_w \times 100}{M_s}$$
 (percent)

Where: $M_w = mass$ of water present in the soil mass

 $M_s = mass of soil solids$

There are many methods of driving the water particles away from the soil. In this study, the use of the long-wave or far infrared radiation (FIR) to drive the water particles for moisture content determination of soil is employed. During the study, 2 types of oven is used, an oven with FIR (IRO) and an oven without FIR (NIRO). The difference between the ovens is the type of electric heater tube installed as for IRO it is coated with special ceramic powder. The NIRO is used as a control, to define the effectiveness of FIR in soil drying process.

Using the application of special ceramic powder to generate FIR from conventional electric heater tube, this study is conducted to define the effectiveness of FIR radiation for drying soil in laboratory.

1.2 Objective

The objective of this research is to study the effectiveness of ceramic powder that generates FIR in drying process for the determination of moisture content of soil. The specific objective of this study will include:

- 1. To determine the moisture content of soil by using FIR radiation.
- 2. To determine time consuming for complete drying using IRO.
- 3. To develop an equation formula of time for complete drying (T) as a function of weight of soil (W), type of soil (C), and power of oven (P).
- 4. To determine the correlation between IRO and NIRO.

1.3 Scope and Limitations

In order to get a far infrared oven, which is not available in the soil laboratory at present, a prototype model of FIR oven is built. A second oven is uncoated with ceramic powder to serve as a control. Both IRO and NIRO is used to carry out the most effective way of heating equipment in order to find the moisture content of soil. The experiments is carried out through a conventional oven. A correlation with conventional oven is also conducted.

In this study, experimental design matrix is applied. The number of experiments works required to analyse the effectiveness of oven are expected to be lower as this method is very useful to minimise the number of testing, so the time spent is greatly reduced.

Analysis on the effect of independent variable in determining time for complete drying, which is at moisture content equal to zero is made. Three independent variables that been listed in this study are weight of soil (W), soil type (C) and power of oven (P).

1.4 Structure of Thesis

Divided by five chapters, this thesis is structured by beginning with the introduction in chapter one. Literature review from various areas related to this study is presented in chapter two. The structure of methodology for experimental works is stated in chapter 3. Chapter 4 contain all the experimental result along the experimental works and analysis of the result. The last chapter, chapter 5 is the conclusion for the studies been done and recommendations are listed to improve the study.

