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Abstract

Under the background of global green sustainable development and the urgent need to
understand complex regional innovation systems, it is crucial to scientifically assess China’s
Tourism Green Innovation Efficiency (TGIE) as a dynamic networked system and reveal
its system-level evolution driving mechanism. This article presents the construction of
the TGIE evaluation indicator system, measures the inter-provincial TGIE in China in
2011–2023 based on the three-stage super-efficiency SBM-DEA model, analyzes the spatial
correlation network characteristics of TGIE by using the motif analysis method and the
social network analysis method, and explores the evolutionary driving mechanism by
using the time-exponential random graph model (TERGM). The study shows the following:
(1) The TGIE of China exhibits a regional distribution pattern characterized by “high in the
east and low in the west.” The efficiency of the eastern coastal region is significantly higher
than that of the central and western regions, and the overall efficiency shows a fluctuating
upward trend. (2) The local structure of China’s TGIE network is dominated by the chain
structure, and the partially closed structure is gradually enhanced. It indicates that the
bridge role of intermediary nodes in the cross-regional flow of innovation resources is
becoming more and more significant. (3) The overall network evolves from a single center to
a polycentric collaboration model. High-efficiency regions attract low-efficiency regions to
collaborate through high connectivity, and intermediary nodes play a key role in connecting
high- and low-efficiency regions. (4) The evolution of China’s TGIE network is driven by
both exogenous and endogenous dynamics, showing significant path dependence and path
creation characteristics. This study enhances the theoretical framework of complex systems
in tourism innovation and offers theoretical support and policy insights for optimizing the
network structure of China’s TGIE as a complex adaptive system and maximizing regional
cooperation networks.

Keywords: tourism green innovation efficiency; time-exponential random graph model;
spatial correlation network; evolutionary driving mechanism

1. Introduction
In the 21st century, global climate change has emerged as one of the most significant

concerns that humanity is now confronting. Studies have shown that global carbon emis-
sions from tourism account for about 8% of total greenhouse gas emissions and continue
to grow at a rate of 2.7% per year [1]. Especially in the post-COVID-19 era, the rapid
recovery of tourism has further aggravated the environmental pressure [2]. Meanwhile, as
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a pillar industry of the national economy, tourism plays an irreplaceable role in promoting
employment, boosting consumption, and driving regional development [3]. In China, the
green transformation of the tourism industry is facing unprecedented opportunities and
challenges with the introduction of the “dual-carbon” goal and the in-depth promotion
of ecological civilization construction. On the one hand, China’s tourism industry is in a
critical period of transformation and upgrading, and the scale of the industry continues to
expand, but resource consumption and environmental pressure are also becoming increas-
ingly prominent [4]. On the other hand, problems such as unbalanced development among
regions and obstacles to the circulation of innovative resources are seriously constraining
the overall improvement of the TGIE level [5]. Especially at the inter-provincial level, owing
to the disparities in natural endowments, economic foundations, and innovation capabili-
ties, regions present complex network linkage characteristics in promoting tourism green
innovation [6]. Therefore, how to realize green innovation development while maintaining
economic growth in tourism has become an important issue of global concern.

To address the issue of measuring efficiency, academics have gone through an evolu-
tion of research from simple to complex. Traditional DEA methods have been questioned
for their difficulty in dealing with undesired outputs [7]. With the deepening of research,
an integrated measurement framework that encompasses environmental pollution and
resource consumption has emerged [8]. This framework was further refined in subsequent
studies, especially the inclusion of carbon emission indicators, which made the efficiency
measurement more comprehensive [9]. However, these measures still fail to effectively
deal with the effects of environmental factors and random errors, and most of them are
limited to static analysis, which is difficult to reflect the dynamic characteristics of efficiency
evolution. The role of environmental regulation has been controversial in the study of
efficiency improvement mechanisms. The results of quasi-natural experiments show that
moderate environmental regulation can indeed stimulate the innovation drive of tourism
firms [10]. However, empirical studies based on the firm level have found that overly
stringent environmental regulations may inhibit innovation incentives in SMEs [11]. This
divergence not only reveals the non-linear link between environmental regulation and in-
novation efficiency, but also indicates the need to understand the mechanism of innovation
efficiency enhancement in a broader perspective. A fresh angle on the question of how
efficient innovation is has emerged with the popularity of regional collaborative innovation.
The introduction of social network analysis not only reveals the formation mechanism of
regional innovation networks [12], but also confirms the path dependence characteristics
of innovation networks through long-term panel data [13]. Studies from the multidimen-
sional proximity perspective have further enriched the field by revealing the important
impact of geographic proximity and structural proximity on the formation of regional
innovation networks [14]. These studies show that the enhancement of regional innovation
efficiency is a complex systematic project that needs to consider both the interactions be-
tween regions and the influence of exogenous factors. With the development of network
science, the application of the Exponential Random Graph Model (ERGM) has opened
up new avenues for the study of innovation networks. ERGM is able to consider both
the exogenous and endogenous dynamics of the network simultaneously, which provides
a systematic analytical tool for understanding the formation mechanism of innovation
networks [15]. However, such studies are still limited to the static analysis at a particular
point in time, failing to capture the complex adaptive dynamics and emergent properties
of system evolution over time. Especially in such a rapidly developing field as tourism,
the study of dynamic changes in network relationships is particularly important. Despite
tourism’s increasing role in carbon emissions and innovation policy discourse, existing
research has seldom addressed how efficiently tourism regions pursue green innovation,
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especially in a spatial, networked context. Most current studies tend to examine either the
environmental performance or the innovation behavior of tourism destinations in isolation,
rather than focusing on the efficiency with which tourism-related innovation inputs are
translated into green outputs. This lack of focus on efficiency is particularly problematic
in the context of China’s dual-carbon goals, where regional governments face mounting
pressure to deliver sustainable outcomes with limited innovation resources. Therefore,
it becomes imperative to investigate not only the performance gaps across regions, but
also the underlying mechanisms—both spatial and relational—that influence the evolution
of TGIE over time. Building on these foundations, this study extends prior research by
exploring three core questions: (1) What spatiotemporal evolution patterns characterize
China’s inter-provincial TGIE? (2) How do local network structures, captured through motif
evolution, reflect regional collaboration modes in the TGIE network? (3) How do exogenous
and endogenous dynamics jointly drive the systemic evolution of the TGIE network?

In view of this, this paper first employs the three-stage super-efficiency SBM-DEA
model to assess China’s inter-provincial TGIE, effectively mitigating the impact of environ-
mental variables and stochastic errors. The spatial correlation network is then established
using the gravity model. On this basis, TERGM is used to explore the complex system
evolutionary dynamics mechanism of China’s inter-provincial TGIE as an evolving net-
worked system from 2011 to 2023, capturing both micro-level interactions and macro-level
emergence. The following are the main contributions of this study: (1) Expanding the
research perspective of TGIE, constructing a dual analytical framework including exoge-
nous and endogenous dynamics by introducing the dynamic network analysis method
and systematically analyzing the dynamic mechanism of the evolution of the TGIE net-
work. (2) Employing motif analysis to characterize the dynamic evolution of local network
configurations from a microstructure perspective, this approach overcomes limitations of
traditional macro-level network metrics and provides a novel analytical dimension for
understanding regional tourism innovation collaboration patterns. (3) By constructing
the spatial correlation network of inter-provincial TGIE, it reveals the evolutionary char-
acteristics of the spatial pattern of TGIE and provides empirical evidence for optimizing
the regional TGIE network structure. This study enhances the theoretical framework of
TGIE and offers theoretical support and policy insights for improving green innovation in
China’s tourist sector and maximizing regional cooperation networks.

2. Theoretical Foundations and Research Hypotheses
In the present setting of heightened focus on global green and sustainable development,

tourism, as an important pillar of economic development [16], the enhancement of the
efficiency of its green innovation is particularly critical. Green innovation in tourism not
only concerns environmental protection and sustainable development, but also affects the
transformation and upgrading of regional economies [17]. Therefore, exploring the network
evolution mechanism of TGIE not only possesses academic value, but also provides useful
guidance for policy making and industry practice.

Innovation networks, as the core force driving technological progress and industrial
upgrading, have been thoroughly explored in global studies [18]. The formation and
evolution of its network show a unique complexity. In the open innovation system, the
relationship between various innovation actors in the tourism industry gradually tends
to be multilateral and complex, and these interactions are not only the driving force of
innovation, but also the key to TGIE enhancement. As pointed out by the theory of
resource endowment and multidimensional proximity, the differences in green innovation
behaviors among regions are not only closely related to geospatial constraints, but also
to the configuration of multidimensional factors such as capital, technology, knowledge,
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and human resources. Therefore, the evolution of the TGIE network cannot be analyzed
purely at the micro-level, but the joint role of exogenous and endogenous factors should be
explored from the perspective of spatial and temporal dimensions.

Exogenous dynamics, as a key factor driving the efficiency of green innovation, usually
derive from external conditions such as the policy environment, changes in market demand,
and technical standards [19–21]. China’s new policy framework, which actively promotes
a green economy and low-carbon growth, has significantly bolstered green innovation
in tourism [22]. These policies are not only reflected in financial support and subsidies
for green tourism projects, but also cover measures for the construction of environmental
protection facilities and carbon emissions trading mechanisms. The strength of the policies
directly affects the ability of each tourist organization in the region to have access to
green innovation resources, which in turn has an impact on the development of their
innovation efficiency. In addition to exogenous dynamics, endogenous dynamics reflect
self-organizing principles intrinsic to the system, where micro-level interactions (e.g.,
reciprocity, triadic closure) generate emergent macro-structures. Endogenous dynamics
mainly originate from the interconnection and collaboration among the subjects in the
network. As revealed by the path dependence theory, the decision-making of each micro-
subject in the network is influenced by historical accumulation and previous behaviors,
which in turn has a far-reaching impact on the macro-network structure. The social network
theory theorizes that the superposition of interdependent micro-decision-making processes
is reflected in macro-inter-provincial relations, making regional nodes embedded in specific
network endogenous structures. This structural embeddedness shapes regional innovation
endowments, which in turn react to micro-subjective behavior, thereby leading to the
reinforcement of local configurations in mutual feedback. In the TGIE network, resource
sharing and cooperation among regional subjects form a specific path dependency effect.
This effect not only shapes the current shape of the network, but also influences the
trajectory of future evolution. The construction and growth process of the TGIE network
is not a single linear process, but a system full of dynamic changes. The subjects in the
network are constantly adjusting and optimizing according to the changes in the external
environment, and the role of historical paths and innovativeness in the evolution of the
network is particularly prominent in this process.

Therefore, this paper is based on the logical framework of “bottom-up” and “inter-
nal and external.” Starting from the resource endowment theory and multidimensional
proximity theory, we analyze the exogenous dynamics of the TGIE network evolution. The
endogenous dynamics of TGIE network evolution are analyzed from the social network and
path dependence theories, which are shown in the analytical framework in Figure 1. On
this basis, the potential influence mechanism of China’s TGIE network and its hypotheses
are proposed.
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Figure 1. Analysis framework of the TGIE network evolution mechanism.

2.1. Exogenous Dynamics and TGIE Network Evolution

Lusher et al. [23] stated that the exogenous dynamics of the network include node
attributes and exogenous contextual factors. Node attributes are categorized as the sender
effect, receiver effect, convergence, or divergence between senders and receivers. Exoge-
nous contextual factors include the entrainment effect of other networks and spatial factors.
This coincides with the city node attribute effect and inter-city relationship attribute effect,
which are concerned with urban innovation networks. In the TGIE network, the region
node attribute can correspond to the receiver effect and the sender effect. Regional rela-
tional attributes usually refer to the institutional, organizational, cognitive, and geographic
proximity between regions. These can correspond to covariate networks such as conver-
gence as well as spatial factors. Thus, exogenous mechanisms of network evolution have
been more abundantly tested in traditional regressions [24].

During the evolution of the TGIE network, node attributes have a profound impact
on the network structure through the receiving effect and the sending effect. From the
standpoint of the receiving effect, regions with lesser economic growth may exhibit a
heightened need for efficiency enhancement and are more predisposed to pursue collab-
oration with high-efficiency regions. Regions facing the pressure of industrial structure
transformation have a more urgent need to enhance the efficiency of green innovation.
Regions characterized by high transportation accessibility demonstrate an enhanced ca-
pacity to assimilate innovation resources, and it is easier to acquire and digest external
innovation experience. Regions with a relatively backward level of green technology can
realize technological catch-up faster through network connection. In terms of the sending
effect, regions exhibiting advanced economic development are more inclined to take the
initiative to establish innovation cooperation with other regions due to the possession of
sufficient innovation resources and stronger resource allocation capacity. Regions with
a high degree of industrial structure optimization have a first-mover advantage in green
innovation and are more likely to export advanced experiences to other regions. Regions
with high transportation convenience can more effectively reduce the cost of innovation
resource flow and promote cooperation. Regions with leading green technology levels
tend to have stronger demonstration effects and are more likely to attract other regions to
actively seek cooperation. This two-way mechanism reveals the complexity and multidi-
mensionality of node attributes in network evolution. This paper proposes the following
hypotheses based on the preceding analysis:
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H1a. The level of economic development, optimization of industrial structure, accessibility, and
green technology level play a positive role in the receiver effect of the region in the network.

H1b. The level of economic development, optimization of industrial structure, accessibility of
transportation, and level of green technology play a positive role in the sender effect of the region in
the network.

In terms of inter-city relationship attributes, multidimensional proximity has been
identified as a key force influencing exchange and cooperation [25], for example, geo-
graphic proximity, which measures the spatial proximity of the cooperating parties. In the
evolution of the TGIE network, geographic proximity, as an important relational attribute,
has a significant impact on the formation and development of the network structure [26].
Geographically proximate provinces tend to have more convenient transportation condi-
tions and more frequent economic interactions. This spatial accessibility can reduce the
cost of innovation resource flows and facilitate inter-regional experience exchange and
technology diffusion. Second, geographic proximity may also influence network evolution
through demonstration and competition effects. Innovation practices and successful ex-
periences among neighboring provinces are more likely to generate demonstration and
driving effects, while healthy competition among regions can also motivate provinces to
continuously improve their TGIE levels. This paper proposes the following hypothesis
based on the preceding analysis:

H2. Geographic proximity plays an active role in the formation of the TGIE network.

2.2. Endogenous Dynamics and TGIE Network Evolution

The endogenous dynamics of a network refer to the fact that network relationships can
form certain local subgraphs or microstructures through the process of self-organization,
thus promoting the formation of other relationships in the network, and the recurrent
effects of many micro-rules drive the essential changes in the global structure [27]. Accord-
ing to the social network theory, these micro-configurations can be effectively identified
and parameterized as endogenous structural variables of the network to simulate the
network evolution process [28]. For directed networks, endogenous dynamics include
edge effects, reciprocity effects, structure-dependent effects, and time-dependent effects.
Among them, the edge effect is the basic effect for forming relationships, which is used to
control the network size, and the practical interpretation is similar to the intercept term in
linear regression.

The reciprocity effect reflects the tendency for two-way reciprocity in a network [29].
If there is a correlation between region i and region j, there is a tendency to establish a cor-
responding reverse linkage between region j and region i, as well. Bidirectional exchanges
may facilitate the comprehensive circulation and optimum distribution of resources. When
a reciprocal relationship is formed between two regions, they can share experiences and
exchange technologies in their respective areas of specialization. For example, one region
may have an advantage in tourism human resource management while another region
excels in environmental pollution control. Through reciprocal cooperation, both regions
can realize complementary advantages and common enhancement. Second, reciprocal
relationships help establish a more stable and lasting cooperation mechanism. Compared
with unidirectional relationships, two-way reciprocal cooperation can enhance trust and
commitment between regions and reduce cooperation risks and transaction costs. Such
stable cooperative relationships enable regions to engage in more in-depth innovation
exchanges, including joint R&D activities, sharing of innovation facilities and human
resources, etc. Since this paper will track the time-series evolution of the network, the
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reciprocity effect is categorized into current reciprocity and delayed reciprocity, and the
following hypotheses are proposed:

H3a. Unidirectional TGIE correlations established between regions in the current period tend to
transform into reciprocal relationships within the same period.

H3b. Unidirectional TGIE correlations established between regions in the current period tend to
transform into reciprocal relationships in the next period.

Typical manifestations of structural dependence effects in networks are the preference
attachment effect and the ternary closure effect. The preferred attachment effect refers
to the propensity of a newly added node in a network to link more often to nodes with
many existing connections, typically assessed by the geometrically weighted centrality
distribution of the node. The statistic itself can be interpreted as inverse preferential at-
tachment, and to avoid logical transformations, its opposite is taken in the model so that a
positive coefficient indicates the presence of preferential attachment. In directed networks,
it can be subdivided into a geometrically weighted centrality distribution of in-degree and
a geometrically weighted centrality distribution of out-degree, portraying convergence
and dilatancy, respectively. Convergence, on the other hand, is embodied as the clustering
effect of associative relationships in the TGIE network. Inter-regional collaboration can
effectively promote TGIE, and regions with higher absorption and utilization capacities are
more inclined to establish close ties with regions with higher efficiency levels. This collabo-
rative pattern enhances the driving effect of high-efficiency areas on low-efficiency regions,
potentially intensifying the “the strong getting stronger and the weak getting weaker”
phenomena inside the network. Expansion is reflected in the star-shaped distribution of
collaborative relationships in the inter-regional TGIE network. As the policy of ecological
prioritization and green development continues to deepen, some regions have become the
core nodes for resource export and technology diffusion due to their significant advantages
in TGIE. These regions usually gather higher-quality scientific research resources, a higher
level of policy support, and a stronger industrial base, attracting other regions to take the
initiative to establish collaborative relationships, thus driving the whole network to show a
tendency of expanding from the core region to the periphery, presenting an axial amplitude
spatial radiation effect. Therefore, this paper puts forward the following hypotheses:

H4a. Inter-regional TGIE correlations have a tendency towards preference attachment and the
network is characterized by convergence.

H4b. Inter-regional TGIE correlations have a tendency towards preference attachment and the
network is characterized by expansiveness.

The ternary closure effect is an important endogenous mechanism that influences the
selection of relationships between nodes and drives the development of network clusters,
which is manifested in the stabilization of the network structure, the formation of tightly-
knit communities, and the characteristics of “small worlds.” From the studies of knowledge
cooperation networks [30] and emerging technology networks [31], it is found that the
triadic closure mechanism plays an important role in the formation and maintenance of
network relationships. Broekel et al. [32] point out that the triadic closure can be regarded
as a kind of “social capital, “ which can enhance the relationship between participants.”
This in turn enhances trust and cooperation among participants. In the TGIE network, the
ternary closure effect can also improve the overall utilization efficiency of green innovation
resources by promoting cooperation and mutual trust, information exchange, and resource
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sharing among regions, which is a key direction for the evolution and development of the
network. At present, with the promotion of China’s tourism green development strategy
and regional integration process, inter-regional green innovation cooperation relationships
have gradually deepened, and the association effect, agglomeration effect, and “small
world” characteristics of the network structure have become more and more obvious.
Considering the directionality of the relationship, this paper divides the triadic closure into
transmission closure and cyclic closure. Transmission closure refers to the fact that in the
TGIE network, region A influences region B through cooperation, region B then influences
region C through cooperation, and region A directly influences region C (A → B, B → C,
A → C). This closure relationship reflects the hierarchical structure of the TGIE network.
Cyclic closure means that in the TGIE network, region A influences region B, region B
influences region C, and region C in turn influences region A (A → B, B → C, C → A).
This closed relationship reflects the flattening and equalization of the network structure.
Therefore, this paper proposes the following hypotheses:

H5a. Inter-regional TGIE networks have a tendency for transmission closure.

H5b. Inter-regional TGIE networks have a tendency for cyclic closure.

The time-dependent effect is a measure of the tendency of a network to keep relation-
ships stable or change at different moments. Wang et al. [33] and Liu et al. [34] point out
that relationships in a network are not only affected by structural dependence, but are also
closely related to their past states. On the one hand, the TGIE network is a product of nested
inter-regional resource flow preferences and cooperative relationships with some historical
continuity and path dependence. The stability of this network relationship may stem from
the trust base and interest association of long-term cooperation, which contributes to the
tendency of the TGIE network to maintain the existing structural characteristics. On the
other hand, with the ongoing advancement of green development policies and the enhance-
ment of the government’s involvement in directing regional coordinated development, the
regions may show dynamic adjustment and innovative development characteristics in the
cooperative relationship. For example, at different stages of green tourism development,
regions may choose new partners or strategies according to their own development goals,
promoting the continuous evolution and optimization of the network relationship. This
paper proposes the following hypotheses based on the preceding analysis:

H6a. The TGIE networks between regions exhibit stability, and the relationships demonstrate path
dependence characteristics.

H6b. The TGIE networks between regions exhibit innovation, and the relationships demonstrate
path creation characteristics.

3. Data and Methods
3.1. Construction of the Indicator System and Data Sources

TGIE denotes the environmental advantages attained via the execution of innovative
activities and the use of innovation inputs, specifically the proportionate correlation be-
tween innovation inputs and the resultant resource and environmental outputs. It indicates
the extent to which innovation inputs contribute to innovation outputs, and its objective
assessment aids in minimizing input redundancy and optimizing the distribution of inno-
vation resources. The three-stage super-efficiency SBM-DEA model integrates the benefits
of conventional data envelopment analysis with stochastic frontier analysis [35]. While
carrying out multi-input, multi-output efficiency measurement, it eliminates the influence
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of external uncontrolled variables and stochastic errors, and can better evaluate the efficacy
of decision-making units. The precise procedure for calculating is as follows:

(1) First Stage

The first stage is a super-efficient SBM model based on undesired outputs. The model
treats each provincial administrative unit as a decision-making unit (DMU), which includes M
input factors xm, L desired outputs yl and K non-desired outputs uk. The linear programming
formulation of the super-efficient SBM model with undesired outputs is as follows:

ρ = min
1
M ∑M

m=1
sx

m
xm0

1
L+K

(
∑L

l=1
sy

l
yl0

+ ∑K
k=1

su
k

uk0

) (1)

s.t.


xm0 ≥ ∑n

j=1, ̸=0 λixi − sx
m, ∀m

yl0 ≤ ∑n
j=1, ̸=0 λiyi − sy

l , ∀l
uk0 ≥ ∑n

j=1, ̸=0 λiui − su
k , ∀k

sx
m ≥ 0, sy

l ≥ 0, su
k ≥ 0; xi ≥ 0, yi ≥ 0, ui ≥ 0, λi ≥ 0; ∀m, l, k, i

(2)

where ρ is the efficiency value to be measured; sx
m, sy

l , and su
k denote the slack variables for

input, desired output, and undesired output variables, respectively; and λ is the vector of
weights. The magnitude of the value shows a positive correlation with the value of this
DMU. In order to make the measured efficiency value closer to the actual efficiency value,
as well as to solve the inter-period comparability problem in the DEA model, this paper
sets the DMU value as conditioned on the scale efficiency variable and global reference.

(2) Second Stage

In the second stage, the SFA model is used to account for the impact of management
inefficiency, external factors, and random mistakes on the slack values of the input variables.
This is important because these factors might prevent the measured input-output levels
from being maximized. Therefore, the SFA model is used in the subsequent phase to
mitigate the impact of environmental factors and random discrepancies, thereby isolating
the duplication of decision units solely attributable to management inefficiencies. The
precise formula is as follows:

St
mi = f

(
Et

mi, ηm
)
+ vt

mi + ξt
mi, i = 1, 2, · · · , N; m = 1, 2, · · · , N; t = 1, 2, · · · , T (3)

where St
mi is the slack variable for the m-th input; Et

mi is the environmental variable, and ηm

is its coefficient; vt
mi + ξt

mi denote the mixed error term and the two terms are independent
of each other, representing random mistakes and managerial inefficiency, respectively.
In addition, the estimate of the random error term is used to strip out the managerial
inefficiency term and the random error term, which ultimately approximates the specific
estimate of the random error factor, and the following formula is applied to adjust the
initial inputs:

xt′
mi = xt

mi +
[
max

(
vt

mi
)
− vt

mi
]
+

[
max

(
f
(
Et

mi, η̂m
))

− f
(
Et

mi, η̂m
)]

(4)

where xt′
mi is the adjusted input value; xt

mi is the pre-adjusted input value;
[
max

(
vt

mi
)
− vt

mi
]

denotes the exclusion of random error effects; and
[
max

(
f
(
Et

mi, η̂m
))

− f
(
Et

mi, η̂m
)]

denotes
the exclusion of the effect of external uncontrollable factors.

(3) Third Stage

In the third stage, the modified data obtained from the second stage is used to re-
evaluate the measurement using the highly efficient SBM model for undesired output.
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The efficiency numbers acquired at this step have eliminated the impact of the external
environment and random mistakes, allowing for a more precise representation of the actual
degree of efficiency.

The particular measurement indices are chosen as follows:

(1) Input indicators. Based on the new economic growth model, human and capital inputs
are the most basic production factors [36]. Meanwhile, considering the increasingly
prominent energy supply problem [37], this paper selects human, capital, and energy
input indicators as the core input factors to measure TGIE. Tourism research and
development (R&D) people are the implementers of tourism innovation initiatives,
reflecting the innovative potential of the regional tourist sector. The personnel of
tourist organizations are essential to advancing the high-quality growth of the tourism
sector and sustaining innovative capabilities. Therefore, this paper selects tourism
R&D personnel and tourism organization employees to characterize human input.
Financial input is the fundamental guarantee for green innovation in tourism, and
R&D expenditure is usually adopted internationally to reflect the degree of investment
in science and technology innovation. This paper selects tourism R&D expenditure to
characterize the financial input. Energy input is an important prerequisite for tourism
industry to carry out green innovation; this paper selects the total energy consumption
of tourism industry to characterize the energy input.

(2) Output indicators. Desired output is the positive output of the implementation of
innovation activities in the tourism industry. This paper selects the two indicators of
total tourism revenue and the number of tourism patent applications to measure the
economic benefits and innovation benefits obtained by the tourism industry in the
implementation of green innovation, respectively. The gross revenue from tourism
is the most immediate indication of the benefits derived from the implementation of
green innovations in the tourist sector. The number of tourism patent applications is
the core of the tourism industry’s scientific and technological assets. The undesired
outputs are selected as tourism carbon emissions, tourism sewage emissions, and
tourism garbage emissions, since there are no relevant statistics on carbon emissions
and energy consumption in tourism in domestic databases and statistical yearbooks.
In this paper, the bottom-up method of decomposition and then totalization are
adopted to account for the carbon emissions and energy consumption of the tourism
industry, based on Becken et al.’s method of dividing the tourism industry into three
major sectors, namely, tourism transportation, tourism accommodation, and tourism
activities [38]. The formula is as follows:

Ct
i(transport) =

4
∑

j=1
Tt

ijPjθj (5)

Ct
i(accommodation) = Bt

i Lt
i αβ (6)

Ct
i(activities) =

5
∑

q=1
Nt

i At
qµq (7)

Ct
i = Ct

i(transport) + Ct
i(accommodation) + Ct

i(activities) (8)

In the formula, subscript i denotes a region, and subscript j represents the four types
of tourist transportation modes: Aviation, Highway, Railway, and Waterway. The variable
Tt

ij signifies the passenger turnover for tourist transportation mode j in province i during
year t; Pj indicates the passenger share utilizing transportation mode j; θj denotes the
carbon emission factor per unit for mode j; and Bt

i quantifies the bed capacity in star-
rated tourist hotels within province i in year t, with Lt

i representing the annual occupancy
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rate. The parameter α corresponds to energy consumption per unit, while β indicates
carbon emissions per bed per night. Tourist activity types are categorized by subscript
q, comprising sightseeing, leisure vacation, business meetings, and visiting friends, and
others. Nt

i designates the total tourist arrivals in province i during year t. At
q signifies the

proportion of tourists engaging in activity type q, with µq representing the carbon emission
factor for activity q. The aggregate tourism carbon emissions for province i in year t are
quantified by Ct

i .
In addition, there are no statistics on tourism wastewater discharge and tourism waste.

Referring to an existing study [39], the conversion was made using the share of total tourism
revenue to GNP. Regarding the natural environmental factors, forest parks and nature
reserves not only enhance the attractiveness of tourism, but also have a greater impact on
the absorption and purification of carbon dioxide, domestic wastewater, etc., thus affecting
the measurement of TGIE. Therefore, two indicators, forest park area and nature reserve
area, are selected to characterize the spatial heterogeneity of natural environmental factors
in different regions. The construction of the indicator system is detailed in Table 1.

Table 1. Indicator system for TGIE.

Index Specific Index Indicator Description

Input
Labor

Number of employees in tourism institutions (unit:
10,000 persons)

Number of tourism R&D personnel (unit:
10,000 persons)

Capital Expenditure on tourism R&D (unit: CNY 10,000)

Energy Total energy consumption in the tourism industry (unit:
100 million MJ)

Desired output Economic Total tourism revenue (unit: CNY 100 million)
Innovation Number of tourism patent applications (unit: units)

Undesired output Tourism environmental pollution
Tourism carbon emissions (unit: 10,000 tons)

Tourism wastewater discharge (unit: 10,000 tons)
Tourism waste discharge (unit: 10,000 tons)

External uncontrollable factors Natural environmental factors
Area of forest parks (unit: 10,000 hectares)

Area of nature reserves (unit: 10,000 hectares)

The data used in this paper are mainly derived from the China Tourism Statistical
Yearbook, China Tourism Sample Survey Data, China Transportation Statistical Yearbook,
China Environmental Statistical Yearbook, and China National Bureau of Statistics. Missing
data were supplemented by mean value or linear interpolation. Thirty provinces in China
(excluding Hong Kong, Macao, Taiwan, and Tibet) were chosen for the research because
data were not available in some regions, and the validity of the data was not guaranteed.

3.2. Spatial Correlation Network Construction

Currently, the methods for constructing networks in the literature mainly include the
minimum spanning tree method [40], the VAR model [41], and the gravity model [29]. The
minimum spanning tree method can only generate a simple connectivity graph consisting of
N-1 edges and N nodes, which cannot comprehensively reflect the multi-level connections
among subjects. The VAR model is too responsive to the selection of lag order and fails to
adequately represent the network topology. The gravity model is more suitable for dealing
with aggregate data and exploring the dynamic progression of the network compared to
the previous two models. The precise calculation formula is as follows:

Fij = kij ×
ci×cj

d2
ij

, kij =
ci

ci+cj (9)
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where Fij is the correlation strength of TGIE; kij is the gravity coefficient; ci and cj denote
the TGIE levels of provinces i and j, respectively; and dij is the geometric center distance
between provinces. Using the results of gravitational model measurement to construct the
gravitational matrix wij (30 × 30) and using the mean value of each row of the matrix as the
threshold to construct a directed asymmetric binary adjacency matrix, the binary network
wij of the spatial association of TGIE in China is obtained.

3.3. Network Motif Analysis

The network motif is the basic unit of complex structure inside a network, representing
the typical pattern of efficiency correlation among nodes. Motif analysis can reveal the
specific paths and network characteristics of efficiency correlation among different regions.
The frequency of the motif is much higher than its frequency in random networks with the
same distribution of nodes and connection strengths, which suggests that the motif has an
important role in the structure of the network. The importance of motifs can be quantified
by calculating the Z-value of the motif. The formula for the Z-value is given below:

Zi =
Nreali−Nrandi

σrandi
(10)

where Zi denotes a specific motif; Nreali is the number of times the motif Zi appears in the
actual network; Nrandi is the number of occurrences of motif Zi in the random network; σrandi

is the standard deviation; in terms of Zi, the larger the value, the higher the importance of the
motif in the network. In TGIE networks, motifs can not only reflect the structural properties of
efficiency associations among provinces, but also reveal the potential development direction
of the network. For example, the transfer-type motif (A → B → C) may indicate the exis-
tence of multi-level efficiency-driven relationships among provinces. The closed-loop motif
(A ↔ B ↔ C ↔ A), on the other hand, may reflect the equilibrium and tightness of efficiency
linkages among regions. The motif analysis helps elucidate the fundamental mechanisms and
evolutionary traits of the TGIE network.

3.4. Measurement of Variables

(1) Dependent variable. The dependent variable studied in this study represents the
presence or absence of inter-provincial linkages in the TGIE network (i.e., whether
there is a linkage or not, which takes the value of 1 when it exists, and 0 otherwise),
and is used to characterize the distribution of linkages in the inter-provincial TGIE.

(2) Explanatory variables. This study is based on the hypothesis of the formation process
of the TGIE network and the extrapolation of its dynamic development trajectory,
alongside the trajectory of conventional research [34,42]. The following explanatory
variables are added to the model: edges, mutual, delrecip, gwidegree, gwodegree,
ttriple, ctriple, stability, and innovation, and the explanations of the specific indexes
are shown in Table 2. Mutual is used to measure whether inter-regional TGIE affil-
iations tend to form reciprocal relationships during the same period. It measures
whether province j gives back to form a bidirectional reciprocal relationship in the
same period when province i has a unidirectional correlation relationship to province
j. Delrecip is used to measure whether unidirectional correlation relationships be-
tween regions are characterized by cross-period reciprocity, and to detect whether
a unidirectional relationship formed in the previous period gives back to form a
bidirectional relationship in the next period. The correlation relationship is directed
as follows: the sender is the one who sends out the correlation relationship, and
the receiver is the one who receives the correlation relationship; usually the receiver
is in a more favorable position in the network. In this paper, we use gwidegree to
measure the preference attachment effect, which describes the distributional tendency
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of province i to receive correlations sent by multiple provinces. Gwodegree measures
the preference radiation effect, which reflects the possibility that some core provinces
may have formed a “core-edge” structure through their influence on neighboring
nodes. Ttriple tests the transmissive closure effect between three nodes in the network
and measures the tendency of indirect inter-provincial linkages, while ctriple reflects
the tendency of three nodes to form a closed-loop relationship, which describes the
closeness of multi-directional interactions in the network. Stability is used to measure
the tendency of the network relationships to remain unchanged in period t in period
t + 1, reflecting the path dependence characteristics of the network. Innovation tests
whether network relationships change over time, measures the generation of new
relationships or the disappearance of old relationships in the network, and reflects the
innovative development characteristics of the network.

(3) Control variables. In this study, we refer to the related literature [27,42–44] and
include important exogenous mechanism drivers as control variables in the model.
Economic development level (EDL), Industrial structure (IS), Transport convenience
(TC), Green technology level (GTL), and Geographical distance (GD) all affect the TGIE
correlations, and these factors together drive the formation of network relationships
by the exogenous mechanisms.

Table 2. Variable specification of TERGM.

Effect Variable Diagram Statistical Significance Hypothesis

Basic effect Edges
Network density as an indirect

reflection; the baseline tendency for
relationship formation

/

Node attribute effect Nodeicov
Measures the impact of a node’s
regional attribute on incoming
relationships between regions

H1a

Nodeocov
Measures the impact of a node’s
regional attribute on outgoing
relationships between regions

H1b

External network effect Edgecov
Measures the impact of an external

relational network on the formation of
efficient relationships

H2

Reciprocity effect Mutual
The tendency of unidirectional

relationships to receive reciprocal
feedback in the current period

H3a

Delrecip
The tendency of unidirectional

relationships to receive reciprocal
feedback in the next period

H3b

Structural dependence
effect Gwidegree

 

The tendency of efficient relationships
to distribute concentratively H4a

Geodegree The tendency of efficient relationships
to distribute expansively H4b
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Table 2. Cont.

Effect Variable Diagram Statistical Significance Hypothesis

Ttriple
The tendency to form hierarchical

transitive efficient relationships among
three regions

H5a

Ctriple

 

The tendency to form flat cyclic
efficient relationships among three

regions
H5b

Temporal dependence
effect Stability

The tendency for the overall network
pattern in period t to remain stable in

period t + 1
H6a

Innovation
The tendency for the overall network

pattern in period t to undergo variation
in period t + 1

H6b

3.5. Modeling

ERGM and its extension TERGM have garnered significant interest and acknowledg-
ment from academics as novel network statistical methodologies [33,45]. The distinctive
feature of TERGM is that it is appropriate for dynamic observation network studies and
considers the time-dependent characteristics of network data [34].

Therefore, in this paper, TERGM captures the co-evolution of endogenous self-
organizing mechanisms and exogenous control parameters in networked systems, covering
four longitudinal observation periods (2011 to 2023, with each observation cycle spanning
four years). By simulating micro-level interaction rules and macro-level emergent patterns,
TERGM reveals how local collaborative behavior drives system-level correlation evolution
and uncovers the path dependence of green innovation efficiency in spatial configuration.
The specific observation of TGIE spatial correlation network in year t is denoted by yt,
and a K-order Markov correlation is constructed by the principle of discrete-time Markov
chain TERGM:

P
(

Yt = yt
∣∣∣Yt−k, · · · , Yt−1, θ

)
=

exp
[

∑
H

θH g(yt ,yt−1,··· ,yt−k)
]

c(θ,yt−k ,··· ,yt−1)
(11)

where P(·) denotes the probability that the observed network y occurs in all possible
networks; Y. c(·) denotes the normalized constant that ensures the probability is between 0
and 1; H is the set of variables that affect the formation and evolution of the network; θH is
the vector of coefficients; and g(·) is the network statistic corresponding to H.

4. Results
4.1. Analysis of TGIE Measurement Results

The measured results of China’s TGIE between 2011 and 2023 are shown in Figure 2a.
In the first stage, the average value of national TGIE is 0.8072, with an overall fluctuating
upward trend. Specifically, it rises from 0.8237 in 2011 to 0.8446 in 2023. Shanghai has been
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on the efficiency frontier side, with an average value of efficiency as high as 1.2038, while
that of Liaoning is only 0.3327, which highlights the significant differences in TGIE between
regions. However, the effects of natural environmental factors and random errors are not
removed at this stage, and the efficiency measurements have some errors.

Figure 2. (a) First stage efficiency. (b) Third stage efficiency.

The third stage adjusts the input data from the first stage through the SFA stochastic
frontier regression model. The calculation results are shown in Figure 2b. After adjustment,
the national average of overall efficiency drops to 0.4763, indicating that environmental
variables and stochastic errors mask the true picture of efficiency to some extent. In terms
of time trends, the overall efficiency in the eastern region is higher and remains relatively
stable. In Jiangsu, for example, its efficiency value grew from 1.0757 in 2011 to 1.0874 in
2023, showing a steady upward trend. The performance of Fujian and Zhejiang is also more
outstanding, with the average efficiency value of 1.0293 in Fujian and 0.9653 in Zhejiang
during the study period. In contrast, the efficiency value of the central and western regions
is relatively low and fluctuates greatly. Qinghai has the lowest efficiency value in the
country, growing from 0.0048 in 2011 to 0.0241 in 2023, but still significantly lower than the
national average. Xinjiang’s efficiency value fluctuates less, declining from 0.0196 in 2011
to 0.0182 in 2023, with almost no growth. The low efficiency of these regions reflects their
shortcomings in tourism innovation resource input and green technology level.

Taken together, China’s TGIE shows significant differences in time and space, with the
efficiency value of the eastern coastal region significantly higher than that of the central
and western regions, presenting a spatial pattern of “high in the east and low in the west.”

4.2. Local Motif Analysis of TGIE Networks

To investigate the microstructure and network organization of China’s TGIE network,
this paper launches a study through motif analysis, where motifs with p < 0.05 (|Z| > 1.96)
were considered statistically significant. The top six most frequent motifs across all observation
years were prioritized for analysis based on occurrence frequency ranking (Table 3). This dual
criterion—statistical significance and frequency ranking—ensures both methodological rigor
and empirical relevance to tourism innovation networks.

From the results of the ternary structure, motif 12 appears with the highest frequency
in all years, and its frequency shows a year-on-year upward tendency, indicating that the
dominant role of the chain structure in the network is continuously strengthening. This
chain structure reflects that many provinces form unidirectional indirect links through
intermediary nodes. It reflects that intermediate nodes play a crucial bridging function in
the cross-regional movement of innovation resources. Motif 166, as a bridging structure,
has a relatively stable frequency, showing that some provinces have realized efficient inter-
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regional links through bridge nodes, and its two-way flow characteristics further promote
the diversification of resource sharing and collaboration modes. Meanwhile, the frequency
of motif 174 fluctuates and rises during the study period. As a partially closed structure, its
directional characteristics indicate a significant enhancement of bidirectional interactions
in the TGIE network. Such interactions contribute to the efficiency of collaboration and
strengthen the regional integration of innovation resources. However, the frequency of
fully closed motif 238 is consistently lower across years. This suggests that the role of fully
interactive collaboration patterns in the TGIE network is relatively limited, but still has
some value in promoting network stability and deep collaboration.

Table 3. Motif analysis of China’s TGIE network from 2011 to 2023.

Year 2011 2015 2019 2023

Structure ID Motif Frequency/% ID Motif Frequency/% ID Motif Frequency/% ID Motif Frequency/%

Ternary
Structure

12 11.4500 12 12.9710 12 13.0520 12 15.9390

166 10.8560 166 11.4500 166 10.9860 166 10.8640

174 9.0156 174 7.9729 174 8.1690 174 9.8842

38 6.8997 46 7.5488 46 6.6667 46 6.5004

46 5.7958 38 5.9372 38 5.2582 38 5.9662

238 4.1398 238 4.1561 238 4.8826 238 4.2743

Quaternary
Structure

392 3.6012 392 3.7254 392 4.2027 392 4.2280

10372 3.0179 18572 2.9829 18572 3.4673 10372 3.9095

18572 2.6826 10372 2.9439 10372 3.3482 8588 2.8344

2188 2.3181 2202 2.8787 17238 2.5446 18572 2.6250

74 2.2890 590 2.1753 74 2.3661 4694 2.4853

2202 2.2306 710 2.0711 2202 2.3512 536 2.4435

Among the results of the quadruple structure, motif 392 maintains the highest fre-
quency in all years and shows a continuous upward trend. The directional characteristics
of this single-intermediary node chain structure indicate that in the collaboration of the
four nodes, resources and information are mainly transferred directly or indirectly between
regions through intermediary nodes, which fully reflects the importance of cross-region
and multi-level collaboration. The higher frequency of motif 10372, which is a multi-
intermediary node chain structure, reflects that some of the core nodes play the role of
resource pooling and leading collaboration in the network role. Similar to motif 166 in
the ternary structure, the directional relationship of motif 10372 highlights the ability of
core provinces to integrate innovation resources through unidirectional or bidirectional
flows. The frequency of motif 18572 decreased after 2019, showing that the partially
closed ternary structure is gradually replaced by the polycentric collaboration model of
the multi-intermediary node chain structure, a change that reflects the innovation net-
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work’s evolutionary flexibility and adaptability. Meanwhile, the emerging chain motif
8588 and partially closed motif 4694 appear and increase in frequency in 2023, marking
the sophistication and diversification of cross-regional collaboration forms in the TGIE
network, and these new motifs further emphasize the tendency of optimal allocation of
resources between regions through intermediary nodes.

From the overall evolution trend, the driving mechanism of the TGIE network gradu-
ally shifts from the core node-dominated monocentric model to the polycentric collabora-
tion model. The chain structure and partially closed structure serve as the primary impetus
for network evolution.

4.3. TGIE Network Overall Evolutionary Analysis

In this paper, the structure of China’s TGIE directed network in 2011, 2015, 2019 and
2023 is measured and plotted according to the gravity model (Figure 3). Among them, the
size of the circle represents the size of the node degree value. The degree value includes
the degree of connecting in and connecting out.

 

Figure 3. Structure of the TGIE network from 2011 to 2023.

Regarding the temporal dynamics of the comprehensive network evolution, the dy-
namics of the TGIE network in China between 2011 and 2023 show a trend of increasing
regional collaboration and gradual complexity of the network structure. In 2011, the overall
density of the network was low, with high-efficiency regions (e.g., Shanghai, Guangdong)
as the core. These regions have attracted more linkages from low-efficiency regions through
higher connectivity, demonstrating a strong attraction to collaboration. This characteristic
suggests that high-efficiency regions do not only act as resource exporting nodes, but also
become the main targets for other regions to seek cooperation by virtue of their innovation
resource endowment, technological advantages and economic development level, forming
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“centers of attraction” for resources and innovation factors. By 2015, the chain structure
in the network had further emerged, and the frequency of the ternary structure had in-
creased significantly. Highly efficient regions at this stage continue to strengthen their
role as attraction nodes through high connectivity, with some regions (e.g., Jiangsu and
Zhejiang) showing particular strength in their ability to attract green innovation resources.
Meanwhile, regions like Henan, Hubei, and Chongqing gradually develop into important
intermediary nodes that promote inter-regional collaboration by connecting high-efficiency
nodes with low-efficiency nodes. In 2019, the complexity of the network further increases,
and the frequency of the multi-intermediary node chain in the quaternary structure sig-
nificantly increases. Some regions (e.g., Henan, Shaanxi, and Chongqing) exhibit resource
output and network coordination through higher connectivity. High-efficiency regions still
rely on high connect in degrees to maintain strong attractiveness. This pattern reflects the
bidirectional nature of collaborative relationships in the network. High-efficiency regions
attract low-efficiency regions to establish connections, while intermediary nodes facilitate
resource redistribution through multi-directional connections, further promoting multi-
level interactions in the network. In 2023, the TGIE network enters a highly networked
stage, with overall connectivity further enhanced. High-efficiency regions still maintain a
high degree of connectivity, indicating that their attractiveness continues to play a role in
the network. These regions have not only enhanced the integration efficiency of innovation
resources through collaboration with neighboring nodes, but also gradually strengthened
their direct links with other high-efficiency regions, forming a pattern of multi-center
interaction. At the same time, intermediary nodes (e.g., Hubei, Henan, Chongqing, and
Shandong) play a crucial role as bridges between inefficient and efficient regions, further
optimizing the efficiency of resource flows and promoting the balanced development of
the network as a whole.

In terms of the relationship between degree value and efficiency, the level of degree
does not exactly correspond to the level of efficiency. High-efficiency regions (e.g., Shanghai
and Guangdong) show that they are attracting other node regions to collaborate with
them through their high degree of connectivity rather than simply acting as output nodes
of resources. In contrast, some regions with high outward connectivity but medium
efficiency (e.g., Henan and Hunan) show stronger resource mediation and coordination
functions through multi-directional connectivity. This dynamic relationship suggests that
the collaboration mechanism in the network not only depends on the efficiency level of
the nodes, but is also influenced by their structural location and functional positioning.
Combined with the analysis of local motifs, the frequency of chained and partially closed
structures continues to increase over the four periods, suggesting that the evolution of the
network is increasingly dependent on the role of intermediary nodes. These intermediary
nodes facilitate the flow of resources between inefficient and efficient regions through
high connectivity, while efficient regions continue to maintain their core attraction in the
collaborative network through high connectivity.

Overall, the evolution of the TGIE network not only reflects the spatial distribution
pattern of node efficiency, but also demonstrates the dynamic changes in node functions in
resource flow and collaborative relationships.

4.4. Analysis of the Dynamics of the Evolution of the TGIE Network

In this paper, the TERGM simulation of China’s TGIE network from 2011 to 2023
is performed. The results of its parameter estimate are shown in Table 4. Regardless of
whether it is an exogenous or endogenous dynamics model, the TERGM simulation needs
to incorporate the base effect edges to control the network size. Model 1 mainly incorporates
the exogenous dynamics variables of the node attribute effect and external network effect
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to test the exogenous mechanism hypothesis. Model 2~Model 6 take the exogenous
dynamics as a control variable and incorporate the endogenous dynamics variables one
by one to explore the endogenous mechanism of network evolution. The formation and
evolution of the TGIE network are a result of the joint action of exogenous dynamics
and endogenous dynamics (Figure 4). Exogenous dynamics drive the formation of the
foundation of the network through the mechanism of resource endowment differences and
geographic proximity. Endogenous dynamics further strengthen the stability and dynamic
characteristics of the network through the mechanism of network self-organization.

Table 4. TGIE network TERGM estimation results.

Effect Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Basic Effect edges −1.5601 ***
(0.2044)

−1.8577 ***
(0.2062)

−2.6602 ***
(0.2474)

−2.6553 ***
(0.2499)

−4.3596 ***
(0.2512)

−4.3315 ***
(0.2480)

Node Attribute
Effect

nodeicov (EDL) 1.1839 *** (0.3527) 1.6201 *** (0.3634) 2.6364 *** (0.4709) 2.6659 *** (0.4865) 2.6303 *** (0.4917) 2.6476 *** (0.4722)
nodeicov (IS) 0.2381 *** (0.0425) 0.2536 *** (0.0438) 0.3325 *** (0.0555) 0.3309 *** (0.0561) 0.3315 *** (0.0565) 0.3288 *** (0.0551)
nodeicov (TC) 0.0567 *** (0.0052) 0.0530 *** (0.0034) 0.0408 *** (0.0061) 0.0415 *** (0.0064) 0.0457 *** (0.0063) 0.0454 *** (0.0069)

nodeicov (GTL) 1.1180 *** (0.0943) 1.1502 *** (0.0931) 1.2308 *** (0.1100) 1.2291 *** (0.1100) 1.2305 *** (0.1142) 1.2306 *** (0.1118)
nodeocov (EDL) 2.1700 *** (0.3528) 2.5168 *** (0.3614) 3.1722 *** (0.4836) 3.2027 *** (0.4848) 3.1796 *** (0.4721) 3.1680 *** (0.4825)

nodeocov (IS) −0.0531 (0.0407) −0.0813 (0.0433) −0.0562 (0.0542) −0.0563 (0.0529) −0.0569 (0.0532) −0.0595 (0.0519)
nodeocov (TC) 0.0226 (0.0493) 0.0304 (0.0503) 0.0293 (0.0568) 0.0244 (0.0587) 0.0301 (0.0578) 0.0313 (0.0581)

nodeocov (GTL) 0.0520 (0.0758) 0.2076 ** (0.0763) 0.3834 *** (0.0976) 0.3817 *** (0.0983) 0.3791 *** (0.0990) 0.3899 *** (0.1017)
External

Network Effect edgecov (GD) 3.8927 *** (0.1534) 3.1468 *** (0.1753) 2.4155 *** (0.2018) 2.4311 *** (0.2020) 2.4242 *** (0.2042) 2.4340 *** (0.2049)

Endogenous
Structural Effect

mutual 1.3161 *** (0.1926) 1.2075 *** (0.2173) 1.2131 *** (0.2239) 1.1924 *** (0.2196) 1.2283 *** (0.2164)
delrecip 1.5026 *** (0.1678) 1.5131 *** (0.1687) 1.5046 *** (1.1574) 1.5032 *** (0.1644)

gwidegree 0.2314 *** (0.0129) 0.0414 *** (0.0023) 0.0140 *** (0.0010)
geodegree 0.1047 *** (0.0099) 0.0090 *** (0.0008) 0.0013 *** (0.0001)

ttriple 0.0353 *** (0.0039) 0.0452 *** (0.0062)
ctriple −0.5039 ***

(0.0277)
−0.3800 ***

(0.0235)
stability 3.1622 *** (0.0992)

innovation 3.5151 *** (0.1368)
AIC 3088 2730 1959 2263 1479 888
BIC 3172 2792 2043 2346 1484 894

Log Likelihood −1533 −1355 −967 −1119 −738 −443

Note: *** and ** enote statistical significance at the 1% and 5% levels, respectively. Values in parentheses represent
standard errors.

In terms of exogenous dynamics, the formation of the TGIE network is first driven
by the mechanism of resource endowment differences. This “source power” is manifested
in the inter-regional differences in EDL, IS, TC, and GTL. The analysis of node attributes
shows that the coefficient of reception effect of EDL is 2.6476. The probability of a region
with a higher level of economic development to receive resources is 14.12 times higher
than that of a region with a lower level of economic development (exp(2.6476) = 14.12,
hereinafter the same), while the coefficient of reception effect of GTL is 1.2306, which
corresponds to the probability multiplier of 3.42 times. The contribution of TC and IS to
the reception effect is relatively small but still significant. This suggests that regions with
high levels of economic development and green technology are more inclined to attract the
inflow of external resources, validating H1a. As for the sending effect, the coefficient of
EDL is 3.1680, indicating that the probability of forming an output relationship in regions
with high EDL is as high as 23.74 times, whereas the coefficient of GTL as a sender is
0.3899, with a probability multiplier of only 1.48 times. This indicates that EDL has a more
substantial influence on the sender effect, validating H1b. However, IS and TC have no
substantial influence on the sender effect, rejecting some of the hypotheses. Geographic
proximity significantly influences the establishment of the TGIE network, and becomes a
“determining force” for resource flows. The coefficient of GD is 2.4340, which indicates that
the probability of forming green innovation efficiency correlations between neighboring
regions is 11.39 times higher than that of distant regions, which verifies H2. This suggests
that geographic proximity not only reduces the cost of innovation resource flows, but also
enhances the willingness of inter-regional cooperation through spatial proximity.
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Figure 4. Evolution mechanism of the TGIE spatial association network.

Endogenous dynamics provide an important “gas pedal” for the TGIE network
through the network self-organization mechanism. The mutual coefficient of the reciprocal
effect is 1.2283, indicating that two-way relationships have a strong tendency to form
during the same period; delrecip has a coefficient of 1.5032 and a probability multiplier
of 4.50 times, which further suggests that unidirectional associations tend to evolve into
reciprocal relationships at a later stage, and thus strengthen the stability of the network.
H3a and H3b are both validated. The gwidegree in the preference attachment effect and
the geodegree in the preference radiation effect are both significantly positive, and the
dual roles of efficient nodes in attracting cooperative relationships and diffusing resources
are manifested. The attraction of core nodes to peripheral nodes enhances the resource
clustering and radiation functions of the network, validating H4a and H4b. Meanwhile,
gwidegree is stronger than geodegree, which indicates that the affiliation relationship in the
TGIE network prefers core nodes with high attraction ability. In the ternary closure effect,
the coefficient of ttriple is markedly positive, but the coefficient of ctriple is substantially
negative, thereby corroborating hypothesis H5a and refuting hypothesis H5b. It indicates
that TGIE presents a network formation mode mainly thanks to the increase in transfer
closure structure, while cyclic closure structure is less easy to form and maintain. The
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time-dependent effect is an important driver of TGIE network evolution. The coefficients
of stability and innovation in Model 6 are 3.1622 and 3.5151, respectively, and both are
significant, verifying H6a and H6b. It indicates that the TGIE network presents an obvious
path dependence effect, and its evolutionary process has path creation characteristics.

For model fit goodness-of-fit, the smaller the AIC and BIC, the better, while the larger
the Log Likelihood, the better. It can be seen that the model accuracy is greatly improved
when the endogenous mechanism is considered. The Goodness-of-fit (GOF) test, i.e.,
1000 simulations based on the estimated parameters of Model 6, is performed on Model
6, which contains all variables and has the best fit (Figure 5). The key features are dyad-
wise shared partners, edge-wise shared partners, degree, and indegree, and the geodesic
distances of the simulated network are compared and analyzed with the real network. It
can be found that the five types of key network features are close to the 95% confidence
interval of the simulated network, indicating that the simulated network can explain the
real network well. In addition, the ratio of true positive prediction rate to false positive
prediction rate of the ROC curve is near the upper left corner. It indicates that the model
simulates the structural features of the real network well and is able to capture the dynamic
evolution mechanism of the network.

 

Figure 5. Goodness-of-fit plots. Note: edge-wise and dyad-wise in the figure correspond to the
standard terminology edge-wise and dyad-wise.

5. Discussion
The evolution of the TGIE network in China embodies a complex dynamic mechanism.

This study reveals the joint role of exogenous and endogenous dynamics through TERGM.
First, the findings indicate that the eastern area exhibits higher attractiveness in the TGIE
network by virtue of its economic developedness and green technology advantages. This is
consistent with existing studies that emphasize the centrality of economically developed
regions in innovation networks [46]. However, in contrast to the traditional view, this study
finds that intermediary nodes (e.g., Henan and Hubei) exhibit a key role in cross-regional
cooperation. It significantly facilitates resource flows and collaboration by connecting
efficient and inefficient regions. This finding continues the discussion on the importance
of network bridge nodes [47]. It further suggests that the function of intermediary nodes
may be particularly important in the field of innovation, as they not only undertake
resource allocation, but also play a guiding role in shifting collaboration patterns [48].
The reciprocity effect shows a significant facilitating role in network evolution, which
is manifested in the gradual evolution of unidirectional associative relationships into
bidirectional reciprocal relationships. This relationship not only strengthens the trust
and collaboration among nodes, but also improves the overall stability of the network by
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enhancing the bidirectionality of resource flow. This outcome is in accordance with the
research conducted by Yan et al. [49], which suggests that the reciprocity effect is crucial in
enhancing cooperation within innovation networks. In addition, the reciprocity effect is
uneven across regions, with high-efficiency regions (e.g., Shanghai, Guangdong) more likely
to attract collaborative relationships in return. And intermediary nodes further consolidate
their bridging role in the network through two-way relationships. This indicates that the
reciprocity effect depends not only on the resource endowment of the nodes, but also
on their structural location within the network, thereby illustrating the complexity of
network development.

The study also reveals the dual characteristics of “path dependence” and “path cre-
ation” in network evolution. Historical partnerships significantly contribute to the stabiliza-
tion of the present network structure, as corroborated by the research of Guo et al. [50]. This
suggests that the evolution of the network is not only constrained by the existing resource
endowment, but also influenced by the historical cooperation trajectory. Meanwhile, this
study finds that the TGIE network exhibits a certain degree of flexibility in adjusting to
the time dimension, and this “path creation” feature is particularly obvious under the
regional policy and innovation-driven approach, which shows an important contribution
to the dynamic progression of the network [51]. This finding provides a new perspective
to explain the dynamic adjustment of inter-regional collaboration patterns, especially for
regions with weak geographic proximity, where policy facilitation may be more critical
than traditional resource endowment differences. In addition, this study explores the
interplay between exogenous and endogenous dynamics. Geographic proximity, as an
important factor of exogenous dynamics, significantly contributes to resource flows, con-
gruent with the results of Ferretti et al. [26]. This suggests that geographic proximity may
significantly lower resource flow costs and improve regional cooperation willingness. The
preference attachment effect, as a manifestation of endogenous dynamics, further explains
how efficient nodes strengthen their centrality in the network by attracting cooperative
relationships from inefficient nodes. It is equally crucial to acknowledge that the ternary
closure effect in the network exhibits significant fluctuations, with some regions displaying
strong triangular relationships while others show weaker or even negative correlations.
This may indicate differences in the level of trust and cooperation between regions at
different stages of the network, further highlighting the challenge of achieving balanced
development within the network.

Furthermore, it is valuable to contextualize our findings by critically comparing them
with similar research in other countries or sectors. For instance, studies on green innovation
networks in the manufacturing sector indicate that economically developed regions or core
enterprises also typically dominate the innovation network structure, with peripheral actors
depending heavily on intermediary nodes or central firms to integrate into the innovation
ecosystem [52]. Similarly, research on the nuclear trade network in Europe has underscored
the critical role of bridging nodes, highlighting how regions or firms positioned as network
intermediaries significantly facilitate technology diffusion and resource integration [45].
However, compared to these sectors, tourism exhibits distinctive characteristics due to
its inherent reliance on natural and cultural resources, higher sensitivity to geographic
proximity, and the complexity of multi-stakeholder collaboration. These sectoral differences
suggest that regional policymakers in tourism should place greater emphasis on tailored
collaboration mechanisms and leverage local-specific resources when designing green
innovation strategies.

In addressing practical implications more explicitly, this study highlights two criti-
cal aspects based on the findings. First, considering the pronounced spatial disparities
observed in TGIE performance, regional governments facing low TGIE should adopt tar-
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geted strategies rather than general approaches. Particularly, provinces with consistently
low TGIE values, predominantly located in central and western China, should prioritize
overcoming deficits in innovation inputs and green technological capabilities. Practical
measures could include increasing direct investment in R&D projects focused on sustain-
able tourism, offering incentives or subsidies for businesses actively engaging in green
innovation activities, and establishing dedicated training programs to improve local human
capital specialized in green technologies. Such targeted interventions can help address
the underlying resource constraints and promote regional innovation performance sys-
tematically. Second, peripheral provinces, currently positioned at the margins of the TGIE
network, face the challenge of integrating effectively into a predominantly core-dominated
network structure. As revealed by this study, intermediary nodes significantly enhance
the efficiency of resource flow and regional collaboration. Thus, peripheral provinces
should strategically utilize these intermediary nodes by strengthening connectivity—both
physical and informational—with central and intermediate regions. Specifically, policy
measures could include building or upgrading inter-provincial transportation and digital
infrastructure to reduce transaction costs and facilitate efficient resource exchange. Further-
more, peripheral provinces can form alliances or cooperative frameworks with existing
intermediary nodes to effectively participate in innovation collaboration, gain spillover
benefits from developed regions, and eventually improve their centrality and integration
within the broader TGIE network. These practical strategies align closely with the findings
regarding network reciprocity and preferential attachment effects, which emphasize both
resource endowment advantages and structural positions within networks. By adopting
such targeted approaches, regional policymakers can more effectively address disparities
in TGIE performance and facilitate broader, more balanced, and sustainable development
within China’s tourism innovation landscape.

However, there are some limitations in this study. One critical assumption underlying
TERGM is the Markovian dependence, which presumes that network evolution is solely
contingent upon its immediate past state. This assumption may overlook long-term depen-
dencies or memory effects extending beyond the immediate past, potentially simplifying
complex, path-dependent processes. Moreover, TERGM inherently assumes linear relation-
ships between network evolution and driving factors, which may inadequately represent
complex non-linear or threshold effects that exist in actual network dynamics. Thus, future
research could benefit from employing alternative or complementary modeling approaches,
such as dynamic stochastic actor-oriented models (SAOMs), which explicitly incorporate
actor-level decisions and allow for greater flexibility in modeling non-linear relationships
and memory effects. In addition, with the wide application of digital technologies and
artificial intelligence in green innovation, the evolution of TGIE networks may be affected
by more non-traditional variables. Such as the level of digital technology and the complete-
ness of digital infrastructure, which have not been included in the analytical framework
of this study. Future research could further extend the analytical framework of this study.
For example, the potential role of digital technologies in shaping the evolution of the TGIE
network is considered in conjunction with micro-level data to explore how collaboration
patterns at the firm or industry level affect the dynamic evolution of the TGIE network.

6. Conclusions and Policy Implications
6.1. Main Conclusions

This paper combines the three-stage super-efficiency SBM-DEA model, motif analysis,
and TERGM to conduct an in-depth study on the temporal changes, local structural char-
acteristics, overall network evolution, and driving mechanisms of China’s TGIE network
from 2011 to 2023. The main conclusions are as follows:
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(1) Significant spatial differences in China’s TGIE. The national TGIE level is measured
by the three-stage super-efficiency SBM-DEA model, and the results show that the overall
national efficiency average is low but with a fluctuating upward trend. The efficiency
differences between regions are significant. The eastern coastal region shows higher
efficiency due to its green innovation resources and technological advantages, while the
central and western regions are relatively inefficient due to insufficient resource inputs and
lower technological levels, reflecting a distinctive spatial gradient characteristic.

(2) The evolution of the local network configuration is characterized by the dominance
of the chain structure and the gradual strengthening of the partially closed structure. From
2011 to 2023, the local structure of China’s TGIE network is gradually dominated by the
chain structure, which indicates that the tendency to realize unidirectional and indirect
linkages through intermediary nodes becomes more and more obvious. Intermediary nodes
act as a bridge for cross-regional resource flows, significantly facilitating the integration of
innovation resources. At the same time, the increase in partially closed structures reflects
the gradual strengthening of two-way cooperative relationships. The evolution of these
localized structures enhances the efficiency of resource sharing and collaboration within
the network and promotes inter-regional innovation integration.

(3) The overall evolution of China’s TGIE network shows a shift from a single cen-
ter to a polycentric collaboration model. The overall connectivity and collaboration of
the network have gradually increased, forming a pattern of transformation from a single
center to a polycentric collaboration model. High-efficiency regions (e.g., Shanghai, Guang-
dong) attract low-efficiency regions (e.g., Qinghai, Xinjiang) to participate in collaboration
through high connectivity. Intermediary nodes (e.g., Henan, Hubei, Chongqing) play a
bridging role by connecting inefficient and efficient regions. This polycentric collabora-
tion model improves the integration efficiency of innovation resources and enriches the
connectivity model.

(4) The TGIE network evolution is driven by both exogenous and endogenous dynam-
ics. Exogenous dynamics drive network formation and resource flows mainly through
resource endowment differences (e.g., EDL, IS, TC, GTL) and geographic proximity. For
example, regions with higher EDL tend to attract more resources, while regions with higher
GTL show stronger resource exporting ability. Geographic proximity, on the other hand,
plays a decisive role in network formation by reducing the cost of resource flows and
enhancing the willingness to cooperate. Among the endogenous dynamics, the reciprocity
effect and preference attachment effect drive efficient nodes to attract inefficient nodes,
which strengthens the stability of the network. The ternary closure effect promotes the
collaborative deepening of the network. The time-dependent effect, on the other hand,
exhibits significant path dependence and path creation characteristics. The evolutionary
process of the network reflects the continuous influence of historical paths on current
network relationships, while the network structure shows significant flexibility in adjusting
under policy-driven and innovation-driven circumstances.

6.2. Policy Implications

Based on the analysis of the evolution mechanism of China’s TGIE network, in order
to enhance the level of TGIE, optimize the network structure, and promote the sustainable
development of tourism, the following policy proposals are presented:

(1) The eastern coastal region leads in TGIE with its resource and technological advan-
tages, while the central and western regions lag significantly behind due to insufficient
resource inputs and lower technological levels. In order to improve this spatial gradient
characteristic, it is necessary to build a tourism green innovation pattern of synergistic
development in the east, central and west regions through the establishment of a special
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support fund, the strengthening of technical assistance, and the sharing of green innovation
results. Emphasis should be placed on supporting the technological catch-up and efficiency
enhancement of the central and western regions in the construction of green scenic spots,
low-carbon tourism projects, and resource-saving facilities.

(2) The evolution of the TGIE network suggests that intermediary nodes have a key role
in promoting cross-regional resource integration and tourism innovation cooperation. It is
recommended to set up cross-regional tourism green innovation centers in intermediary
nodes such as Henan, Hubei, and Chongqing to support the joint actions of tourism
R&D institutions and higher education institutions. At the same time, by upgrading the
transportation and information infrastructure of intermediary nodes, we can promote the
flow of green tourism technology and experience sharing, and promote the clustering effect
of cross-regional tourism innovation networks.

(3) Exogenous dynamics significantly influence the evolution of the TGIE network, in
particular, resource endowment differences and geographic proximity have a significant
effect on the flow of resources for tourist green innovation. It is recommended to reduce
the cost of resource flows by reducing or exempting taxes and fees for cross-regional green
tourism cooperation, providing transportation and logistics subsidies, and promoting
cross-regional joint development of low-carbon tourism products. At the same time, we
encourage the joint formulation of green tourism policies among neighboring regions to
form a coordinated innovation ecosystem, in order to fully unleash the facilitating effect of
geographic proximity on the green development of tourism.

(4) Endogenous dynamics of the TGIE network are mainly reflected in the reciprocity
effect, preference dependence effect, ternary closure effect, and time dependence effect.
In order to strengthen the stability and vitality of the tourism green innovation network,
cross-regional two-way cooperation should be encouraged through incentive policies, such
as supporting the sharing of green tourism R&D results and carrying out inter-regional
tourism talent mobility programs, in order to enhance the viscosity and depth of network
cooperation. At the same time, polycentric collaboration in green tourism should be
supported to deepen the efficiency of integration of innovation resources in chain and
closed networks, and to ensure that the network evolves dynamically under historical path
dependence and innovative drive.
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