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Widely tunable single channel fiber lasers operating in the l 550nm wavelength 

region are needed as laser source for applications such as wavelength-division-

multiplexed (WDM) communication systems, fiber sensors, spectroscopy, and optical 

fiber gyroscopes. 

Fiber lasers are emerging as an attractive alternative technology for wavelength-

selectable WDM source for direct compatibility with fiber-optic transmission medium, 

excellent amplifying properties of rare-earth doped fibers, rapidly continuing progress in 

novel fiber gain media, maturity and robustness of the laser diode pumps used, and 

availability of fiber-based components. 

The tunable laser applications of interest in this work have distinct performance 

requirement, which is the need for wide tunability (the ability to tune the lasing emission 

through a wide range of wavelengths). 
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In this thesis, the design and development of a single channel continuous wave 

erbium-doped fiber laser (EDFL), with novel loop mirror configuration, is experimentally 

studied. Based on design parameters of a fiber laser (launched pump powers, erbium­

doped fiber lengths and output reflectivities of fiber laser), three fiber laser 

configurations; backward, forward, and bi-directional pumping are demonstrated. 

Throughout this work different lengths of erbium-doped fiber with various output 

reflectivities have been examined to extract the optimum output performance of a fiber 

laser. The performance of the fiber laser is presented in terms of threshold pump power, 

slope of efficiency, output peak power, linewidth, tuning range, and side mode 

suppression ratio (SMSR). This new fiber loop configuration exhibits considerably high 

performance. Output power of 27.7 mW and efficient noise suppression of more than 70 

dB have been achieved. A threshold power as low as 2.5 m W and slope efficiency of 

20% is realized. Narrow spectral width of 0.058nm over a tuning range of 40 nm is 

obtained. 
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memenuhi keperluan untuk ijazah Master Sains 

REKABENTUK DAN PEMBINAAN NOBEL UNTUK GENTIAN LASER BOLEH 

TALA TERDOP ERBIUM BOLEH TALA 

Oleh 

MOHAMMED ALFAYTURI S. HOWIEG 

Mei 2003 

Pengerusi : Associate Professor Mohd Khazani Abdullah, Ph.D. 

Fakulti : Kejuruteraan 

Laser boleh tala beroperasi dalam julat gelombang 1 550 nm dan diperlukan dalam 

aplikasi seperti sistem komunikasi pemultipleks bahagi jarak gelombang (WDM), sensor 

gentian optik, spektroskopi dan giroskop gentian optik. 

Laser gentian kini muncul sebagai teknologi altematif untuk sistem WDM jarak 

gelombang terpilih kerana keserasiannya sebagai punca cahaya untuk gentian optik. 

Selain dari faktor keserasian, keupayaan gentian optik j enis bumi nadir untuk 

mengamplifikasikan isyarat kecil, keteguhanlkelasakan pam diod laser dan ketersediaan 

komponen asas gentian optik merupakan beberapa faktor lain yang menyebabkan laser 

gentian mula mendapat perhatian. 

Laser boleh tala yang diselidiki memerlukan keperluan prestasi yang berbeza dari 

laser biasa iaitu ia memerlukan laser ini ditala pada jarak gelombang yang lebar. 
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Dalam tesis IllI, rekabentuk dan pembangunan laser gelombang selanjar 

konfigurasi unggul yang didopan menggunakan bahan Erbium dengan keluaran saluran 

tunggal akan dikaj i .  

Berdasarkan parameter rekabentuk laser gentian iaitu kuasa masukan pam, 

panjang gentian optik dopan Erbium dan nisbah kuasa keluaran laser gentian, tiga jenis 

konfigurasi akan dikaj i  iaitu konfigurasi laser dengan pam kehadapan, kebelakang dan 

kedua-dua arah pam. Di dalam ujikaj i  menggunakan konfigurasi yang dinyatakan, 

panjang gentian optik Erbium yang berbeza dengan nisbah keluaran kuasa yang berbeza 

akan dikaj i  bagi mencapai pre stasi (nilai ambang pam, kecekapan laser, keluaran kuasa 

puncak, garis lebar, julat jarak gelombang dan SMSR) laser gentian yang terbaik. 

Konfigurasi laser gentian yang dihasilkan mempunyal nilai keluaran kuasa 

sebanyak 27.7 mW dan kecekapan SMSR lebih dari 70 dB. Nilai ambang untuk 

penghasilan laser serendah 2 .5 m W dengan kecekapan 20% disamping lebar garis 0.058 

nm bagi jarak tala 40 nm telah diperolehi . 
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1.1 Background 

CHAPTER 1 

INTRODUCTION 

Optical fiber communications are systems that employ optical wave as information 

carrier and optical fiber as information transmission line. In theory the greater the carrier 

frequency, the larger the available transmission bandwidth and thus the information-carrying 

capacity of the communication systems. Such a system at optical frequencies offers an 

increase in the potential usable bandwidth by a factor of 1 03 over traditional microwave 

transmission [Li Wei, 2000] . The proposal for optical communication via optical fibers was 

made almost simultaneously in 1966 by kao and Hockham and Werts. It is obvious that the 

suitable optical source and the optical fiber are the key elements for the development of 

optical fiber communication. Although, previously the availability of laser sources had 

stimulated research into optical fiber communication, optical fiber communication was not 

considered to be practical until 1 970, when optical fiber technology had advanced to a point 

where the fiber with loss of 0.2 dBlkm or less was achieved [Kapron, Keck, and Maurer, 

1 970] . Since then, silica fiber and optoelectronics including laser sources have been the 

subject of large-scale world wide research and product development. As a result, optical fiber 

communication is established today as one of the most promising technologies within the area 

of short and long distance data transmissions [Green, 1 993 and Arieli, 2003] .  
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The development of technology in optical fiber communication system has passed 

through a few distinct stages to increase the capacity of the optical systems. It is found that the 

ultimate capacity is determined by the quality of the optical source and the fiber [Agrawal, 

1 992] . The optical source has advanced from broad-spectrum LEDs to multi-mode laser 

diodes and then to single-mode laser diodes. 

The progress in the optical source plays a very important rule in minimizing the 

dispersion, a major factor limiting the performance. For example, a laser source with a very 

narrow linewidth would be very desirable; Fiber lasers have the potential of being an excellent 

candidate as a source in optical communication systems [Mizrahi and Digiovanni 1 993,  

Zyskind and Sulhoff 1 993] . Compared to the laser diode, whose linewidths are limited by the 

short cavity length. A fiber laser [Lee, 1 998 and Gloag, 1 996] could have a much narrower 

linewidth. A linewidth as narrow as 0 .95 kHz was obtained in fiber laser [Gloa, 1 996). 

Moreover, fiber lasers are the most natural source for fiber-optic communications, since the 

light is already in the fiber and they can be directly spliced to the systems. 

1.2 What is a Fiber Laser 

A fiber laser is a laser system, which uses a piece of specially doped fiber as the active 

medium. Different types of dopants in different host materials give different characteristics of 

the laser system [Abdullah, 1 999). Silica is the most popular material as a host while fluoride 

is also being used for different purposes. Rare earth ions such as erbium and ytterbium are the 
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most widely used dopants to emit signals at 1 550nm and 1 3 1 0nm wavelengths respectively. 

The principles behind a fiber laser are the same as in any other solid-state lasers, with 

amplification accruing via stimulated emission. In common with other lasers it has a non­

linear output power with respect to the pump power. Below the threshold pump power where 

the gain is the same as the cavity loss, the output from the device i s  incoherent and composed 

mainly of spontaneous emission. At pump power greater than this, the gain remains clamped 

at the cavity loss with the output from the device being contained in a narrower bandwidth of 

coherent radiation. Above threshold, the output power normally has a linear yield with respect 

to pump power. It is useful to define a parameter termed as slope efficiency of the laser, lls, 

which is given by the expression lls = llPout / llPpump where llPout is the change in output 

power for the change of pump power of llPpump when the laser is operating above threshold. 

Fiber lasers can generally be designed in two configurations that are the Fabry-Perot or 

rectilinear configuration and the ring configuration [Abdullah, 1 999] . Figure 1 . 1  shows the 

schematics of the two configurations. In this study fiber loop back mirror linear cavity 

configuration is employed as the fiber laser design. 
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Figure 1.1: Fiber laser configurations, (a) Fabry-Perot or linear cavity, (b) ring cavity 
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