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ABSTRACT Artificial Intelligence (Al) is reshaping drug discovery by accelerating the identification of
therapeutic candidates and reducing development timelines and costs. However, its effectiveness depends on
addressing key success factors that influence Al integration. This study presents a novel framework using the
Analytic Hierarchy Process (AHP) to systematically evaluate and rank these factors, addressing a crucial gap
in strategic planning for Al adoption in pharmaceutical research. The framework comprises six key criteria:
Data Quality and Management (DQM), Algorithm Performance and Optimization (APO), Interpretabil-
ity and Explainability (IE), Regulatory Compliance and Ethical Considerations (RCEC), Computational
Efficiency and Scalability (CES), and Validation and Experimental Confirmation (VEC). Expert-driven
pairwise comparisons identified Accuracy (ACC), Generalizability (GEN), and Experimental Validation
(EV) as top priorities, highlighting the importance of reliable data, robust algorithms, and rigorous validation
processes to ensure trustworthy Al outputs. This research contributes to strategic Al adoption by addressing
data inconsistencies, algorithmic bias, and scalability limitations. The proposed framework enhances Al
applications’ efficiency, scalability, and ethical alignment, promoting the development of transparent and
reliable drug discovery systems. This comprehensive evaluation is a valuable resource for researchers and
industry professionals, facilitating the strategic adoption of Al and bridging the gap between computational
predictions and real-world therapeutic outcomes.

INDEX TERMS Drug discovery, Al, Al-driven, analytic hierarchy process, critical factors, decision-making,
model performance.

I. INTRODUCTION

Artificial Intelligence (Al is transforming the drug discovery
process by speeding up the development of new therapeutics
and reducing high costs, extended timelines, and high failure
rates inherent in traditional pharmaceutical innovation [1],
[2]. The successful integration of Al-driven approaches in
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pharmaceutical research relies on several critical factors.
High-quality data availability and preprocessing remain fun-
damental to Al effectiveness, as inconsistencies in biomedical
datasets can significantly impact model performance and
reproducibility [3].

Machine learning (ML) applications enhance all stages
of drug discovery by enabling Al to support data-driven
decision-making and boost clinical trial success rates. How-
ever, challenges remain, including the interpretability of ML
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models and the necessity for systematic, high-dimensional
biological datasets, which can hinder AI’s reliability in real-
world applications [4].

Deep learning (DL)-based approaches have demonstrated
remarkable advancements in predicting drug-target interac-
tions (DTIs), virtual screening, and de novo drug design [5].
By leveraging neural networks and molecular representa-
tions, Al can accelerate lead optimization while enhancing
the precision of drug selection. However, the integration of
Al in drug discovery is still hindered by data biases, general-
ization limitations, and regulatory constraints [6]. Addressing
these challenges requires interdisciplinary collaboration and
improved data-sharing frameworks to maximize AI’s impact
on pharmaceutical innovation. Additionally, regulatory con-
cerns surrounding Al-driven drug development are becoming
increasingly significant as evolving policies struggle to keep
pace with technological advancements [7]. Given that tradi-
tional drug development timelines exceed 12 years and cost
more than $2.5 billion per drug [8], Al-driven innovations
offer a compelling strategy to optimize drug discovery, reduce
costs, and improve approval rates.

Al models have demonstrated their potential to optimize
key stages of drug development, such as target identifica-
tion, hit generation, and chemical optimization [9], [10].
ML and DL methodologies have shown remarkable promise
in preclinical research by leveraging computational modeling
to predict outcomes and discover novel compounds [11],
[12]. Despite these advancements, challenges such as data
scarcity, heterogeneity, and class imbalance impede the
practical deployment of Al models in real-world pharma-
ceutical applications [13], [14]. Moreover, many advanced
Al systems function as opaque ‘“‘black boxes,” making it
difficult for healthcare professionals and regulatory agen-
cies to fully trust their predictions without enhanced model
interpretability [14], [15].

The ethical application of Al in drug discovery intro-
duces further complexities, such as ensuring algorithmic
fairness, protecting data privacy, and maintaining regu-
latory compliance to guarantee accountability and relia-
bility [16], [17]. Aligning Al-generated predictions with
experimental validation is a significant challenge, as dis-
crepancies between computational outcomes and clinical
trial results can undermine the reliability of Al-driven drug
candidates [18]. Industrial-scale Al-powered platforms have
sought to integrate multi-omics, ML, and computational pre-
cision medicine to refine target selection and reduce the risk
of clinical failure, yet challenges remain in standardizing
data integration and model interpretability [18]. ML-based
drug repositioning methods also leverage large-scale datasets
and predictive modeling to identify novel therapeutic appli-
cations for existing drugs. Still, the lack of interpretability
in model decisions continues to be a limiting factor [19].
The quality, completeness, and accessibility of bioactivity
data further influence the reliability of Al-based drug discov-
ery, as inconsistency in experimental assays and deposition
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protocols hinders reproducibility and cross-validation [20].
While techniques such as transfer learning and explainable
AI (XAI) have been introduced to enhance model adaptability
to novel drug targets [21], [22], the absence of standardized
benchmarks and incomplete bioassay datasets continue to
restrict the scalability and generalization of Al models across
diverse disease areas [5], [19].

To address these multifaceted challenges, this study
presents a strategic framework that utilizes the AHP to
identify and prioritize essential success criteria in Al-driven
drug discovery. The proposed framework is driven by expert
insights, offering a scientific approach to optimize resources
and enhance the effectiveness of Al-driven drug discovery.
Unlike previous studies focusing on isolated computational
advancements, this research systematically integrates expert-
driven prioritization to evaluate the most critical factors
influencing Al-driven drug discovery. By applying a struc-
tured decision-making approach, this study ensures that Al
methodologies align with real-world pharmaceutical con-
straints, strengthening their scientific validity and industry
relevance. This contribution enhances resource allocation and
supports the development of Al models that meet technical
and regulatory requirements, ultimately improving the prac-
tical applicability of Al-driven drug discovery frameworks.
It assesses key challenges and limitations highlighted in pre-
vious studies by prioritizing critical criteria identified from
the literature. This comprehensive approach aims to allevi-
ate bottlenecks in the drug development pipeline, enhance
predictive performance, improve model interpretability, and
ensure regulatory compliance. Ultimately, the framework
seeks to accelerate drug discovery processes, improve
approval rates for new therapeutic candidates, and streamline
the path toward innovative treatments.

This paper contributes to the growing body of research on
strategic planning for Al-driven drug discovery by:

o Bridging the Gap Between Al and Pharmaceutical
Sciences: This research establishes a scientific frame-
work that aligns Al-driven strategies with the practical
needs of drug discovery. By integrating expert opin-
ions from machine learning, deep learning, and Al
applications, the study enhances the applicability and
robustness of Al in pharmaceutical research.

o Providing a Structured Decision-Making Frame-
work: The study enhances the scientific community
by offering a structured decision-making framework for
Al-driven drug discovery. Utilizing an AHP-based pri-
oritization process, it systematically evaluates and ranks
critical technical, regulatory, and operational factors.
This approach helps researchers and industry profes-
sionals navigate the complexities of integrating Al into
drug development.

o This study Advancing Multi-Criteria Analysis in Al
Implementation: This study enriches existing literature
by introducing a comprehensive multi-criteria analysis
that encompasses six critical areas:
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Data Quality Management (DQM).

Algorithm Performance and Optimization (APO).

Interpretability and Explainability (IE).

Regulatory Compliance and Ethical Considerations

(RCECQ).

Computational Efficiency and Scalability (CES).

6. Validation and Experimental Confirmation (VEC).

By identifying 24 interrelated success factors within
these categories, the research offers a more holistic
understanding of the challenges in Al-driven drug
discovery. It is a reference for future studies in com-
putational drug development.

o Enhancing Transparency and Reliability in
AlI-Driven Drug Discovery: A significant challenge in
Al adoption for drug discovery is ensuring transparency,
interpretability, and regulatory compliance. This study
directly highlights this issue by structuring expert-
driven prioritization to enhance the reliability of Al
applications in pharmaceutical research. The proposed
framework ensures that Al adoption is based on scien-
tifically validated criteria rather than ad hoc or isolated
technical advancements.

o Facilitating Efficient Resource Allocation and
Strategic Planning: This study offers pharmaceutical
companies and regulatory bodies a strategic roadmap to
optimize resource allocation. By employing AHP for
pairwise comparisons, decision-makers can prioritize
factors that most significantly impact the success of Al
adoption in drug discovery. This structured approach
promotes efficiency and cost-effectiveness in pharma-
ceutical research and development.

« Laying a Foundation for Future Research and Policy
Development: This research provides a foundation for
future advancements in Al-driven drug discovery, allow-
ing policymakers, researchers, and industry leaders to
build on a scientific framework. It serves as a benchmark
for evaluating Al strategies in pharmaceutical sciences
and paves the way for further refinement through empir-
ical validation and real-world implementation.

The AHP-based framework fills a crucial research gap by
creating a comprehensive, expert-driven system that system-
atically evaluates and prioritizes key factors for Al-driven
drug discovery. It transcends technical discussions to offer
an integrative approach encompassing scientific, regulatory,
and operational considerations. This methodology ensures
a balanced and validated Al adoption strategy, significantly
advancing theoretical and practical aspects of modern phar-
maceutical development.

Many experts with diverse research interests were invited
to ensure the AHP framework reflects a well-rounded and
practical understanding of the challenges in Al-driven drug
discovery. This diversity encompasses specialists in ML,
DL, and other computational methods, all of whom have
significantly contributed to drug discovery through their
research and publications. The selection process prioritized
academic achievements, professional experience, and active
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involvement in developing computational models, ensuring a
broad spectrum of perspectives and practical expertise was
captured.

From the invited pool, 21 experts completed the AHP
questionnaire, representing the variety of research inter-
ests necessary to address the multifaceted challenges in
this domain. The chosen number of experts aligns with
the AHP methodology, which relies on qualitative, pair-
wise comparisons rather than large statistical samples to
derive meaningful results [23]. This approach ensures critical
factors are prioritized accurately based on expert knowl-
edge and experience. The participants’ diverse backgrounds
enhance the proposed framework’s robustness and applicabil-
ity, fostering innovative solutions to optimize Al-driven drug
discovery.

Table 1 presents a comprehensive summary of 21 experts,
emphasizing their contributions and research focuses on
computational drug discovery. This table shows the diverse
expertise involved in the study, which spans a wide
range of topics. Integrating various research areas strength-
ens the robustness of the AHP framework used in the
research.

The structure of this study is outlined as follows: Section II
provides an in-depth literature review on key research areas
and methodologies related to Al-driven drug discovery;
Section III outlines the study’s methodology, detailing the
approach and analysis steps taken; Section IV presents and
discusses the results obtained; Section V highlights the impli-
cations, limitations, and future research directions stemming
from the findings; Section VI concludes the paper with a
summary of contributions and insights.

II. LITERATURE REVIEW

This section defines and analyzes the current state of Al-
driven methods in drug discovery, addressing challenges,
limitations of previous studies, diverse applications of AHP,
and its potential to improve drug discovery efforts.

A. DRUG DISCOVERY

Drug The discovery and development of a new drug is a
complex and expensive process, costing up to $2 billion for
a single drug [38]. This resource-intensive journey consists
of several phases: target identification and validation, hit
identification, lead optimization, preclinical testing, clini-
cal trials, and regulatory approval (Fig.1) [39]. On average,
drug discovery takes over 12 years, with a failure rate
exceeding 90% [8].

Drug discovery typically begins with medicinal chemists
generating a library of lead compounds, which are assessed
through structure-activity relationships (SARs) to evaluate
their in vitro efficacy and preclinical in vivo safety. Subse-
quently, promising candidates are subjected to formulation,
stability assessments, scale-up production, and chronic safety
studies in animal models before advancing to clinical tri-
als [40], [41]. Despite these rigorous efforts, many drug
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TABLE 1. Summary of expert contributions to Al-driven drug discovery research.

Expert  Research Title

Key Focus Area(s)

Discussion Issues of the Article

Comprehensive
Ensemble in

1 Prediction  for
Discovery [24]

QSAR

Ensemble learning, integration of
diverse models, and meta-learning for
drug prediction.

The study addresses data integration challenges by incorporating
diverse data representations like fingerprints and SMILES to enhance
predictive accuracy. It employs ensemble learning techniques to
improve generalizability, mitigate overfitting, and ensure robust
performance in ML frameworks.

2 The Changing Scenario
of Drug Discovery Using
Al to Deep Learning [25]

Al-driven drug discovery
advancements include target
identification, ADMET prediction, de
novo drug design, and toxicity
assessment.

This research addresses data curation and biological dataset integration
to enhance the generalizability of ML/DL models. It promotes
explainable Al to overcome the limitations of black-box models and
highlights the importance of experimental validation for the reliability
of Al-predicted drug candidates.

3,4 Privacy-Preserving
Techniques

Decentralized and Secure
Learning

Machine
Drug Discovery [26]

Implement secure ML frameworks,
including federated learning,
homomorphic encryption, and
differential privacy for drug discovery
applications.

The study highlights secure data integration and privacy-preserving
techniques such as federated learning and differential privacy to
maintain data confidentiality and scalability. It emphasizes the
importance of decentralized learning frameworks, benchmarking, and
validation for robust and ethical ML applications in drug discovery.

5 Machine
Drug  Discovery:
Critical ~ Review
Applications
Challenges [6]

Learning

ML applications in drug discovery
include target identification, hit
discovery, lead optimization, and
predictive toxicology.

The study emphasizes that robust data integration and FAIR principles
address challenges such as data noise, biases, and availability. It
emphasizes explainable Al for model interpretability and stresses the
need for experimental validation, benchmarking, and regulatory
alignment to ensure reliability and adoption.

6 GeoT:

Reliable

A Geometry-
Aware Transformer for
Molecular
Property Prediction [27]

Incorporation of molecular geometric
information in transformer models;
enhanced interpretability and
prediction reliability.

The paper introduces a geometry-aware transformer model that
enhances predictive accuracy and interpretability by connecting
molecular structures, ensuring completeness and accuracy to
outcomes. It optimizes resource usage and computational scalability,
ensuring reliability in large-scale applications.

7,8,9

Screening in
Discovery [28]

Deep Learning Pipeline
for Accelerating Virtual

Development of VirtuDockDL, an Al-
based tool integrating DL, molecular
docking, and virtual screening for
drug discovery.

The study employs advanced preprocessing techniques using SMILES
and descriptors to enhance data accuracy. Graph Neural Networks are
leveraged for superior predictive performance, addressing overfitting
challenges. Validation methods are benchmarked against traditional
approaches and achieve high accuracy in identifying active drug
candidates, demonstrating robustness and reliability.

10 Using

Artificial
Intelligence and Machine
Learning Approaches to
Enhance Cancer Therapy
And Drug Discovery [29]

Application of Al and ML in drug
discovery, focusing on multitarget
therapies, natural compounds, and
anticancer drugs.

The research focuses on data integration and FAIR principles to
manage diverse datasets in cancer drug discovery. Al-driven methods
are utilized for drug target prediction and virtual screening, while
experimental validation ensures the accuracy and reliability of
identified anticancer compounds.

11,12 A Recruitment Big Data
Approach to Interplay of
the Target Drugs [30]

Use of big data frameworks to analyze
and  preprocess drug  datasets;
clustering techniques and feature
selection for optimization.

The study utilizes big data frameworks and clustering techniques to
address missing data and optimize dataset structure. Preprocessing
enhances data stability, benchmarking confirms reliability and
experimental validation reinforces robust outcomes.

Learning

Integrating ML techniques like neural
networks, reinforcement learning, and
QSAR modeling for drug discovery.

The paper emphasizes accurately handling large datasets while
addressing overfitting challenges. Generalizable ML models are
developed for reliable toxicity predictions and drug-target interaction
validation, ensuring robust and effective outcomes.

13 Machine
Applications  in
Discovery [31]

14 Novel

Simulation  of

Solubility in Supercritical
Machine
Learning Technique [32]

CO2 Using

Numerical

Application of ML techniques like
Kernel Ridge Regression (KRR),
Least Angle Regression (LAR), and
Multilayer  Perceptron (MLP) to
optimize drug solubility in
supercritical CO2.

The study leverages ML models to predict and optimize drug
solubility with high accuracy (R-squared scores above 0.99 for the
MLP model). It addresses challenges in data modeling and ensures
robust computational efficiency through advanced regression methods
and neural networks.

15,16 Predictive Modeling of
Skin  Permeability for

Molecules  Using
Algorithms [33]

Application of advanced AI models
(LGBM, XGBoost, Gradient
Boosting) for predicting skin drugs.

Advanced AI models such as LGBM and XGBoost are utilized to
achieve high predictive accuracy. Descriptor-based clustering
enhances data integrity, and experimental validation ensures the
practical applicability of predictions in drug discovery.

17 Machine Learning for
Drug Discovery:
Bridging Computational
Science and Medicine

[34]

ML applications in drug discovery,
focusing on target identification, drug
repurposing, predictive toxicology,
and clinical trial optimization.

The study ensures data accuracy and reliability using structured
datasets and comprehensive preprocessing. Through case studies and
real-world applications, it showcases improved predictive accuracy
and target validation, enhancing drug discovery.

18 Chemocentric

Informatics Approach to
Drug Discovery:

Identification

Experimental Validation
Estrogen
Receptor Modulators as

of Selective

Ligands of
Hydroxytryptamine-6
Receptors and
Potential

Enhancers [35]

Cognition

Integrative cheminformatics, QSAR
modeling, and  gene-expression
profiling  for  Alzheimer's drug
discovery.

The study presents a comprehensive informatics framework
integrating QSAR-based virtual screening with gene signature network
mining. This method identifies potential ligands for 5-HT6 receptors
and verifies their activity through experimental assays. It addresses
challenges related to data integration, accuracy, and cross-validation of
computational predictions. The study highlights the significance of
multitarget modeling and experimental validation in enhancing drug
discovery success rates.
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TABLE 1. (Continued.) Summary of expert contributions to Al-driven drug discovery research.

19 Identification of Non- Employ computational methods such
Classical hCA  XII as pharmacophore modeling,
Inhibitors Using  molecular docking, and dynamics to
Computational Drug discover new hCA XII inhibitors.

Design Approaches [36]

The study focuses on computational drug design methods, addressing
isoform specificity, side effects, and resistance in traditional inhibitors.
It highlights using ligand- and structure-based pharmacophore models
to discover non-classical inhibitors with significant therapeutic
potential.

20,21 Predicting Quality
Medical Drug Data
Towards Meaningful
Data Using Machine
Learning [37]

using structured datasets.

ML approaches for drug classification
and alternative drug identification

This research focuses on advanced ML classifiers like Random Forest,
Naive Bayes, and Decision Tree for robust drug classification and
alternative identification. Preprocessing and validation methods ensure
reliability and accuracy in predictions.

candidates fail to reach the market due to formulation chal-
lenges, even when demonstrating potent biological activity.
Figure 1 illustrates the drug development processes.

5 ‘
134, ./\ ", =
+ Q0 \ =3
M 0% 0 W
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i il
Optitnization

1217 Years

FIGURE 1. Overview of the drug discovery process.

Recent Al advancements promise to enhance drug dis-
covery by using ML and DL techniques to expedite hit
identification and lead optimization, which are critical early
phases of drug development. These technologies enable rapid
screening of millions of compounds, providing predictive
insights into binding affinities and pharmacological prop-
erties, thus improving the precision and efficiency of the
selection process [42]. Furthermore, Al-based models play a
pivotal role in refining the lead optimization phase by predict-
ing drug-likeness and potential toxicities, thereby improving
the probability of selecting viable candidates. Despite the
significant potential of Al-driven approaches, challenges
remain, including the need for high-quality datasets, regula-
tory barriers, and the requirement for experimental validation
to confirm computational predictions [16], [19]. Overcom-
ing these limitations is crucial for effectively integrating
Al into the pharmaceutical industry’s workflows and expe-
diting the delivery of safe and effective therapeutics to
market.

B. COMPUTATIONAL DRUG DISCOVERY APPROACHES

Computational methods such as ML and DL have emerged
as indispensable tools in modern drug discovery. These
advanced techniques enable the comprehensive analysis of
vast amounts of biological data, molecular interactions,
and chemical structures with remarkable efficiency and
accuracy [2]. Molecular docking, virtual screening, and quan-
titative structure-activity relationship (QSAR) modeling are
widely used to predict drug efficacy and safety profiles [43].
Public databases like ZINC, BindingDB, and PubChem pro-
vide valuable datasets that enable computational techniques
to predict interactions between drugs and biological targets.
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These databases give access to vast chemical and biological
data repositories essential for in-silico drug discovery [44],
[45]. However, heterogeneous data sources pose a significant
challenge due to the varying formats and quality of available
datasets, making it difficult to integrate and analyze them
seamlessly [13], [46]. Moreover, data warehousing tools such
as SWISS-PROT, BIOMOLQUEST, and others have been
developed to address data integration issues, yet achieving
data standardization and curation remains critical [47].

Machine Learning (ML) Decp Learning (DL) Other Approaches

S S o
= |

2 = vl

&

i

4

Data Pub@hem |
Sources : ‘DF "!GB,AN£| %W

TG Database

FIGURE 2. Al-driven drug discovery techniques.

In this context, Figure 2 provides an overview of com-
putational approaches categorized into three main groups:
ML, DL, and other methods. It includes examples of
popular techniques such as random forest classification,
k-nearest neighbors (k-NN), recurrent neural networks
(RNNs), network-based methods, and Bayesian optimization
strategies.

The figure illustrates how public databases like ZINC
and PubChem [44], [45]. Supply these models with exten-
sive chemical and biological data, enhancing training and
prediction reliability. Researchers can address heterogeneity
by integrating data from multiple sources and utilizing data
warehousing tools, ultimately accelerating drug discovery
through Al-driven solutions. The following subsections will
explore these approaches.
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1) MACHINE LEARNING (ML)
ML is now crucial in computational drug discovery. By ana-
lyzing complex biological datasets, ML techniques provide
powerful predictive abilities. These techniques significantly
enhance drug-target interaction (DTI) prediction, virtual
screening, and lead compound identification [14]. Popular
algorithms such as Random Forest, Support Vector Machines
(SVM), and k-nearest Neighbors (kNN) identify patterns
within large-scale, high-dimensional biological data, stream-
lining the drug discovery process [13]. Despite their effec-
tiveness, these models often struggle when trained on small
or imbalanced datasets. They face challenges such as overfit-
ting, which limits their generalizability to new data [6], [48].
Several strategies have been implemented to improve
model robustness and address these limitations. Data aug-
mentation and resampling techniques balance class distribu-
tions, while cost-sensitive learning introduces penalties for
misclassifications, enhancing the performance of ML models
in drug discovery applications [48], [49]. By incorporat-
ing these advancements, ML-based frameworks can provide
more accurate and reliable predictions, contributing to more
efficient and targeted drug development pipelines.

2) DEEP LEARNING (DL)

DL represents a significant breakthrough in Al, funda-
mentally transforming drug discovery through its advanced
modeling capabilities that effectively learn intricate and non-
linear patterns from extensive datasets [50]. These techniques
empower researchers to process and interpret complex bio-
logical data, driving more effective and innovative drug
development approaches. A prominent innovation in DL
is the application of graph-based neural networks, which
enhance prediction accuracy by representing molecular struc-
tures as graphs [5].

Furthermore, DL architectures such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNSs) have demonstrated exceptional performance in pre-
dicting drug-target interactions, accelerating drug repurpos-
ing efforts, and optimizing molecular properties [51], [52].

However, with these advancements, DL models often
face the challenge of limited interpretability, commonly
called the black-box problem, where the decision-making
processes remain opaque, hindering acceptance in clinical
and regulatory environments [53]. To improve transparency,
Explainable AI (XAI) approaches such as Local Interpretable
Model-Agnostic Explanations (LIME) have been introduced.
These offer insights into model predictions and foster trust in
Al-driven outputs [21]. Addressing the interpretability issue
can help DL frameworks achieve broader adoption and inte-
gration in real-world drug discovery workflows, paving the
way for safer and more efficient pharmaceutical innovations.

3) OTHER APPROACHES USED AI-DRIVEN DRUG
DISCOVERY

Building upon the foundations of ML and DL, various com-
plementary methodologies have emerged, playing critical
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roles in advancing drug discovery processes. Network-based
approaches, for instance, enable the identification of novel
drug-disease associations by analyzing complex relationships
among drugs, diseases, and biological targets. This network-
centric analysis aids in uncovering previously unrecognized
connections, thereby bolstering drug repurposing efforts and
expediting the identification of new therapeutic applications
for existing drugs [54].

Transfer learning is pivotal, especially when limited
labeled data are available. By leveraging models pre-trained
on extensive datasets, transfer learning facilitates fine-tuning
these models for specific tasks within drug discovery, thereby
enhancing efficiency and precision. This approach enables
researchers to overcome data scarcity issues by transferring
relevant knowledge across related domains, ultimately accel-
erating hypothesis generation and validation [55]. Moreover,
multitasking learning further enhances learning outcomes by
training models across multiple related tasks, which helps
mitigate data scarcity issues. Additionally, Bayesian opti-
mization and ensemble learning techniques are often utilized
to boost model performance and tackle overfitting, enhanc-
ing scalability and robustness in Al-driven drug discovery
processes [56], [S7]. Ontology-based integration tools, like
the Ontology Web Language and RDF Schema, address data
heterogeneity by integrating biomedical data from diverse
sources. However, scalability remains challenging with large
datasets of varying formats [58], [59].

Explainable AI (XAI) techniques, such as Local
Interpretable Model-agnostic Explanations (LIME), have
emerged as crucial tools for increasing transparency, fostering
model acceptance, and addressing ethical and regulatory
requirements in clinical applications [60], [61]. Furthermore,
big data analytics play a significant role in managing and
analyzing diverse datasets, supporting pipelines that integrate
data from major public databases like ZINC, BindingDB,
PubChem, and DrugBank, which are essential for evaluating
drug properties comprehensively and optimizing drug discov-
ery pipelines [62], [63].

C. SHORTCOMINGS OF PREVIOUS STUDIES
Past research on computational drug discovery has revealed
challenges and limitations that impede their broader applica-
bility and effectiveness across different fields. A significant
issue relates to data quality and management; healthcare and
biomedical data frequently exhibit high noise levels, inconsis-
tency, and heterogeneity [53], [64]. These affect the reliability
of ML models and result in poor performance, especially
when datasets are small, imbalanced, or lack standardization.
In many cases, the datasets used for drug discovery models
are limited, leading to overfitting and difficulty in general-
izing new, unseen data [22], [65]. Furthermore, challenges
arise in integrating heterogeneous data from various sources,
creating bottlenecks in effectively leveraging this information
for predictive modeling [66].

Algorithm performance and optimization present another
key challenge. ML models, especially DL, offer advanced
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capabilities, but they often struggle with overfitting due to
the limited data available for training, particularly in drug-
target interaction prediction [19], [67]. Many of these models
require extensive fine-tuning of complex hyperparameters,
which is time-consuming and computationally expensive.
This thereby limits the scalability of models to large datasets,
an essential requirement for real-world drug discovery
applications [68].

Despite their impressive performance, DL models still face
limitations. One limitation of DL, along with future perspec-
tives, is that DL can achieve high accuracy due to advances
in feature learning. However, this performance depends on
having a large training dataset. When data is limited, DL tech-
niques struggle to generalize effectively and often produce
biased estimates of model performance. Traditional shallow
ML methods may outperform DL models in these cases,
as they are less prone to overfitting and require fewer compu-
tational resources [69].

A critical issue in interpretability and explainability is the
“black-box” nature of many ML and DL models [70], [71].
These models are opaque in their decision-making processes,
making it difficult for researchers, clinicians, and regulators
to understand the mechanisms behind their predictions [15].
The lack of transparency is especially problematic in drug
discovery, where mechanistic insights are needed for regu-
latory approval and clinical adoption [72]. Recent efforts in
explainable Al (XAI) aim to address this issue, but achiev-
ing a balance between model complexity and interpretability
remains a significant hurdle [3], [73].

Regulatory compliance and ethical considerations further
complicate the adoption of Al in drug discovery. Al models
raise questions about accountability, fairness, and privacy,
especially when handling sensitive patient data [70]. Ensuring
that AI models comply with ethical standards and regulatory
guidelines is essential for their wider adoption in clinical set-
tings. However, the challenges of meeting these requirements
limit the speed at which Al models can be integrated into real-
world drug discovery pipelines [17], [18].

The high computational costs of ML models, especially
when processing large-scale datasets, require significant
resources such as high-performance GPUs or cloud comput-
ing platforms [74]. Smaller research institutions often lack
access to these resources, limiting their ability to deploy
advanced ML techniques effectively. Additionally, the time
complexity of training and optimizing DL models restricts
their scalability, making them less feasible for practical drug
discovery applications [52], [75]. Moreover, validation and
experimental confirmation are critical aspects often over-
looked in computational studies. Many models are developed
and tested using synthetic or pre-clinical data. Still, the actual
test of their predictive power lies in experimental validation,
particularly in clinical trials [18]. Discrepancies between
computational predictions and real-world outcomes often
slow the drug development process, as the lack of experimen-
tal corroboration reduces the reliability and applicability of
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these models [19], [52]. Thus, bridging the gap between com-
putational predictions and experimental results is essential for
advancing Al-driven drug discovery.

This study seeks to prioritize critical challenges in drug dis-
covery through the AHP. Systematic ranking of these issues
within a scientific framework enables our research to provide
valuable insights and methodologies that can meaningfully
enhance Al model development in this field.

D. ANALYTIC HIERARCHY PROCESS (AHP)

AHP is a widely recognized decision-making tool that
facilitates multi-criteria analysis by decomposing complex
problems into a structured, hierarchical model. Initially
developed by Thomas Saaty in the late 1970s [76]. AHP
provides a systematic approach to decision-making that inte-
grates quantitative and qualitative factors, making it highly
adaptable across various fields. Its ability to prioritize and
weigh diverse criteria has led to its implementation in the
healthcare and environmental management sectors, as well
as construction and business, where decisions often require
balancing competing objectives with significant real-world
implications [77].

AHP has proven particularly effective in healthcare and
medical decision-making, helping practitioners and poli-
cymakers assess and prioritize treatment options, medical
technologies, and patient care strategies. Research by Lib-
eratore and Nydick illustrates AHP’s capacity to support
systematic evaluations based on key criteria such as cost,
treatment efficacy, and patient outcomes, thereby enhancing
the transparency and consistency of decisions [78]. Similarly,
AHP has been instrumental in environmental management,
prioritizing sustainable solutions and providing a framework
for balancing economic, social, and ecological criteria. Stud-
ies underscore AHP’s value in facilitating decisions that align
with sustainable development goals by enabling stakehold-
ers to analyze and weigh factors critical to environmental
preservation [79].

AHP is also extensively applied in construction and engi-
neering [80], [81], where it aids in selecting materials,
risk assessment, and resource management. By enabling
structured prioritization of factors such as cost, quality,
and sustainability, AHP contributes to more robust project
planning and execution. Furthermore, in the business sector,
AHP supports managerial decision-making by offering a
structured approach to evaluate both tangible and intangible
factors, such as financial metrics, customer satisfaction, and
corporate social responsibility [77]. This structured approach
highlights AHP’s unique ability to assess criteria that impact
strategic business outcomes objectively, thus fostering
a holistic approach to decision-making in corporate
environments [82].

Beyond traditional sectors, AHP has found critical applica-
tions in natural resource management, where it balances the
need for resource utilization with conservation imperatives.
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Research in this area shows how AHP facilitates the integra-
tion of expert opinions, aiding in the development of policies
that sustain biodiversity and resource availability [83]. This
flexibility has also led to the application of AHP in emerging
fields such as technology and innovation management, where
structured decision-making is essential to navigate the com-
plexities of modern advancements.

Given the versatility and structured approach of AHP,
this study is pioneering its application in Al-driven drug
discovery. As Al transforms drug development, AHP sys-
tematically prioritizes critical factors like data quality, model
interpretability, and ethical considerations. This is the first
application of AHP in this field, driven by closely related
experts, and it establishes a framework that could signifi-
cantly improve decision-making in Al-driven pharmaceutical
research. The structured and quantifiable insights provided
by AHP could lead to more efficient, transparent, and ethical
development processes, highlighting its potential as a trans-
formative tool for drug discovery in the era of Al

lll. THE METHODOLOGY OF STUDY

AHP, developed by Thomas Saaty in the 1970s, is a robust
multi-criteria decision-making method [76], [84], [85]. This
methodology enables decision-makers to structure and pri-
oritize complex issues by organizing them into a hierarchy,
allowing for systematic comparisons and quantification of
subjective assessments. This study applies AHP to prioritize
critical success factors affecting Al-driven drug discovery,
employing geometric mean calculations to combine individ-
ual judgments into a group judgment matrix. This approach
effectively synthesizes inputs from multiple stakeholders,
offering a balanced perspective on the importance of each
factor [86], [87].

This study uses an AHP hierarchy with three levels. The
top level identifies the critical success factors influencing
Al-driven drug discovery. The second level presents broad
criteria for these factors, while the third level details specific
sub-criteria within each category. Unlike traditional AHP
studies, this model emphasizes identifying the most influen-
tial factors rather than including alternatives.

AHP’s capability to address complex decision-making
problems makes it well-suited for this study. Its hierarchical
structure facilitates a logical breakdown of the problem, and
pairwise comparisons help decision-makers evaluate the rel-
ative importance of each factor. Using geometric means to
aggregate individual assessments ensures that the group judg-
ment matrix reflects a balanced consensus. Although other
MCDM techniques like ANP, TOPSIS, or PROMETHEE
may be suitable in different contexts [87], [88], [89], AHP’s
structured framework and proven success in hierarchical anal-
ysis make it particularly fitting for this research.

Figure 3 illustrates a flowchart that outlines the research
workflow, from defining the research goal to obtaining the
results. This visual representation highlights the intercon-
nected steps and the study’s systematic approach.
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FIGURE 3. Research methodology flowchart.

The research methodology begins by defining the primary
goal and developing a hierarchical structure of relevant crite-
ria and sub-criteria. Questionnaires and pairwise comparison
matrices are created to capture expert input and evaluate the
relationships among the criteria and their sub-criteria. These
pairwise comparison matrices are then normalized to calcu-
late priority weights. Afterwards, a consistency ratio (CR) is
verified to ensure the comparisons are logically consistent.
Finally, the priority scores are aggregated to prioritize the
critical success factors. This structured approach enhances
the reliability and validity of the study’s outcomes.

A. DEFINE THE GOAL

The first and most crucial step in AHP is to define the pri-
mary objective. After an extensive literature review, this study
establishes to assess and rank the essential factors of success
influencing Al-driven drug discovery. Although many studies
recognize these factors as challenges, limitations, and con-
cerns in Al-driven drug discovery, none have explored them
comprehensively or established a framework for systemati-
cally identifying and prioritizing their significance.

This study addresses this gap by introducing a solid AHP-
based framework driven by insights from 21 domain experts
with extensive knowledge in Al-driven drug discovery. These
experts ensure that all aspects and concerns in the domain
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TABLE 2. Decision criteria and their sub-criteria for evaluating Al-driven drug discovery.

Criteria Description Sub-criterion
Ensures datasets are accurate, complete, and well-integrated, forming a solid foundation for Al-driven drug discovery. ~ACC, CMP,
DQM Addresses class imbalances to improve model robustness and predictive accuracy, establishing a reliable basis for CIH, IHD
successful outcomes.
Refines AI models to maximize performance across diverse datasets. It emphasizes enhancing generalizability, fine-tuning ~ GEN, HT,
APO hyperparameters, addressing overfitting, and leveraging techniques like transfer learning to improve adaptability and CO, TL
efficiency in identifying potential drug candidates.
Al models must be transparent and their predictions easily understandable, adhering to established scientific principles.  XAl, PST,
IE Utilizing explainable techniques fosters trust and aids the integration of Al systems into regulatory and practical ADK, BBMC
frameworks, bridging complexity and usability.
It emphasizes the essential need for ethical and regulatory adherence in Al-driven drug discovery. It aims to address issues  BF, DPS,
RCEC related to bias, fairness, data privacy, and compliance with standards, ensuring the responsible and equitable EAU, ATS
implementation of AL
CES Optimizes Al systems to handle large-scale datasets and complex tasks effectively. Highlights resource optimization, SOS, OOR,
readiness of computational infrastructure, and exploration of advanced technologies like quantum computing to meet IR, FT
growing demands.
VEC It emphasizes the importance of validating Al predictions through experimental testing and benchmarking. It includes EV, UE, BM,
methods for uncertainty estimation and continuous improvement via feedback loops, ensuring the practical applicability ~FL

and reliability of Al-driven insights.

are captured comprehensively, enabling a systematic evalu-
ation and prioritization process. By defining this goal, the
framework integrates expert perspectives to address key chal-
lenges, delivering actionable insights that advance the field of
Al-driven drug discovery.

B. HIERARCHICAL STRUCTURE AND SELECTED CRITERIA
The study systematically organizes and selects criteria and
sub-criteria based on extensive literature reviews addressing
key challenges in the domain. Six main criteria and 24 sub-
criteria were identified, representing critical success factors.
These criteria ensure a comprehensive evaluation framework,
balancing scientific insights and practical challenges.

Table 2 outlines the six primary criteria and their cor-
responding descriptions and sub-criteria (factors), forming
a comprehensive framework for evaluating critical success
factors in Al-driven drug discovery. These criteria encom-
pass Data Quality and Management (DQM), Algorithm
Performance and Optimization (APO), Interpretability and
Explainability (IE), Regulatory Compliance and Ethical
Considerations (RCEC), Computational Efficiency and Scal-
ability (CES), and Validation and Experimental Confirmation
(VEQ). Each criterion is further elaborated with specific sub-
criteria, detailed in Table 3, including in-depth descriptions
and relevant references for each factor.

DQM’s sub-criteria include Accuracy (ACC), Complete-
ness (CMP), Integrity of Heterogeneous Data (IHD), and
Class Imbalance Handling (CIH).

The APO criterion addresses key aspects such as Gener-
alization (GEN), Hyperparameter Tuning (HT), Overfitting
Control (CO), and Training Learning (TL).

Similarly, the IE criterion comprises Explainable Al
(XAI), Black-box Model Challenges (BBMC), Alignment
with Domain Knowledge (ADK), and Predictive Sensitivity
Testing (PST).

‘Within the RCEC criterion, the sub-criteria include Adher-
ence to Standards (ATS), Bias and Fairness (BF), Data
Privacy and Security (DPS), and Ethical Al Usage (EAU).
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The CES emphasizes Infrastructure Readiness (IR), Scala-
bility of Solutions (SOS), Optimization of Resources (OOR),
and Future Technologies (FT).

Lastly, the VEC criterion comprises Experimental Valida-
tion (EV), Uncertainty Estimation (UE), Benchmark Models
(BM), and Feedback Loop (FL).

These factors were identified through a comprehensive
literature review based on their significant relevance to chal-
lenges, limitations, and unresolved issues highlighted in
previous studies on Al-driven drug discovery. While some
studies directly address Al methodologies applied to drug
development, others provide insights into related processes
that influence discovery outcomes. Tables 2 and 3 offer a
structured framework, emphasizing the critical role of these
criteria in the current research.

Figure 4 illustrates the hierarchical structure of factors
influencing Al-driven drug discovery using the AHP method.
After establishing criteria and sub-criteria, we developed a
structured decision framework to rank and prioritize these
factors across three levels systematically:

{

Prioritizing success factors that
significantly impact Al-driven drug
discovery

Top Level
Goal of Research

e - N N - ~ N 5
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FIGURE 4. Hierarchical levels of AHP for prioritizing critical factors in
Al-Driven Drug Discovery.

The top level represents the main objective: prioritizing
critical success factors vital for Al-driven drug discovery.
The second level organizes six broad criteria: DQM, APO,
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TABLE 3. Sub-criteria descriptions in this research.

Sub-criterion

Description

Ref.

CMP

Ensures the dataset is comprehensive, containing all necessary data from various sources,
such as omics, clinical trials, and public databases, to enhance model performance.

[12], [90] [7], [91], [92], [9], [6], [93], [4],
[941,[95], [96], [971,[98]. [71], [99], [98].

ACC It aims to reduce noise and inaccuracies in data to avoid negative impacts on Al model [12], [7], [91], [40], [9], [6], [93], [94], [97]
outputs.
IHD combining diverse datasets (e.g., PubChem, ChEMBL) mitigates heterogeneity and [7], [92], [40], [6], [38], [93], [100], [101],
ensures consistent data usage. [4], [97].
CIH This corrects skewed data distributions, like drug-target interaction data, to prevent biased  [90], [7], [12], [102], [103], [14], [97],
model predictions. [104], [71], [105], [99], [98],
GEN Referring to the model's ability to work effectively across different disease domains and  [12], [7], [91], [60], [92], [106], [9], [107],
unseen datasets. [108], [94], [100], [95], [95], [109], [97],
[99].
HT It employs Hyperparameter Tuning methods such as Bayesian optimization to refine model  [12], [4], [110], [111], [109], [102], [103],
parameters and enhance performance. [112], [113], [96], [90],
CO Overfitting is a common issue in Al models and can be reduced using different methods,  [40], [13], [94], [114], [95], [101], [115],
such as ensemble learning and regularization. [12], [4], [111], [109], [103], [96], [14],
[90], [22].
TL Uses pre-trained models to overcome the lack of labeled data, allowing better training and  [116], [117], [118], [22], [12], [96], [119],
optimization for new tasks. [94], [120], [116].
XAI Explainable AI improves transparency in Al models through tools like LIME and SHAP  [121], [7], [91], [60], [92], [9], [93], [100],
that elucidate predictions. [95], [115], [12], [14], [104],
BBMC Many ML models are black boxes, posing challenges for explainability in drug discovery. [71, [91], [60], [9], [6], [100], [95], [115],
[12].
ADK The outputs must consistently align with established scientific knowledge to foster trust  [122], [123], [124],[125], [126],
and credibility among domain experts. [127],[128], [12], [95], [129], [130][101],
[115], [4], [127], [131].
PST Sensitivity analysis ensures the robustness and stability of Al predictions by evaluating  [132], [133], [134], [40], [95], [129], [101],
their response to variations in input data. [90], [135].
ATS Al models must meet pharmaceutical regulatory standards to ensure reliability. [121], [71, [91], [60], [92], [6], [129],
[115], [4], [22].
BF It addresses algorithmic bias to ensure fairness and prevent discrimination in Al  [121], [7],[91], [60], [100], [115], [12],
predictions. [14], [97], [90].
DPS Ensure compliance with data privacy regulations, safeguarding sensitive patient [121], [7], [91], [60], [92], [115], [12],
information in Al-driven drug discovery. [128], [26].
EAU Incorporates ethical principles, such as fairness and avoiding discrimination, into AI ~ [121], [7], [91], [136], [93], [115], [12].
models to promote responsible use.
IR Al applications in drug discovery need to ensure that models access the required [137], [100],[128], [138], [4], [102], [103],
computational resources, such as GPUs and cloud platforms, for efficient processing. [96], [14], [97], [104], [71], [105], [90],
[991, [98], [119], [22], [126].
SOS Al models must scale to multiple datasets and platforms to remain effective while [106], [139], [95], [129], [12], [101],[115],
maintaining performance. [109], [4], [102], [96], [14].[98], [97],
[104], [71], [119], [138], [126].
OOR It involves optimizing computational resources to handle large-scale data processing [129], [101], [111], [102], [103], [96],
efficiently. [14], [104], [71], [90], [98], [138], [126],
FT Explores cutting-edge technologies to enhance the capabilities of Al models further, [95], [129], [101], [115], [109], [4], [103],
focusing on innovative computational advancements and hardware optimizations. [138].
EV Al predictions must be rigorously validated using clinical trial data to ensure reliability and ~ [7], [91], [92], [40], [140], [93], [94],
enhance trustworthiness in real-world applications. [100],[129], [101], [115], [12], [14], [104],
[90].
BM Utilizing standard datasets, such as PubChem and ChEMBL, ensures fair evaluation and  [7], [95], [129], [101], [115], [12], [4],
reliable benchmarking of AI model performance. [96], [14], [71], [105], [90].
UE Quantifying uncertainty aids in managing risks and making informed decisions during drug  [115], [7], [100], [95], [12], [96], [14],
development. [97], [71], [105], [22].
FL Implementing feedback loops to update AI models based on experimental outcomes [115], [7], [100], [95], [96], [14], [97],

enhances their accuracy and overall performance.

[99], [22], [138].

IE, RCEC, CES, and VEC. The third level details specific
sub-criteria within each criterion, facilitating a structured

evaluation.

C. QUESTIONNAIRE CONSTRUCT AND PAIRWISE

COMPARISON MATRICES

In this research phase, a structured questionnaire was
developed to systematically evaluate and prioritize the cho-
sen criteria and sub-criteria, ensuring alignment with the
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identified factors. The complete set of questionnaires, orga-
nized, captures relevant factors and establishes an evaluation
framework. Experienced experts in Al-driven drug discovery
were chosen to validate the framework. Their insights ensured
the representation of all critical aspects.

Based on expert inputs, pairwise comparison matrices for
the criteria and sub-criteria were developed to assess their
relative importance. Each criterion was compared with others
in pairs, and sub-criteria within each criterion were similarly
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evaluated. The decision-makers used Saaty’s scale of 1 to 9 to
rate the relative importance of elements.

The geometric mean is applied to each pairwise compar-
ison to aggregate these individual judgments into a single
group judgment matrix. For example, if multiple stakeholders
provide comparisons cng) for criteria i and j, the aggregated
group judgment ¢;; Calculated as:

K
k) L
cij = ([ ] 7 $))
k=1

where K is the number of decision-makers, it results in a
group judgment matrix C representing a balanced consensus,
providing a foundation for further calculations.

The pairwise comparison matrix C for the criteria take the
form:

1 cr2 -+ Clm
1 1 s Com
C =[ey] =
Cml Cm2 cee 1

where each c;; reflects the group judgment on the relative
importance of criteria i to j, and diagonal values are set to 1,
as each criterion is equally essential to itself.

D. NORMALIZE THE MATRICES AND CALCULATE
PRIORITY WEIGHTS

The group judgment matrices are normalized to create pri-
ority weights, representing the relative importance of each
element. For each column in the criteria matrix C, the column
sum is computed, and each element is divided by its column
sum to form a normalized matrix. The priority weight p;
for each criterion is then calculated as the average of the
normalized row values:

1 m
pi=- 21 njj (2)
J:

where n;; denotes the normalized element for ¢;;. A similar
normalization and averaging process is used for each sub-
criteria matrix, generating priority weights for factors within
each criterion.

E. CONSISTENCY RATIO (CR) VERIFICATION
The consistency ratio (CR) is calculated to confirm the relia-
bility of the group judgments. First, the weighted sum matrix
W is derived by multiplying each element in the criteria
matrix C by its corresponding priority weight in P. The max-
imum eigenvalue A, is obtained by dividing each element
in W by its corresponding priority weight p; and averaging:
1 m wi
- - 3)
m Pi

)vmax =

i=1

where w; represents each element in W. The consistency
index (CI) is calculated as:

CI:M )
m—1
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The consistency ratio is derived by dividing CI by arandom
index (RI):
CI
R =
RI(n)
A CR of less than 0.1 indicates acceptable consistency,

while higher values suggest adjusting the comparisons for
more excellent reliability.

&)

F. AGGREGATE PRIORITY SCORES

Once the priority vectors for the criteria P and sub-criteria
Py are established, each success factor’s final priority is cal-
culated by multiplying the weight of each sub-criterion by its
parent criterion’s priority weight. This yields an aggregated
score for each factor, reflecting its importance among the
24 factors in achieving the goal.

IV. DISCUSSION AND RESULTS

This study identifies key success factors for Al-driven drug
discovery, illustrating their relative importance using a struc-
tured AHP framework. This section examines results from
pairwise comparisons of criteria and sub-criteria (factors) to
optimize Al methodologies in drug discovery.

The study applied the AHP to evaluate six main criteria
and their factors to prioritize critical success factors. Table 4
presents the weights and significance of these categories.

Data Quality and Management (DQM) emerged as the
most critical, with a weight of 35.7%, and its sub-criterion,
Accuracy (ACC), received the highest score at 40.6% of
DQM’s weight. This highlights the necessity of reliable and
accurate data for practical Al applications in drug discovery.
Completeness (CMP), Class Imbalance Handling (CIH), and
Integration of Heterogeneous Data (IHD) further underline
the importance of comprehensive, balanced, and effectively
integrated data.

Algorithm Performance and Optimization (APO) ranks
second, with Generalizability (GEN) weighted at 52.4%,
indicating the need for robust models across diverse datasets.
Other factors like Hyperparameter Tuning (HT), Control
Overfitting (CO), and Transfer Learning (TL) also stress
adaptability, robustness, and efficiency.

Validation and Experimental Confirmation (VEC),
at 14.7%, highlights the importance of Experimental Valida-
tion (EV) (57.9% of VEC), reinforcing the need for rigorous
experimental support for Al predictions. Complementary
sub-criteria like Uncertainty Estimation (UE), Benchmarking
Models (BM), and Feedback Loop (FL) emphasize confi-
dence quantification and iterative refinement.

Interpretability and Explainability (IE), with a weight of
11.3%, showcases the importance of Explainable Al (XAI)
alongside Predictive Sensitivity Testing (PST), Alignment
with Domain Knowledge (ADK), and addressing Black-Box
Model Challenges (BBMC).

Regulatory Compliance and Ethical Considerations
(RCEC) carry a weight of 7.5%. They focus on Bias and
Fairness (BF) and assess ethical Al applications along with
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TABLE 4. Weights for Al-driven drug discovery Categories and factors.

Criteria Weight (%)  Sub-criteria Weight (%)
35.7% ACC 40.6%
CMP 22.9%
beM CIH 22.5%
IHD 14.1%
24.9% GEN 52.4%
HT 21.1%
APO CcoO 17.6%
TL 8.9%
14.7% EV 57.9%
UE 15.0%
VEC BM 14.3%
FL 12.8%
11.3% XAl 53.8%
PST 16.6%
IE ADK 15.7%
BBMC 14.0%
7.5% BF 50.3%
DPS 17.9%
RCEC EAU 16.9%
ATS 15.0%
5.9% SOS 38.4%
OOR 25.0%
CES IR 21.4%
FT 15.3%

TABLE 5. Pairwise matrix for Criteria.

Criterion DQM APO IE RCEC CES VEC
DQM 1 1.708  3.694 4.493 5.187  2.150
APO 0.586 1 2,617 3.578 3.948 1.708
IE 0.271 0382 1 1.898 2.143  0.760
RCEC 0223 0280 0527 1 1.738  0.479
CES 0.193 0253 0.467 0.575 1 0.478
VEC 0465 0586 1317 2.086 2.091 1

Data Privacy and Security (DPS), Ethical Al Use (EAU), and
Adherence to Standards (ATS).

Computational Efficiency and Scalability (CES), the least
weighted at 5.9%, stresses the significance of scalable and
efficient Al systems, emphasizing Scalability of Solutions
(SOS) and Optimization of Resources (OOR), supported by
Infrastructure Readiness (IR) and advancements in Future
Technologies (FT). These insights present a structured under-
standing of critical factors and their interdependencies for
optimizing Al-driven drug discovery.

The pairwise comparison matrices provide a granular view
of the relationships and relative significance among criteria
and sub-criteria. Table 5 shows a pairwise matrix for criteria.
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Table 6 presents pairwise comparisons of six sub-criteria
within each category, highlighting their relationships and
relative significance.

TABLE 6. Pairwise matrix comparisons of six sub-criteria.

Data Quality and CMP ACC IHD CIH
Management

CMP 1 0.605 1.718  0.893
ACC 1.652 1 2976  1.887
IHD 0.582  0.336 1 0.685
CHH 1.120  0.530 1460 1
Algorithm Performance and GEN HT CO TL
Optimization

GEN 1 2.831 3374 4.531
HT 0353 1 1.099 2.933
CcO 0296 0.910 1 2.083
TL 0221 0341 0.480 1
Interpretability and XAI BBMC ADK PST
Explainability

XAl 1 4.057 2955 3.564
BBMC 0246 1 0935 0.859
ADK 0.338  1.069 1 0.845
PST 0281 1.164 1.184 1
Regulatory Compliance and

Ethical Considerations ATS — BF DPS EAU
ATS 1 0.370 0.837  0.707
BF 2703 1 2993 3472
DPS 1.195 0.334 1 1.158
EAU 1413 0.288 0.864 1
Computational Efficiency IR SOS OOR FT
and Scalability

IR 1 0.563 0.768  1.531
SOS 1.775 1 1.554 2.522
OOR 1.302  0.643 1 1.475
FT 0.653  0.397 0.678 1

Validation and Experimental EV BM UE FL
Confirmation

EV 1 5.127 4.011 3.378
BM 0.195 1 1.026  1.313
UE 0.249 0.974 1 1.370
FL 0.296  0.762 0.730 1

Table 7 below summarizes the consistency analysis results
for seven pairwise comparison matrices used in this research.
Each matrix was evaluated to determine its maximum eigen-
value. Aoy and CR Both are essential for validating the
reliability of the AHP pairwise comparison process. The Ayqx
indicates the consistency level of the judgments, while the CR
Assesses overall consistency, with values below 0.1 deemed
acceptable. These results confirm the reliability of the com-
parisons, ensuring that the priority weights derived from the
matrices are valid and appropriate.

This research’s results are based on responses from struc-
tured questionnaires directed at experts in Al-driven drug
discovery. Table 8 and Figure 4 highlight the prioritization
of 24 factors, emphasizing the systematic approach needed
for addressing the practical crucial success factors.
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TABLE 7. Consistency ratio and maximum eigenvalue Amgx for pairwise
comparison matrices.

Matrix Amax CR
Criteria (categories) 6.056 0.0091
Data quality and management 4.009 0.0034
criteria

Algorithm performance and 4.040 0.0147
optimization criteria

Interpretability and explainability 4.012 0.0046
criteria

Regulatory compliance and ethical 4.034 0.0125
considerations criteria

Computational efficiency and 4.008 0.0028
scalability criteria

Validation and experimental 4.050 0.0185

confirmation criteria

TABLE 8. Prioritization of factors in Al-driven drug discovery.

Prioritize Criterion Criterion Weight (%)
1 ACC 14.5%
2 GEN 13.0%
3 EV 8.5%
4 CMP 8.2%
5 CIH 8.0%
6 XAI 6.1%
7 HT 5.3%
8 IHD 5.0%
9 CcO 4.4%
10 BF 3.8%
11 SOS 2.3%
12 TL 2.2%
13 UE 2.2%
14 BM 2.1%
15 FL 1.9%
16 PST 1.9%
17 ADK 1.8%
18 BBMC 1.6%
19 OOR 1.5%

20 DPS 1.3%
21 EAU 1.3%
22 IR 1.3%
23 ATS 1.1%
24 FT 0.9%

Figure 5 complements the insights from Table 8 by present-
ing a clear, ranked overview of the crucial factors influencing
Al-driven drug discovery. This visualization offers an intu-
itive comparison that emphasizes key priorities and areas for
further improvement, reinforcing the strategic emphasis on
Al in pharmaceutical research.

Although experts assigned lower importance to certain
factors, their significance should not be overlooked, as many
studies highlight their relevance. Factors like ethical Al use,
infrastructure readiness, adherence to standards, and future
technologies may not directly impact the immediate success
of Al-driven drug discovery. Still, they are vital for long-
term sustainability and regulatory compliance. Additionally,
optimizing resources and ensuring data privacy is essential for
maintaining Al systems’ efficiency, security, and trustworthi-
ness over time.
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The expert assessment reveals that these lower-weight
factors, though not primary concerns, function as support-
ive factors rather than key determinants of Al success in
drug discovery. This underscores the need for a prioritization
framework that allows decision-makers to allocate efforts and
resources efficiently toward the most impactful factors while
remaining mindful of secondary, yet potentially influential,
considerations.

Factors

) ) 1

s )
Weight (%)

FIGURE 5. Visualization of factors weights in Al-driven drug discovery.

The top 10 factors have been analyzed for their significance
and impact. The following section examines these factors,
discussing their importance, challenges, and potential effects
on optimizing Al-driven drug discovery systems.

A. ACCURACY (ACC) - 14.5%

Accuracy is paramount in Al-driven drug discovery. High
accuracy ensures reliable predictions and reduces false pos-
itives and negatives during drug candidate screening, vital
for cost-effectiveness and clinical success. Inaccurate data
and model outputs can impede downstream processes like
experimental validation and regulatory approval. Therefore,
enhancing data preprocessing, addressing noise, and refining
model architecture is crucial for achieving this goal.

B. GENERALIZABILITY (GEN) - 13.0%

Generalizability measures an algorithm’s effectiveness across
diverse datasets, which is crucial in drug discovery because
of the variability in biological data and the complexity of
molecular structures.

A generalizable model lessens reliance on large, curated
datasets and ensures strong performance in varied contexts,
such as rare disease treatments or cross-species analysis. This
highlights the importance of thorough training and validation
across heterogeneous datasets.

C. EXPERIMENTAL VALIDATION (EV) - 8.5%
Experimental validation provides the bridge between compu-
tational predictions and real-world applicability.

This factor’s high ranking highlights the necessity of exper-
imental testing to confirm the reliability of Al-generated
insights, such as lead compound identification or toxicity

42057



IEEE Access

A. M. Talib et al.: Evaluating Critical Success Factors in Al-Driven Drug Discovery Using AHP

predictions. Strong experimental validation ensures that com-
putational outcomes are theoretical and actionable, reducing
the risks associated with clinical trials.

D. COMPLETENESS (CMP) - 8.2%

Completeness refers to the availability and comprehensive-
ness of datasets used in Al training. In drug discovery,
data gaps, whether due to missing molecular properties
or incomplete pharmacokinetic profiles, can lead to erro-
neous predictions. The ranking of this factor signifies the
importance of addressing missing data through imputation
techniques or by integrating diverse data sources.

E. CLASS IMBALANCE HANDLING (CIH) - 8.0%

Class imbalance handling is critical in drug discovery, where
datasets often have a disproportionate representation of active
versus inactive compounds. Models trained on imbalanced
datasets tend to favor the dominant class, reducing the
chances of identifying novel drug candidates. Proper tech-
niques such as oversampling, undersampling, or advanced
algorithms like SMOTE (Synthetic Minority Oversampling
Technique) are essential for ensuring balanced and unbiased
predictions.

F. USE OF EXPLAINABLE Al (XAl) - 6.1%

Explainability in AI models is crucial for trust and trans-
parency, especially in sensitive domains like drug discovery.
By providing insights into how predictions are made, XAl
enables researchers to understand the underlying decision-
making processes, facilitating regulatory approvals and stake-
holder acceptance. For example, feature importance analysis
can reveal which molecular properties drive efficacy predic-
tions, making XAl an indispensable tool.

G. HYPERPARAMETER TUNING (HT) - 5.3%
Hyperparameter tuning is pivotal in optimizing Al models,
as it directly impacts performance metrics such as accuracy
and generalizability. The ranking of this factor reflects the
need to fine-tune parameters such as learning rates, dropout
rates, and the number of hidden layers to achieve optimal
results. Automated approaches like grid search or Bayesian
optimization can streamline this process, saving time and
computational resources.

H. INTEGRATION OF HETEROGENEOUS DATA

(IHD) - 5.0%

Drug discovery often combines data from various sources,
including chemical properties, biological assays, and clinical
trials. Integrating heterogeneous data ensures a holistic view,
enabling models to capture complex relationships across
domains. This factor’s ranking signifies the growing impor-
tance of multi-modal data processing in Al-driven drug
discovery pipelines.

42058

I. CONTROL OVERFITTING (CO) - 4.4%

Overfitting occurs when an AI model performs well on train-
ing data but fails to generalize to unseen data. This issue is
particularly relevant in drug discovery, where datasets are
often limited in size. Controlling overfitting through regu-
larization techniques, dropout, or cross-validation is critical
for building robust and reliable models that can adapt to new
challenges.

J. BIAS AND FAIRNESS (BF) - 3.8%

Bias and fairness in Al systems are emerging concerns in drug
discovery. Biased models can lead to inequitable outcomes,
such as favoring specific drug candidates over others due to
dataset imbalances or algorithmic predispositions. This factor
emphasizes the importance of addressing biases in training
data and ensuring equitable performance across diverse pop-
ulations, ultimately leading to fairer and more inclusive drug
development processes.

The top-ranked factors provide a structured roadmap for
advancing Al-driven drug discovery. Enhancing data accu-
racy, algorithm generalizability, and experimental validation
is critical for ensuring reliable and actionable Al outputs.
Addressing class imbalance, overfitting, and bias strengthens
model fairness and robustness.

This study advances the field by providing a structured,
expert-driven prioritization of Al success factors, address-
ing critical gaps in data integrity, algorithmic transparency,
and scalability. Unlike conventional Al adoption strategies
focusing on isolated improvements, our approach systemat-
ically ranks the most influential criteria, ensuring that Al
methodologies are both scientifically valid and practically
applicable. By integrating domain expertise into Al evalua-
tion, this research offers a decision-making framework that
enhances strategic planning for Al-driven drug discovery,
bridging the gap between computational innovations and real-
world pharmaceutical requirements.

This study’s framework is a decision-making tool, enabling
efficient resource allocation and a strategic focus on impact-
ful areas. It also identifies future research opportunities,
including ethical considerations, computational efficiency,
and leveraging emerging technologies to develop scalable,
robust, and ethically sound Al systems for the pharmaceutical
domain.

V. IMPLICATIONS, LIMITATIONS, AND FUTURE
RESEARCH DIRECTIONS

This study outlines a comprehensive framework for assessing
key success factors in Al-driven drug discovery, acting as
a strategic resource to enhance decision-making processes
in pharmaceutical research. By emphasizing six core crite-
ria, the findings highlight the importance of accurate data,
generalizable models, and thorough experimental validation
in bridging the gap between computational predictions and
their practical applications.
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A notable contribution of this research is its systematic pri-
oritization of factors, which offers a clear path for enhancing
Al methodologies in alignment with pharmaceutical objec-
tives. Strengthening data management practices, improving
algorithm performance, and fostering transparency through
interpretability and compliance can address common obsta-
cles, such as data heterogeneity, scalability issues, and trust
in Al-based systems. This structured approach equips stake-
holders with actionable insights for resource allocation and
pipeline optimization.

However, some limitations exist that merit further consid-
eration. The proposed framework was built using a specific
set of datasets and expert evaluations, which may limit
its adaptability to other contexts within the pharmaceutical
domain. AHP is a valuable tool for multi-criteria analysis;
however, it assumes that expert judgments are consistent.
This assumption may not adequately reflect the complexi-
ties of rapidly advancing Al technologies. Furthermore, the
dependence on curated datasets emphasizes the importance
of considering dynamic, real-world situations and emerging
data sources.

Future studies could broaden the framework’s scope by
incorporating diversity and expanding its application to vari-
ous stages of drug discovery. Exploring adaptive weighting
methods could improve its responsiveness to shifting pri-
orities in Al research and drug development. Integrating
domain-specific constraints and advancements, such as gen-
erative Al and quantum computing, could further refine
the framework’s capabilities. Real-world validation across
Al-driven drug discovery research as a first step to global
initiatives will also be crucial to assess the framework’s
scalability and robustness. Additionally, introducing multi-
objective optimization and adaptive feedback loops could
enhance its ability to address complex challenges in real-time
settings.

VI. CONCLUSION

This research introduces a framework for identifying key
success factors in Al-driven drug discovery and proposes
strategies to enhance AI’s impact on the pharmaceutical
industry. The study highlights critical areas such as data
quality, algorithm performance, and experimental validation,
underscoring their importance for the effective integration of
Al in drug development.

The results suggest that Al’s success in drug discovery
depends on a balance of technical innovation, ethical con-
siderations, and adaptability. The framework addresses key
challenges, including data gaps, algorithmic bias, and reg-
ulatory constraints, to meet the growing demand for more
efficient and fair therapeutic solutions.

This work contributes to better strategic planning for
Al applications in drug discovery by providing actionable
insights and a structured approach. It sets the stage for
further research to refine Al methods in different pharma-
ceutical contexts, potentially accelerating drug development
and improving patient outcomes. The framework offers a
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fresh perspective, informed by expert contributions, and
encourages continued innovation, collaboration, and ethical
progress.
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