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This study introduces a novel, cost-effective, and combustion synthesis approach for synthesizing dysprosium-doped magnesium
niobium oxide (Dy: MNbO) nanoparticles (NPs) via a solution combustion method utilizing aloe vera gel as a green fuel. The use
of aloe vera gel not only simplifies the synthesis process but also enhances the ecocompatibility of the method, making it
a significant advancement over conventional techniques. Advanced spectral techniques were employed to characterize the Dy:
MNbO NPs. PXRD analysis revealed that the average crystalline size of the NPs was approximately 45 nm. The energy band gap of
the synthesized Dy: MNbO NPs was determined to be in the range of 4-5eV. SEM analysis showed the presence of distinctly
agglomerated, lump-like structures. The photocatalytic performance of Dy: MNbO NPs was evaluated for the degradation of
industrial dyes, specifically direct green (DG) dye, under UV light irradiation. Among different doping concentrations, the 4 mol%
Dy: MNbO NPs exhibited the highest photocatalytic efficiency, achieving an 82% degradation. In comparison, the degradation
rates for other doping concentrations were 58% for 2 mol%, 62% for 6 mol%, and 75% for 8 mol%. Electrochemical analyses using
4 mol% Dy: MNDbO NPs as a modified electrode were performed in a 0.1 M HCl electrolyte solution. Cyclic voltammetry (CV) and
electrochemical impedance spectroscopy (EIS) confirmed the reversibility of the electrode reaction. The sample demonstrated
excellent performance in electrochemical sensing applications, specifically for detecting ibuprofen and glucose molecules.
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1. Introduction friendly solutions to address the growing global water crisis.

Their application in water treatment, such as pollutant
The multifunctional properties of metal oxide nanoparticles  degradation, microbial disinfection and heavy metal re-
(NPs) make them highly relevant for water purification  moval, aligns with the urgent need for clean water [1-6]. The
technologies, offering cost-effective and environmentally  textile dyeing industries are major contributors to water
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pollution, producing large volumes of contaminated
wastewater that affect global water streams [7]. To address
this critical issue, various strategies have been implemented,
to treat the contaminated water, which are membrane fil-
tration [8], bioadsorption [9], ion exchange [10], biological
and aerobic treatments [11], coagulation [12], and ozonation
[13]. Among these methods, ion exchange has been widely
used to remove contaminants such as heavy metals and
nitrates from wastewater. However, it has several limitations:
(1) high selectivity: While effective for specific ions, it is less
efficient for removing organic compounds; (2) resin re-
generation: Periodic regeneration of the resin generates
secondary waste, which poses additional disposal challenges;
(3) cost: Frequent resin replacement and regeneration sig-
nificantly increase operational costs. Photocatalytic degra-
dation has emerged as an advanced and sustainable
alternative for wastewater treatment. This method is highly
effective in breaking down a wide range of organic and
inorganic pollutants. It is economically viable and easy to
operate and does not generate secondary waste, making it an
attractive solution for environmental remediation [14, 15].

The rare earth oxides (e.g., La, Ce, Dy) are widely rec-
ognized as excellent catalysts due to their ability to alternate
between oxidation states, and in electrochemical study their
enhancing fuel cell efficiency, and their effectiveness as
additives in solid electrolytes [16, 17]. In this study, dys-
prosium (Dy) was selected for its unique electronic con-
figuration and its ability to enhance the structural, optical,
functional properties of oxide NPs. Dy: MgNb,Oq exhibits
a columbite-type orthorhombic structure, classified under
the Pbcn space group with interconnected [MgOg] and
[NbOg] octahedral units. The particle size varies depending
on the synthesis method, typically ranging from 20 to 50 nm
in combustion synthesis [18-20]. The incorporation of Dy’ +
into the MgNb206 lattice introduces slight distortions due
to the size mismatch between Dy’* and Mg ions. It leads to
unique electronic transitions of Dy ions, which enhance the
optical absorption spectrum, thereby increasing the pho-
tocatalytic efficiency of MgNb,Og, particularly under visible
light. Additionally, the incorporation of Dy is expected to
introduce localized energy states, reduce the recombination
rate of charge carriers and further improve the photo-
catalytic activity. Dy: MNbO NPs demonstrates improved
electron mobility and enhanced reversibility in electro-
chemical reactions, making it particularly effective for
sensing applications [21].

Conventional physical and chemical methods for syn-
thesizing rare earth-doped metal oxide NPs such as sol-gel
processes [22], coprecipitation [23], hydrothermal tech-
niques [24], wet chemical methods [25] and solid state
synthesis [26] are often costly and time-intensive. In con-
trast, combustion synthesis emerges as a highly efficient,
cost-effective and rapid alternative for synthesizing the rare
earth-doped metal oxide NPs. This exothermic method
generates high reaction temperatures, promoting rapid
crystallization of materials and significantly reducing syn-
thesis time, making it a promising approach for synthesis of
NPs used in wide range of applications [27, 28].
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In the synthesis of rare earth-doped metal oxides, green
fuels act as reducing agents and structure-directing tem-
plates, influencing particle morphology, size and crystal-
linity. The presence of natural compounds like
polysaccharides, flavonoids and proteins in green fuels helps
regulate nucleation and growth, leading to improved
functional properties such as enhanced photocatalytic effi-
ciency, superior electrochemical performance and better
thermal stability [29, 30]. Aloe vera (AV) gel was chosen as
a green fuel due to its nontoxicity, affordability, safety and
biodegradability. AV gel plays a crucial role in controlling
NP morphology, influencing their size and shape [31]. This
effect is attributed to the presence of polysaccharides, which
modify surface energy and promote uniform growth. As
a green fuel, AV gel offers a sustainable and environmentally
friendly approach to NP synthesis [32].

This study focuses on the synthesis of Dy: MNbO NPs via
a combustion method utilizing AV gel as a fuel. The use of
environmentally benign fuels in combustion synthesis not
only reduces toxic by-products but also improves the
structural integrity and electrochemical performance of the
synthesized materials. These enhanced properties, including
high surface area, superior conductivity and improved
electrocatalytic activity, make them highly suitable for ad-
vanced electrochemical sensing applications. In particular,
their effectiveness in detecting ibuprofen and glucose
molecules highlights their potential for use in biomedical
and environmental monitoring.

2. Materials and Methods

2.1. Preparation of NP. The green combustion method is
used to prepare the 2mol% of Dy: MNbO NPs. The stoi-
chiometric amounts of niobium pentoxide (Nb,Os) of
0.079 g, magnesium nitrate (Mg(NO3), of 4.31 g, dysprosium
nitrate (Dy(NOs); of 0.313g (2%, 4%, 6% and 8%), am-
monium nitrate (NH,(Nos), of 0.21 g were brought from
Sigma-Aldrich, and 5 mL of AV gel is used as fuel. The crude
AV leaves were collected in the early morning as production
of gel is highest at that time. And we selected mature and
healthy leaves from the outer section of the AV plant. The
scalp of AV leaf was removed and the leaves were washed
thoroughly with distilled water. The extracted gel was
blended into a liquid using a blender to ensure uniformity.
The liquid was filtered through fine mesh to remove any
solid residues and was stored in freezer maintained at 4°C
until use. And, 5% of AV gel is used as a fuel and AV gel
functions as both a reducing agent and gelling agent, while
the nitrates in the precursor act as oxidizing agents. Initially,
stoichiometric amounts of niobium pentoxide (Nb,Os),
magnesium  nitrate (Mg(NO3),, ammonium nitrate
(NH4(Nos),, dysprosium nitrate (Dy(NO3)); were taken in
Petri dish and the double-distilled water was added and it is
stirred for 20 minutes and 5mL AV gel was added. And it
was finally transferred to silica crucible and then placed in
a preheated muffle furnace of maintaining temperature
750 + 10°C; at this temperature, decomposition of chemical
precursors begins and AV gel produces high-energy
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conditions for NP formation, which initiates nucleation and
early stages of NP growth.

After the chemical mixture is started to boil, water is
vaporized and mixture catches the fire, and finally, white
powder is obtained. The obtained powder is calcined at
1000°C for 3 h, which also helps in controlling the particle
size as shown in Figure 1. Higher temperatures drive the
particles to grow larger, improving the crystallinity and
reducing defects. This temperature ensures that the particles
reach a stable size and morphology while minimizing the
formation of amorphous regions that could affect the
properties of the NPs.

2.2. Photocatalytic Analysis. The photodegradation of DG
dye (C3,H,3N;Na,0sS,) of its maximum absorption peak at
625nm recorded under UV light irradiation. In the ex-
perimental technique, 20 ppm of direct green (DG) dye
solution was taken in a circular dish and 20 mg of catalyst
(Dy: MNbO) was added. The mixture is exposed to UV light
irradiation using a 400-W mercury lamp and stirred with
a magnetic stirrer. Every 15min, 5mL of dye solution is
pipetted out of the dish. This process was continued for
120 min. The pipetted solution was then centrifuged and
subjected to UV-vis spectrometry testing, which produces
absorbance spectra [19].

2.3. Preparation of the Graphite Dy: MNbO NP Electrode for
Electrochemical and Sensing Studies. To prepare the working
electrode with 4mol% Dy: MNbO (NPs), the Dy: MNbO
NPs were mixed with graphite powder and silicon oil
(density: 0.98-1.0 g/mL at 20°C, viscosity: 370-500 mPas) in
a ratio of 15:70:15. The mixture was ground thoroughly in
a mortar for 25 min to ensure uniform blending. The pre-
pared paste was then packed into a tube containing a copper
wire with a diameter of 0.3 mm to serve as the electrode
contact. The modified Dy: MNbO NP electrode was tested in
a 0.1 M HCI (Sigma Aldrich) aqueous electrolyte solution.
This electrode was utilized for sensing ibuprofen in the
concentration range of 1-5mM and for glucose sensing,
demonstrating the applicability of 4 mol% Dy: MNbO NPs
in electrochemical sensing [33].

2.4. Instruments. The phase purity of the compounds was
analysed by powder X-ray diffraction (XRD). The in-
strument operated at 50kV and 20 mA, utilizing CuKa«
radiation with a wavelength of 1.541 A. A nickel filter was
employed, and the scan rate was set at 20 min~". The surface
morphology of the NP was examined in scanning electron
microscope (SEM) for high-resolution image of surface of
the material. Transmission electron microscopy (TEM)
measurements were carried out using a JEOL JEM-2100
instrument. The accelerating voltage was capable of reaching
up to 200kV, and a LaB6 filament was employed. Diffuse
reflectance spectra (DRS) were recorded by Perkin-Elmer
UV-vis spectrometer. Fourier-transform infrared spec-
troscopy (FTIR) was utilized to identify the functional
groups and chemical bonds present in the prepared sample,

Magnetic stirrer \

// \

/[ NbOg+(NHNOy, \
( (DyNO,),+(MgNO,)Z“

\ / e g \
\ £ / Final Product

Preheated muffle furnace

FiGure 1: Schematic representation of the steps involved in the
combustion process.

providing insights into its molecular composition. The
UV-vis absorption spectra were analysed using a Shimadzu
UV-vis, uv-26000 instrument. The measurements were
conducted within the range of 200-800 nm. The electro-
chemical investigations of the prepared nanomaterials were
conducted utilizing a CHI608E potentiostat in three-
electrode system consisting of a nanomaterial coated with
carbon paste electrode, a platinum wire and an Ag/AgCl
electrode, which were employed as the working, counter and
reference electrodes in 0.1 M HCI solutions at various scan
rates, respectively.

3. Results and Discussions

XRD plays a vital role in determining the crystal structure
and phase of the synthesized NPs. Figure 2(a) shows the
XRD patterns of the green combustion synthesized Dy:
MNbO (2-8 mol%) NPs, confirming the effective synthesis
due to incorporation of the Dy”" ions into the host material,
which did not disrupt the crystal structure, and no additional
peaks were obtained by the incorporation of Dy’* ions.
Interestingly, all the detected diffraction peaks exactly match
the standard JCPDS No. 33-0875 [34]. The observed XRD
peaks reveal the crystalline form, and the peak position
verifies the columbite-type orthorhombic structure, be-
longing to the Pbcn space group and D2h point group
symmetry [35]. Additionally, Scherer’s approach was uti-
lized to determine the typical particle size (D) using
Equation 1, and the particle size is in 20-50 nm range and
also strain was calculated (Table 1) [36]. The major signif-
icance of dopant is the rises in the dopant concentration, and
the primary diffraction peaks shift towards lower angle side,
resulting in the decreased intensity as revealed in the XRD
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pattern shown in Figure 2(b). The presence of Dy>* ions in
the host matrix leads to tensile stress and microstrain de-
creases, and the estimated crystalline size increases with
dopant concentration (Table 1), causing PXRD peaks to shift
in the direction of the lower angle side.

_09)
~ Bcos®
. :ﬁcos 9,
4
16M m
F = 2
| 45V3tanf |
V=a (2)
1

where D: crystallite size (in nanometres, nm), A: wavelength
of the X-ray, : full width at half maximum (FWHM) of the
diffraction peak and 0: Bragg’s angle; e: microstrain, density
(D,), dislocation density (8) and stacking fault (SF).

Figure 3 shows the FTIR spectra of green combustion
synthesized Dy: MNbO (2-8 mol%) NPs measured at rate of
(400-4000 cm™). The FTIR detects functional groups in or-
ganic and inorganic substances based on the various vibrational
frequencies and is crucial for detecting the chemical compo-
sition of the NPs. The transmittance peaks at 3446 cm™ is
attributed due to vibrations in hydroxyl (OH) groups; that is,
H-0O-H indicates the presence of O-H hydroxyl stretch. This
stretch is characteristic of water. 2924 cm™" is formed due to the
asymmetric stretching vibration of CH groups methylene
(CH,) or methyl (CH;) groups C-H stretch from alkyl groups,
2360 cm™! is the presence of a gas-phase carbon dioxide (CO,)
alkyne stretch for a C=C triple bond such as in alkynes,
1644 cm™ is associated with the stretching vibration of the
double bond (C=C) group stretch in alkenes and aromatic
rings, and 1498 cm™ is formed due to vibrations associated
with the aromatic C-H bending in aromatic compounds. A
peak at 1083 cm ™" in an FTIR spectrum C-O stretch: This is the
most common interpretation, especially for ethers and alco-
hols; 853 cm™! is formed due to C-H out-of-plane bending in
aromatic compounds, particularly orthosubstituted benzene
rings. And 565 cm™! is formed due to metal-oxygen stretching
and bending vibrations in Mg-O or Nb-O (octahedral metal-
oxygen) [37, 38].

The DRS technique was used to record the optical
properties of the produced Dy: MNbO NPs, with mea-
surements taken from 200 to 800nm, as shown in
Figure 4(a). Using the Kubelka-Munk method (Equation
(4)), the diffuse reflectance data of Dy: MNbO NPs were
converted into an absorption coefficient («). In this method,
the reflectance is inversely proportional to the scattering
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coefficient (S) and directly related to the absorption co-
efficient (K) [39].
2
a-r"_K (4)
2R N
The Tauc equations (Equation (5)) of linear absorption
coefficient («) are used to determine the energy band gap
(Eg) of prepared Dy: MNbO NPs, where ‘n” determines the
transition of the prepared sample where n =1 denotes direct
transition and n=1/2 indirect transition; we are using in-
direct transition to find band gap.
C _ n
LS (hv - Eg) )
hv

F(R) =

(5)

where a: absorption coefficient. C;: is constant, hv: energy of
the incident photon, where h: Planck’s constant, v: frequency
of the photon (in Hz), Eg: band gap energy of the material (in
eV) and n: power exponent that depends on the type of
electronic transition.

The band gap of the prepared Dy: MNbO NPs was
determined by drawing a tangent to the linear portion of the
(F(R)hv)? versus hv plot, as shown in Figure 4(b) [40, 41].
The calculated band gap values ranged from 4.85 to 5.01 eV.
The band gap of the doped sample decreased with increasing
doping concentration. This reduction can be attributed to
the formation of Dy-O clusters, which introduce impurities
into the semiconductor. As the doping concentration of rare
earth oxide (Dy) increases, impurity levels rise, influencing
the band structure.

At higher doping concentrations, impurity levels mostly
overlap with the host metal oxide bands, significantly af-
fecting the electronic structure. This leads to a further de-
crease in the effective band gap. In the case of MgNb,O4
NPs, doping with Dy enhances the concentration of charge
carriers, causing band gap narrowing due to many-body
interactions, such as band tailing and electron-electron
interactions. Furthermore, the introduction of nonbridging
oxygen defects reduces the effective band gap by creating
defect states, which facilitate additional electronic transi-
tions within the band gap, allowing energy absorption at
lower wavelengths [42].

Figure 5 depicts typical SEM images of 2%-8% Dy:
MNDO NPs, showing their structural and surface mor-
phologies. Since AV gel was used as fuel in the combustion
synthesis of Dy: MNbO NPs, the SEM images reveal a soft,
sponge-like and shimmering surface, along with clusters and
a foam-like dispersion structure, indicating that the sample
was formed via the combustion process.

Based on the results from the photocatalytic experiment,
the 4mol% Dy-doped MNbO NPs sample was selected for
elemental analysis, as it exhibited better degradation per-
formance compared to other molar percentages. The 4 mol
%-Dy: MNbO NPs were further analysed using energy-
dispersive X-ray (EDX) spectroscopy, as shown in Fig-
ure 5. The obtained data reveal that the prepared NPs
contain Nb, O, Mg and Dy, and the atomic weight per-
centage of the elements in the sample is provided in the inset
of Figure 6 [43].
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FIGURE 2: (a) XRD pattern of Dy: MNbO (0-8 mol%) NPs. (b) Exaggeration in the range from 25° to 40°.

TaBLE 1: Crystalline size in nm and strain for plane (0 0 2) of Dy: MNbO (0-8 mol%) nanoparticle.

P
The Dy (mol%) in ‘D> (nm) ‘& nm Dx x 10* (kgm_3) 5% 10'° (kgm_3)_2 Vx10-3° m? SF £ (x 107%)

concentration
0 23 0.26 551.52 0.12 105.3 0.56 1.48
2 25 0.29 591.37 0.19 123.5 0.63 1.41
4 29 0.33 642.28 0.23 131.2 0.69 1.32
6 36 0.39 651.70 0.256 138.2 0.73 1.23
8 45 0.43 680.02 0.36 141.2 0.89 1.13
200 |
150 |-
=
g 1498 cm™
cm
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FIGURE 3: FTIR spectra of Dy-doped MgNb,O4 NPs.
Figure 7(a) illustrates the TEM picture of 4mol% pre-  and agglomerates of very small crystalline domains. The

pared Dy: MNbO NPs with low-magnification image of =~ HR-TEM shown in Figure 7(b) of scale 10nm depicts the
200 nm, which shows the irregularly shaped clustered NPs  possibly individual grains’ development of highly crystalline



6 Journal of Nanotechnology
Lok 2500 F
or 2000
% 80 - o Energy band gap
g 70 b _;q: 1500 F 2mol =5.01eV
G & 4 mol =4.95eV
S sk = 6 mol = 4.90 eV
ES 1000 8 mol = 4.85eV
50
40 500 |-
30
1 1 1 i b 1 1 1 0 1 | 1
200 300 400 500 600 700 800 2 3 4 5 6
Wavelength in nm Energy in eV
—— 2mol 4 mol 6mol —— 8mol 2 mol 4 mol 6mol —— 8mol

()

(®)

FIGURE 4: (a) Diffuse reflection spectra of spectral studies of Dy: MNbO and (b) Wood and Tauc’s plot to find energy band gap.

$6500 1.0kV x10.0k SE

()

FIGURE 5: SEM micrographs different Dy concentration (a) 2 mol%, (b) 4 mol%, (c) 6 mol% and (d) 8 mol% of Dy: MNbO NPs.
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FiGUure 6: SEM-EDX reveals the elemental analysis for 4 mol% Dy: MNbO.

4mol% Dy: MNbO NPs, and the visibility of lattice fringes is
a clear indication that the material has a well-ordered
crystalline structure at this scale, and SAED patterns
shown in Figure 7(c) depict the development of surprising
crystalline particles with ring-like structure [44, 45].

The absorbance spectra of a DG dye solution with
varying molar concentrations of Dy-doped MgNb206 (Dy:
MNDO) NPs as catalysts are shown in Figure 8. The per-
centage degradation of DG dye depends significantly on the
molar concentration of Dy: MNbO NPs. For 2mol% Dy:
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FIGURE 7: (a) TEM image, (b) HR-TEM, and (c) SAED of 4mol% Dy: MNbO NPs.

MNbBO NPs, the degradation efficiency is 69.65%, as shown
in Figure 9(a). Increasing the concentration to 4mol%
enhances the degradation efficiency to 82.53% (Figure 9(b)).
However, further increases to 6 mol% and 8 mol% result in
reduced efficiencies of 78.82% and 76.09%, as shown in
Figures 9(c), 9(d), respectively. These results demonstrate
that 4mol% Dy: MNbO NPs achieve the maximum deg-
radation efficiency. And Table 2 summarizes the comparison
of different studies on degradation efficiency [50]. The half-
life of the DG dye, determined from the C/C,, and 1-C/C,,
versus time plots indicates the time required for half of the
dye molecules to degrade under UV light. For 2 mol% Dy:
MNDO NPs, the half-life is 49.36 s (Figure 10(a)), while for
4 mol%, itis 52.52 s (Figure 10(b)). At higher concentrations,
the half-life is 50.54 s for 6 mol% (Figure 10(c)) and 36.54 s
for 8 mol% (Figure 10(d)).

Further study of the reaction kinetics should be done to
understand the degradation process. The pseudo-first-order
kinetics model was applied using Equation (6). The degra-
dation process, illustrated in Figure 11, shows a decrease in
the C/C, ratio over time, reflecting the declining concen-
tration of the dye. Since C/C,, is less than 1, its logarithm is
negative and approaches zero as the dye concentration
stabilizes. The degradation occurs more rapidly at 4 mol%
Dy: MNbO NPs, as indicated by the red curve, which ex-
hibits a sharp decline between 45 and 75 min. This steeper
curve signifies faster degradation kinetics compared to other
molar concentrations.

The photocatalytic stability of the prepared Dy: MNbO
NPs was also evaluated by performing repeated cycles of dye
degradation. Figures 12(a), 12(b), 12(c) and 12(d) show that
the degradation efficiency remains consistent during the first
two cycles but decreases by up to 20% in the subsequent
three cycles. These results suggest that Dy: MNbO NPs
exhibit good stability, maintaining significant photocatalytic
activity even after multiple reuse cycles [51].

log<C£O> = —kt, (6)

where C is the concentration of the substance at time ¢, C; is
the initial concentration, k is the pseudo-first-order rate
constant, and ¢ is the time.

3.1. Mechanism of Photodegradation. Mechanism of DG dye
with the penetration of UV light of energy (hv) on Dy:
MNbO NPs with dye molecule is shown in Figure 13. In this
process, Dy ions in higher oxidation states can introduce
localized energy levels within the band gap of the photo-
catalytic material. These energy levels can capture excited
electrons (e—) in the valence band, which get energized and
exited to the conduction band with penetration of energy,
which is greater than or equal to energy band gap. Therefore,
electron and hole pairs are created. By trapping the elec-
trons, Dy prevents them from recombining with holes (h™)
in the valence band and it is reacted by surrounding oxygen
and generates anion radicals (O?). At the same time, holes
in the valence band can oxidize dye directly or produce
hydroxyl radicals (OH™) from adsorbed water molecules. In
this process, the active hydroxyl radicals are OH™ and super
oxide radicals O*~ are oxidized with adsorbed dye molecules,
because the exited electrons and holes are degraded the dye
sample [52, 53].

The efficiency of this photocatalytic process is influenced
by the Dy doping concentration, which affects the surface
morphology and active site density of MgNb,Og. An optimal
concentration of Dy enhances surface activity, facilitating
the generation of active radicals and improving the pho-
tocatalytic degradation. However, excessive Dy doping can
block active sites. Among the tested concentrations, 4 mol%
Dy-doped MgNb206 showed the highest degradation rate of
the DG dye solution, outperforming the 2 mol%, 6 mol% and
8mol% Dy-doped samples due to its optimal balance of
active sites and surface reactivity.

The steps involved in the photodegradation process are
presented in equations (2)-(6).

MNDbO: Dy + hv — MNbO: Dy,
MNbO: Dy* — MNbO: Dy (k" +¢7),
MNbO: Dy* (¢) + 0, — O°7, (7)
0*” +H,0 — OH + OH",
OH™ + O*” + Dye — degraded water.
For electrochemical CV testing, the 4 mol% Dy: MNbO

NPs served as a modified working electrode. The electrodes
operate in 0.1 N HCL as a electrolyte at the scan rate which
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TaBLE 2: Comparison of previous studies on photodegradation of Dy dopants.

Fuel used 9 i
S. no in synthesis Nanoparticles Method.of Dye/pollutant % degl;adatlon References
NPs preparation (%)
1 Green fuel Present work Combustion synthesis Direct green (DG) dye 82 —
2 Chemical fuel MgCaNb,O4 Solid solution Phenol 78 [46]
3 Chemical fuel ~ Dy-doped ZnO  Chemical spray pyrolysis Methylene blue 92 [47]
4 Chemical fuel ~ Dy-doped TiO, Hydrothermal treatment Methylene blue 98.72 (48]
5 Green fuel Dy-doped ZnO Sonochemical method Methylene blue 58-98 [49]
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varies from 10 to 50 mVs™'. Within the conceivable spec-
trum range of —1.2 to 0.4V, the CV is shown in Figure 14(a).
There are smaller oxidation peaks at —0.28 V and —0.022'V
and reduction peaks at —0.54V due to oxidation and re-
duction of Mg ions. There is a minor variation observed in
the positions of the anodic and cathodic peaks of the
electrode as the cycle progresses, indicating excellent elec-
trode stability [54, 55].

Figure 14(b) depicts the correlation between the square
root of the scan rate (v'/2) and the cathodic peak current (ip)
for 4mol% Dy: MNbO NP electrode. The stronger linear
relationship between ip and »'/> demonstrates that hydrogen
diffusion limits the electrode reactivity of 4 mol% Dy: MNbO

NP electrode. The hydrogen diffusion coeflicient of the 4 mol
% Dy: MNbO NP electrode is determined to be 9.30 x 10~
cm’s " using the slope of the fitted line followed by Equation
(8).

ip=269x10° xn”? x AxD"? xC,xv"*.  (8)

Since the complex electric modulus formalism has the
advantage of suppressing electrode polarizing effects, it is
commonly used to examine the electrical relaxation in
ionically and electrically conducting materials [56]. Equa-
tion (9) provided the real and imaginary components of the
complex electric modulus. The one semicircle on the Nyquist
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or Cole-Cole plots is often attributed to the resistances
resulting from grain borders, grain size and electrode im-
pact, in that order. The impedance spectra of 4mol% Dy:
MNDO NPs are shown in Figure 14(c) [57]. From the
equivalent circuit (inset of Figure 14(c)), the obtained R
and Cy; values are 78.85 Q) and 0.0001886 F.

ZW)=2Z'+2" = Zype + jZim =R+ jX. (9

It shows the relationship between the applied potential
and the resulting current as a function of frequency. The
Bode plot is obtained plotting phase angle v/s logarithm of
frequency shown in Figure 14(d). The phase angle is 64°,
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FiGure 15: (a) CV plot of 4 mol% Dy: MNbO NPs sensing ibuprofen (concentration range 1-5mM), (b) CV plot of 4 mol% Dy: MNbO in
the sensing of glucose (concentration range 1-5 mM). (c), (d) calibration plot of current response v/s concentration of ibuprofen and glucose

with fitted line.

which is close to current and leads the applied potential by
a phase angle of (90°) degrees, indicating capacitive be-
haviour. At high frequencies, the system behaves more like
a pure capacitor.

The sensor performance of the Dy: MNbO electrode
was used to detect the ibuprofen and d-glucose in 0.1 M
HCI solution as shown in Figures 15(a) and 15(b), re-
spectively. In the CV graph, variations in oxidation and
reduction peaks were observed after adding the mile-molar
concentration of ibuprofen and glucose to electrolyte so-
lution of dosage from 1 to 5Mm, and the prepared
modified Dy: MNbO electrode exhibited sensing ability. In
ibuprofen sensor, a clear oxidation peak is visible at
0.045V, and the reduction peak is less prominent, whereas
in d-glucose sensor, a oxidation peak is visible at 0.265 V.
Successive injections of 1 mM ibuprofen or d-glucose at 50-
s intervals resulted in a rapid increase in current response,
reaching a steady state within 3s.

In Figures 15(c) and 15(d), the peak current was plotted
against the concentrations of ibuprofen and glucose using the
calibration curve. The Dy: MNDbO electrode exhibited a low
detection limit of 1 x 107> mol/L. The linearity of the calibra-
tion curve also suggests that the activity is diffusion-controlled
within the reported concentration range [58]. This further
supports the enhanced sensitivity of Dy: MNbO modified
electrodes toward the detection of glucose and ibuprofen.
Further, the proposed sensor was employed to determine the
ibuprofen and glucose ions in water and showed sensitivity in
the order of 0.005 and 0.006 A. Lastly, a high surface area
improves contact with analyte molecules and expands the
number of active sites accessible for photocatalytic processes,
increasing sensor sensitivity and response time. Additionally,
when a material interacts with target molecules, its electrical
conductivity changes, which is a crucial mechanism in many
gas or chemical sensors. Semiconducting qualities also affect
the material’s capacity to absorb light and catalyse reactions.

4. Conclusions

Cost effective Dy: MNbO NPs were synthesized using AV gel
as a biofuel through a solution-based green combustion
process. These Dy: MNbO NPs were specifically designed for
dual applications, serving as efficient photocatalysts and as
materials for electrochemical cyclic voltammetry (CV) and
sensing studies. The incorporation of dysprosium (Dy) plays
a crucial role in enhancing the material’s functionality by
reducing electron-hole recombination and promoting ef-
fective charge carrier separation. Additionally, Dy doping
alters the electronic properties of MNbO, improving both
light absorption and electrical conductivity. These im-
provements result in a higher availability of charge carriers,
which significantly boosts the material’s photocatalytic and
electrochemical performance. The characterization of the
prepared NPs revealed their orthorhombic phase structure,
with an average crystallite size of about 45 nm, and an energy
band gap ranging from 4.85 to 5.01eV, respectively. The
exceptional attributes of the synthesized NPs, including high
conductivity, porous morphology, swift charge transfer
capabilities, and photosensitivity, were explored. Notably,
the Dy: MNbO (4mol%) material exhibited appreciable
photocatalytic activity, achieving a remarkable 82.53%
degradation of DG dye under UV light, because 4 mol% of
Dy: MNbO NPs show excellent performance in photo-
degradation, which is an evident for good number of
electrons and holes that participate in oxidation and re-
duction reactions to degrade pollutants compared to 2 mol,
6mol and 8mol% NPs with a calculated half-life of
50.54 min. Furthermore, 4 mol% of Dy: MNbO NPs show
the anodic and cathodic peaks in electrochemical CV studies
that reveals the good electrode stability, and diffusion co-
efficient of the electrode is determined to be
9.30 x 107> cm’s”; the Nyquist plots are often one semicircle
that attributed to the resistances Dy: MNbO NPs, and the
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Bode plot is obtained with phase angle of 64° indicating
capacitive behaviour. The electrochemical sensor study is
utilized to demonstrate high sensitivity, in enabling the
detection of ibuprofen drug and glucose concentrations at
1 mM, in an acidic electrolyte solution of 0.1M HCIL. The Dy:
MNDBO NP findings highlight the usefulness and cost effi-
ciency of NPs as a promising material for catalysis and
sensing applications. With the utilization of AV as a green
tuel in synthesizing practices, this emphasizes the promising
potential of Dy: MNbO NPs for a range of real-world
applications.
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