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ABSTRACT
This study evaluates the Billion Tree Afforestation Project (BTAP) in Pakistan's Khyber Pakhtunkhwa (KPK) province using 
remote sensing and machine learning. Applying Random Forest (RF) classification to Sentinel-2 imagery, we observed an in-
crease in tree cover from 25.02% in 2015 to 29.99% in 2023 and a decrease in barren land from 20.64% to 16.81%, with an accu-
racy above 85%. Hotspot and spatial clustering analyses revealed significant vegetation recovery, with high-confidence hotspots 
rising from 36.76% to 42.56%. A predictive model for the Normalized Difference Vegetation Index (NDVI), supported by SHAP 
analysis, identified soil moisture and precipitation as primary drivers of vegetation growth, with the ANN model achieving an 
R2 of 0.8556 and an RMSE of 0.0607 on the testing dataset. These results demonstrate the effectiveness of integrating machine 
learning with remote sensing as a framework to support data-driven afforestation efforts and inform sustainable environmental 
management practices.

1   |   Introduction

Afforestation is important to global climate change mitigation, 
land rehabilitation, and biodiversity enhancement strategies. It 
has recently been announced that the BTAP Project in Pakistan 
is one of seven ambitious global initiatives and policy tools em-
phasizing scaling up forest landscape restoration (Kamal, Ali, 
and Yingjie 2018; Ullah et al. 2020). This afforestation activity 

removes large volumes of CO2 from the atmosphere, which is 
crucial in combating global warming (Haider et al. 2017; Jallat 
et al. 2021; Khan et al. 2020). It also enhances ecosystem ser-
vices related to carbon sequestration and wildlife conservation 
(Chen and Zhang  2023; Wang et  al.  2022; Wang et  al. 2024). 
Remote sensing technologies have dramatically changed how 
afforestation programs are monitored and evaluated, predom-
inantly through high-resolution satellite imagery (Shawky 
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et  al.  2023; Zha et  al.  2020). Such technological advancement 
now allows detailed global land observation, giving open access 
to imagery of all spatial scales from local to global (Galidaki 
et al. 2017; Zhang et al. 2024a, 2024b). The technology enables 
large-scale, comprehensive analyses to increase the extent and 
resolution of studies to a new level (Colomina and Molina 2014; 
Huang et al. 2018).

Furthermore, when integrated with cloud computing platforms 
such as Google Earth Engine (GEE), giving advanced extensive 
data processing capabilities, remote sensing becomes an even 
more potent tool for the evaluation and monitoring of afforesta-
tion activities on a global scale (Anees et al. 2022a; Mehmood 
et  al.  2024b). For instance, two panels of Landsat program-
derived, time series surface reflectance data from satellites 
(Fassnacht et al.  2019; Furniss et al.  2020), spanning four de-
cades, have added much insight into land-use and forest cover 
changes on the surface of the Earth (Smith et  al.  2021). They 
are beneficial data to test afforestation and deforestation criteria 
and serve as an example of metrics in gauging the success or 
failure of projects like the BTAP. Advanced classification algo-
rithms, such as RF, can successfully manage and analyze this 
vast reference database through platforms such as GEE (Cheng 
et al. 2022; Qasimi et al. 2023). RF is beneficial in this regard, 
as over the years, it has shown very high accuracy and, at the 
same time, meager rates of overfitting due to its ability to model 
intricate, non-Gaussian relationships among variables (Ma 
et al. 2020; Mehmood et al. 2024e; Pang, Chang, and Chen 2022).

The Landsat program has been acquiring multispectral imag-
ery for the last several decades (Irons, Dwyer, and Barsi 2012), 
which has led to spatially continuous and extensive data records 
of long-term observations of land surface reflectance (Ouchra, 
Belangour, and Erraissi  2023; USGS  2022). Such records are 
essential for assessing changes in land use and modifications 
in the cover of forests from the past. They are irreplaceable in 
estimating the impacts of afforestation projects like the BTAP. 
This is a significant strength of the GEE platform: it can pro-
cess and analyze this massive amount of data through advanced 
classification methods, such as RF. The RF algorithm, an up-
to-date solution for better predictive power and generalization 
capacity, provides a good measure for preventing overfitting and 
increases accuracy in environmental assessments.

Remote sensing and machine learning have been increas-
ingly highlighted in studies to monitor large-scale afforesta-
tion, mainly through commercial plantations (Kupssinskü 
et al. 2020; Zheng, Abd-elrahman, and Whitaker 2021; Anees 
et  al.  2024a). The extensive integration of GEE and Landsat 
data has widely been applied to assess changes in forest cover 
and the sustainability of afforestation initiatives. Among dif-
ferent machine-learning algorithms, RF and ANN performed 
well for land-cover classification and afforestation monitoring 
(Mehmood et  al.  2024a; Shahzad et  al.  2024). RF has demon-
strated high success in these types of studies at large scale and 
satisfactory accuracy, as it is typically able to separate well be-
tween different land-cover types, with strong lines of evidence 
from numerous empirical case examples worldwide. In addition, 
the Random Forest's ability to model complex and nonlinearities 
in ecological data provides more efficient information for assess-
ing afforestation programs (Hussain et al. 2024b).

In addition, combining remote sensing methods with biodiver-
sity assessments has significantly increased biodiversity, partic-
ularly in degraded ecosystems (Zhang et al. 2024a, 2024b; Chen 
et  al.  2023; Xie et  al.  2023; Jiang et  al.  2023). Evidence from 
numerous studies indicates that combining vegetation indices, 
such as NDVI, with machine-learning models can effectively 
assess the ecological impacts of afforestation and support more 
strategic conservation efforts (Brieva et  al.  2023; Mehmood 
et  al.  2024c; Roy  2021; Anees et  al.  2024a). Sustained, long-
term monitoring is increasingly recognized as crucial, as these 
processes often become observable only over decades. Scholars 
advocate for using temporal datasets to detect the frequently 
gradual or delayed impacts of afforestation initiatives, which are 
usually underestimated in short-term studies (Nazir et al. 2019; 
Ullah et al. 2023; Zheng et al. 2024).

The applications of remote sensing to massive afforestation ef-
forts face significant challenges and offer great opportunities, 
but there is a need for continuous innovation and complemen-
tary data sources. Coupling in situ validation with the integra-
tion of ecological models and remote sensing datasets enables 
long-term prediction of ecosystem processes with a high level 
of reliability, together with an enhancement in accuracy when 
undertaking assessments (Doelman et al. 2020). Besides, proper 
monitoring of the effects of afforestation on the storage of soil 
carbon, diversity in microorganisms, and general health status 
of an ecosystem is essential in the provision of accurate infor-
mation, as noted by studies focusing on the impacts of afforesta-
tion in different regions (Burke et al. 2023; Cao et al. 2011; Kong 
et al. 2022; Nave et al. 2013).

Approaches to integrating remote sensing data with biodi-
versity assessments have been demonstrated to improve our 
understanding of ecosystems massively (Bunce et  al.  2014). 
Researchers have shown the efficacy of coupling vegetation in-
dices, such as the NDVI, with machine-learning methods for 
characterizing the ecological impacts of afforestation, thereby 
facilitating better conservation planning (Xiao, Xiao, and 
Sun 2020; Yao, Xiao, and Ma 2021; Anees et al. 2024a, 2024b). 
Regional-based strategies benefit from more grounded policy 
support, while location specific investments are customized to 
local conditions (João et al. 2018).

The need for long-term, consistent monitoring has gained rec-
ognition as necessary to capture the dynamic nature of forest 
ecosystems over time. Scholars propose the addition of temporal 
datasets to detect delayed or typically slow effects, often under-
estimated in brief-term studies of initiatives like reafforestation 
(Hao et al. 2022; Zhang et al. 2022). Although implementing re-
mote sensing within large-scale afforestation projects is filled 
with limitations and potential, continuous change through mul-
tisensor data sourcing is essential. The coupling of ecological 
models with remote sensing data can provide improved predic-
tions for long-term outcomes, as this approach is validated by 
ground surveys, thereby increasing precision, reliability, and 
predictive accuracy (Pan, Harrou, and Sun 2023; Pan et al. 2023; 
Wang and Fan 2021).

While considerable progress has been made in applying remote 
sensing and machine learning to monitor afforestation efforts, 
existing work often lacks detailed long-term examination of 
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localized ecological outcomes (Anees et al. 2024a). Additionally, 
advanced techniques such as ANN and spatial analysis meth-
ods like hotspot analysis and Moran's I are not well exploited 
in evaluating vegetation dynamics associated with afforestation 
projects. This study aims to (1) review the ecological impact on 
land-use and land-cover (LULC) changes in response to the 
BTAP from 2015 to 2023, mainly focusing on rapid area changes 
using Sentinel-2 imagery combined with the RF algorithm in 
the loess lands of Khyber Pakhtunkhwa (KPK) province. The 
research also measured major land-cover type changes, such 
as tree cover, barren lands, and shrublands. (2) Conduct buffer 
analysis, hotspot analysis, and Moran's I spatial autocorrelation 
within the BTAP plantation buffer zones to study vegetation 
change over time. (3) Utilize machine-learning methods, partic-
ularly ANNs, to forecast NDVI from biotic and abiotic factors, 
incorporating SHAP analysis to determine the primary drivers 
of vegetation change. This study explored how to effectively 
study large-scale afforestation initiatives while drawing out key 
lessons applicable to forest cover and ecological restoration ef-
forts more broadly.

2   |   Methods and Materials

2.1   |   Study Area

The study was conducted in the Khyber Pakhtunkhwa (KPK) 
province of Pakistan, located between latitudes 33.0°N and 
36.0°N and longitudes 70.5°E and 73.5°E (Ahmed  2011; 
Mohiuddin  2007). KPK is a province with substantial geo-
graphic and ecological variation, making it an ideal location for 
the BTAP. Situated in the northwestern region of Pakistan, KPK 
is bordered by the Hindu Kush mountains to the north and the 
Indus River to the south, encompassing a range of climates from 
subtropical plains in the south to temperate and alpine zones in 
the north (Sohail et al. 2023) (Figure 1). The study focused on 

nine districts within KPK: Bajaur, Buner, Dir Lower, Dir Upper, 
Kalam, Khurum, Khyber, Malakand, and Mohmand. These dis-
tricts were selected due to their critical role in the BTAP, which 
aims to rehabilitate degraded lands and enhance forest cover 
across the province.

The climate in KPK varies significantly across these districts. 
Southern regions, such as Buner and Khyber, experience hot 
summers and mild winters, while northern areas, includ-
ing Kalam and Dir Upper, are characterized by cold win-
ters with significant snowfall (Ali, Khan, and Ahmad  2018; 
Muhammad 2023). This climatic variability, combined with the 
province's complex topography, ranging from lowland plains 
to high mountain peaks, significantly influences the types of 
vegetation that thrive in the region (Bacha et al. 2021; Ul-Haq 
et al. 2019; Anees et al. 2024b). This study leverages the diverse 
landscape and climate to investigate the effects of afforestation 
initiatives, like the BTAP, under different environmental condi-
tions. The study sites were chosen based on their ecological sig-
nificance, existing forest cover, and strategic importance within 
the BTAP framework. Additionally, the socioeconomic con-
text of KPK, where local communities depend heavily on nat-
ural resources for their livelihoods, must be considered (Khan 
et al. 2019). The success of the BTAP is contingent on not only 
achieving ecological objectives but also promoting sustainable 
land-use practices that benefit these communities.

2.2   |   Dataset and Preprocessing

Our study focuses on 344 plantation sites located in nine dis-
tricts of KPK, Pakistan, which are strategically selected for the 
assessment of the BTAP. These sites are essential reference 
points for evaluating the project's impact on land-cover changes. 
The geographical distribution of these plantation sites is catego-
rized by district (Table 1).

FIGURE 1    |    Map of the study area.
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This dataset offers an in-depth view of the plantation sites, en-
abling a thorough evaluation of the BTAP and its impact on 
ecological restoration and sustainable land use across KPK. The 
spatial variability of the sites across different districts ensures a 
comprehensive assessment of the project's impact under diverse 
regional ecological and geographical conditions.

This study used Sentinel-2 satellite imagery to assess LULC 
changes from 2015 to 2023, specifically focusing on 2015, 2019, 

and 2023. The imagery was acquired for October and November, 
a post-monsoon period characterized by significant vegeta-
tion growth and minimal cloud cover (Qiu et  al.  2019; Valero 
et al. 2021). These periods were selected to exploit optimal con-
ditions for clear, cloud-free habitats necessary for accurate LULC 
mapping and vegetation assessment (Yan et al. 2022). Sentinel-2 
imagery was preprocessed in the GEE environment using the 
Sen2Cor algorithm to create cloud and shadow masks, ensuring 
the selection of cloud-free pixels (Bui et al. 2022; Li et al. 2018; Xu, 
Li, and Chen 2022). To further enhance image quality, monthly 
composites for October and November were generated using me-
dian reflectance values, effectively mitigating residual clouds' im-
pact or atmospheric disturbances (Castaldi et al. 2023; Rumora, 
Miler, and Medak  2020). Additionally, NDVI rasters for the re-
spective years were derived from these processed images, provid-
ing a solid foundation for further analysis. The detailed schematic 
diagram of the research methodology is explained in Figure 2.

Buffer and autocorrelation analyses were performed to assess 
vegetation health and spatial distribution patterns around 
the plantation locations using these NDVI rasters as inputs. 
Alongside NDVI, a wide range of environmental variables, in-
cluding temperature (temp), precipitation (Ppt), solar radiation 
(SR), soil moisture (SM), elevation, slope, aspect, and population 
density (POP) at the nearest second-level administrative unit 
level to site locations, were considered as drivers for predic-
tive NDVI models using machine-learning approaches (Anees 
et  al.  2024a) (Table  2). Utilizing the full-scale computational 

FIGURE 2    |    Schematic diagram of the research methodology.

TABLE 1    |    Distribution of plantation sites across districts in Khyber 
Pakhtunkhwa for the BTAP afforestation project (2015–2023).

S.No. District Number of plantation sites

1 Bajaur 57

2 Buner 84

3 Dir Lower (DirL) 5

4 Dir Upper (DirU) 15

5 Kalam 60

6 Khurum 34

7 Khyber 29

8 Malakand 4

9 Mohmand 56
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capabilities of GEE, the processing workflow resulted in high-
quality, low-cloud cover composites, ideally suited for LULC 
classification and change detection analyses. The carefully com-
piled datasets offer a strong and dependable foundation for as-
sessing the ecological impacts of the BTAP plantation sites in 
Pakistan.

2.3   |   LULC Classification Using the Random 
Forest Algorithm

To classify land use and land cover (LULC) for the years 2015, 
2019, and 2023, we employed the Random Forest (RF) algo-
rithm, a robust and widely recognized machine-learning tech-
nique known for its exceptional accuracy in remote sensing 
applications (Badshah et al. 2024; Kumar and Agrawal 2023). 
The classification process was designed to categorize the land-
scape into seven distinct classes: Trees, Grassland, Swamp 
Vegetation, Arable Land, Shrubland, Built-up Areas, and 
Barren Land. Training samples for each LULC class were me-
ticulously collected from high-resolution satellite imagery and 
validated against ground truth data where available (Hussain 
et al. 2024a). These samples were carefully distributed across 
the study area to ensure each class's balanced and representa-
tive dataset.

The spectral bands from Sentinel-2 imagery, including visible, 
near-infrared, and short-wave infrared bands, were utilized as 
input features for the classification. In addition to these bands, 
vegetation indices such as the NDVI were calculated and in-
corporated to enhance the discrimination of vegetation related 
classes (Marino  2023; Marlina  2022; Anees et  al.  2024b). The 
RF classifier was trained using thoroughly gathered train-
ing samples (Lange et al. 2017). The RF algorithm operates by 
constructing an ensemble of decision trees during the training 
phase, subsequently deriving its classification output based on 
the mode of the individual trees' predictions (Jun  2021). Key 
parameters of the RF classifier, including the number of trees 
and the “mtry” parameter, were systematically optimized to 
enhance overall classification accuracy. We used 500 decision 
trees, which optimized the balance between performance and 
computational efficiency. Additionally, the “mtry” parameter, 
controlling the number of variables available for splitting at each 
node, was tuned through a fivefold cross-validation approach. 
This cross-validation framework provided a robust evaluation 
process, ensuring that performance metrics were reliable and 
not biased by any single data partition. This parameter tun-
ing was essential to ensure both model accuracy and stability 
(Anees et al. 2022b; Khan et al. 2024).

The refined RF model was subsequently applied to prepro-
cessed Sentinel-2 imagery for 2015, 2019, and 2023, producing 
classified LULC maps for each period. Each pixel was catego-
rized into one of the seven LULC classes based on the model's 
predictions during this process. Postprocessing of these maps 
included general cleanup tasks like removing isolated pixels 
and smoothing out class boundaries to improve the overall 
consistency and accuracy of the classification results (Gupta, 
Kanga, and Mishra 2024; Wijaya, Munir, and Utama 2023). An 
independent set of validation samples was employed to eval-
uate classification accuracy. To ensure spatial independence 

and reduce potential overlap with the training data, these val-
idation samples were selected from separate spatial regions. 
This spatial separation minimizes the risk of data leakage, 
providing a rigorous and unbiased assessment of model per-
formance (Pomme et  al.  2022). Feature importance scores 
were computed to identify the most influential input variables 
for LULC classification, with Sentinel-2's near-infrared and 
short-wave infrared bands ranking among the highest. This 
analysis provides insight into the factors most critical for 
distinguishing between LULC classes and supporting model 
transparency.

To determine the BTAP's impact on land-cover dynamics, 
a change detection analysis was performed using the LULC 
maps from 2015, 2019, and 2023. This analysis involved com-
paring the LULC maps from these time points, focusing on 
transitions to and from the “Trees” class, which indicate af-
forestation or deforestation activities (Vujović 2021). A change 
matrix was developed to quantify the transitions between dif-
ferent LULC classes over time, providing detailed insights 
into the extent and nature of land-cover changes and identify-
ing areas of significant change (Larbi 2023; Sadhwani, Eldho, 
and Karmakar 2023).

Spatial analysis was employed to map areas of significant 
land-cover change, utilizing hotspot analysis and Moran's I au-
tocorrelation to detect clusters of change and to evaluate the 
spatial patterns underlying these dynamics (Anees et al. 2020; 
Gomes et al. 2021). In addition, buffer analysis was conducted 
to examine LULC changes within the defined plantation buf-
fer zones (Ziaul Hoque et al. 2022), thereby providing a more 
nuanced understanding of the localized impacts of the BTAP. 
The combined classification and change detection analyses 
yielded a comprehensive knowledge of LULC dynamics across 
Khyber Pakhtunkhwa, effectively elucidating the influence of 
the BTAP plantation sites over the study period. These analyses 
are pivotal in informing future conservation and afforestation 
strategies in the region, ensuring that efforts are targeted and 
effective.

2.4   |   Buffer Analysis

One of the objectives of this study was to assess the spatial–tem-
poral variations in land-cover types across various districts by 
analyzing land-cover data within defined buffer zones around 
specific locations. This analysis was performed for 2015, 2019, and 
2023 using high-resolution classified LULC. A spatial point data-
set containing particular locations within the districts was used 
to create buffer zones (Feng et al. 2021). A buffer radius of 500 m 
was selected to balance ecological and practical considerations, en-
suring the inclusion of diverse land-cover types within each buffer 
(Equation 1). A buffer distance of 500 m was selected for this study 
to capture the immediate ecological impact zone around the plan-
tation sites (Chapagain et al. 2021; Yana and Rahayu 2017).

Preliminary analysis of multiple buffer sizes (100, 250, 500, and 
1000 m) indicated that a 500-m buffer provided the best balance 
between representing local landscape heterogeneity and captur-
ing the spatial scale of plantation impacts (Horton et al. 2018; 
Liu et al. 2023). This distance is commonly used in vegetation 
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and ecological studies to achieve a balance between detailed 
local analysis and broader generalization. A 500-m buffer ef-
fectively includes the surrounding vegetation and land-cover 
types likely influenced by plantation activities, as supported by 
previous studies using buffer ranges of 100 to 1000 m to assess 
afforestation impacts (Janeczko et al. 2019; Wibowo et al. 2015). 
Additionally, the 500-m buffer maintains computational feasi-
bility while providing meaningful insights into the direct influ-
ence of the plantation efforts.

2.4.1   |   Spatial Analysis

Land-cover data were extracted from the corresponding LULC 
for each buffer zone. This involved overlaying the buffer zones 
on the raster data and calculating the proportion of each land-
cover type within each buffer (Wang et al. 2024). The proportion 
of each land-cover type within each buffer zone was computed 
(Equation 2)

where i denotes the land-cover type and j denotes the buffer 
zone.

The proportions of different land-cover types were aggregated 
by district and year. This aggregation helped us to understand 
the overall land-cover distribution and changes at the district 
level over time. The buffer analysis revealed significant im-
provements in land cover across various districts in KPK from 
2015 to 2023, highlighting the success of the BTAP afforestation 
project.

2.5   |   Hotspot Analysis (Getis-Ord Gi* Statistic)

In this study, we conducted a hotspot analysis to identify regions 
exhibiting significant variations in vegetation density. These 
regions display distinct positive or negative NDVI anomalies, 
indicating extensive spatial differences in vegetation. Utilizing 
remote sensing capabilities, we applied the Getis-Ord Gi* sta-
tistic (Getis and Ord  2010, 1992; Ord and Getis  1995), a well-
established spatial statistical method, to pinpoint regions with 
significant vegetation changes. These regions, marked by nota-
ble NDVI values, show discernible positive or negative devia-
tions in NDVI patterns. The Getis-Ord Gi* statistic is crucial for 
locally identifying statistically significant spatial clusters char-
acterized by high (hot-spots) and low NDVI values (cold spots). 
(Equation 3).

wherein xj delineates the attribute value associated with feature 
j: wi, j represents the spatial weight between features i and j, typ-
ically derived from their spatial relationship. n is the aggregate 
count of features.

Furthermore, the mean X and variance S of the attribute values 
are defined as Equations (4) and (5):

The fundamental characteristic of the Gi* statistic is its ability 
to calculate the local aggregation of attribute values for a spe-
cific feature compared to its neighboring features, contrasting 
it with the aggregation across all features (Baldo et  al.  2023). 
The presence of a statistically significant cluster is indicated by 
a notable departure from the expected local sum that exceeds 
the thresholds of random chance. This mathematical framework 
allows for a systematic and comprehensive investigation of geo-
graphical patterns, enabling researchers to accurately identify 
regions characterized by significant attribute concentration 
(Zhou et al. 2023).

Using ArcGIS Pro's Hotspot Analysis (Getis-Ord Gi*) tool, we 
calculated spatial clustering metrics based on the tool's stan-
dardized procedures, which include automatic z-score and 
p-value calculations and corrections for spatial dependency 
using fixed distance bands. The Getis-Ord Gi* statistic provides 
measurements of statistical significance for individual spatial 
features or regions. Two main metrics are calculated: the Gi* p 
value, which measures the likelihood, and the Gi* z score, which 
assesses the standard deviation (Garik 2021). The z score evalu-
ates the level of concentration or dispersion within the features 
or regions. At the same time, the p value offers a probabilistic 
assessment to determine if the observed hotspot patterns could 
result from random spatial distributions. A substantial z score 
with a small p value indicates a statistically significant hotspot. 
In contrast, a significantly negative z score with a low p value in-
dicates a statistically substantial cold spot. The size of the z score 
is directly proportional to the degree of clustering, with larger 
absolute values indicating more prominent clustering patterns 
(ESRI 2022, 2013).

Cold spot: Regions with a significant clustering of lower NDVI 
values, characterized by a Gi* z score less than −1.65. Hotspot: 
Areas showcasing a substantial aggregation of elevated NDVI 
values, marked by a Gi* z score greater than 1.65. Neutral areas: 
Regions that do not exhibit significant spatial correlation, fall-
ing within the z score range of −1.65 to 1.65. Confidence crite-
ria were utilized to determine the statistical significance of the 
detected vegetation zones, with thresholds set at 90%, 95%, and 
99%. Regions exhibiting pronounced Gi* z scores (either exceed-
ing 2.58 or below −2.58) and minimal Gi* p values (< 0.01) are 
classified as “high confidence category,” signifying areas with 
extreme vegetation values at a 99% confidence level. The classifi-
cation of vegetation zones based on confidence and significance 
levels is summarized in Table 3.

Inverse distance weighted (IDW) interpolating the Getis-Ord 
Gi* results generated raster maps of hot and cold spots aligned 
with Sentinel 2 resolutions (Sanusi et al. 2024). These were sub-
sequently vectorized to produce polygonal representations of 

(1)Buffer zone area = � × (500m)2 = = 785,398m2

(2)Propostioni,j =
Area of land − cover type i in buffer j

Total area of buffer j

(3)
G∗
I

∑n
j=1Wi,jXj − X

∑n
j−1Wi,j

S

��
n
∑n

j=1W
2
i,j −

�∑n
j=1Wi,j

�2�

n− 1

(4)X =

∑n
j=1Wi,j

n

(5)S =

�∑N
J=1 X

2
j

n
− (x)2
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the vegetation anomalies. Following the identification and clas-
sification of vegetation hotspots and cold spots, the subsequent 
analysis focused on understanding the vegetation properties 
characteristic of these zones. This is critical due to the substan-
tial contribution of vegetation to regional sustainability and the 
mitigation of environmental impacts.

2.6   |   Spatial Autocorrelation

To further evaluate the spatial autocorrelation of NDVI values 
within the buffer zones of the BTAP plantation sites for the 
years 2015, 2019, and 2023, we employed Moran's I statistic. This 
widely used measure for spatial autocorrelation in geographical 
data helps to understand the degree to which NDVI values are 
clustered or dispersed within the study area (Mielke et al. 2020). 
NDVI data points were obtained from a spatial dataset that in-
cluded coordinates and NDVI values for each observation point 
within the BTAP buffer zones. Spatial weights were defined 
based on the k-nearest neighbors' approach (Chen 2023).

Specifically, each observation was linked to its four nearest 
neighbors. This choice was informed by preliminary spatial 
analyses and validated through a sensitivity test over k = 3 to 
k = 8, which confirmed the robustness of observed spatial auto-
correlation patterns. This was achieved using a k-nearest neigh-
bor algorithm, which identifies the eight closest points for each 
data point in the dataset (Okunev and Kushnareva 2023). The 
spatial weights matrix W was constructed such that ωij = 1 if lo-
cations i and j are neighbors and ωij = 0 otherwise. The weights 
were row standardized to ensure that the sum of weights for 
each row equals one, which normalizes the influence of neigh-
bors (Chen 2021) (Equation 6).

where N is the number of spatial units indexed by i and j. xi is 
the NDVI value at location i. x represents the mean of the NDVI 
values. �ij are the elements of the spatial weights' matrix W. 
S0 =

∑N
i=1

∑N
j=1 �ij Corresponds to the sum of all spatial weights.

The significance of Moran's I was tested using a randomization 
approach (Chen  2012). The null hypothesis posits no spatial 
autocorrelation (i.e., the observed spatial pattern is random). A 
low p value (typically less than 0.05) indicates significant spa-
tial autocorrelation, confirming that the observed clustering or 
dispersion of NDVI values within the buffer zones is unlikely 
to be due to random chance (Gaspard, Kim, and Chun  2019). 
By integrating the Getis-Ord Gi* hotspot analysis with Moran's 
I spatial autocorrelation, this study provides a comprehensive 
understanding of the spatial patterns and vegetation dynamics 
within the BTAP plantation buffer zones, highlighting areas of 
significant vegetation change and their spatial relationships.

2.7   |   Machine-Learning Analysis for NDVI 
Prediction

This study employed ANN to predict NDVI based on a suite of 
climatic, topographic, and demographic variables. This method 
was chosen for capturing complex, nonlinear relationships 
within large datasets, making it ideal for ecological and environ-
mental modeling tasks. The dataset included temp, Ppt, SR, SM, 
elevation, slope, aspect, and POP variables. These variables were 
carefully selected to reflect the key drivers of vegetation dynam-
ics and served as predictors for NDVI, the response variable. The 
dataset was divided into training and evaluation subsets, with 
70% allocated for model training and 30% reserved for model 
evaluation (Bradshaw et  al.  2023; Gerber and Nychka  2021; 
Anees et al. 2024a; Luo et al. 2024). This split ensured that the 
model could be adequately trained while maintaining enough 
data to assess its predictive performance independently.

2.7.1   |   ANN Model

In this study, we implemented an ANN to predict NDVI using 
a comprehensive set of environmental and demographic 
variables. The ANN architecture consists of an input layer, 
four hidden layers, and an output layer inspired by the com-
putational processes of the human brain (Lot et  al.  2020; 
Madhiarasan and Louzazni  2022; Zhang et  al. 2023; Huang 
et  al. 2024; Zhang et  al.  2022). To assess multicollinearity 
among predictors, we calculated the VIF for each variable, 
with all values provided in the supporting information (refer 
to Figure  S2 and Table  S1). To ensure robust model perfor-
mance, a fivefold cross-validation approach was employed 
during hyperparameter tuning. This method allowed us to 
assess model stability across different data splits, providing 
a more reliable estimate of predictive accuracy while mini-
mizing the risk of overfitting. The decision to use four hid-
den layers was based on both empirical testing and existing 

(6)I =
N

S0
∙

∑N
i=1

∑N
j=1 �ij

�
xi − x

��
xj − x

�

∑N
i=1

�
xi−x

�2

TABLE 3    |    Classification of vegetation hotspots and cold spots 
based on Getis-Ord Gi statistic with corresponding confidence and 
significance levels*.

Classification
Confidence 
threshold p z

High-confidence 
cold spots

99% < 0.01 < −2.58

Moderate-
confidence cold 
spots

95% < 0.05 < −1.96

Low-confidence 
cold spots

90% < 0.10 < −1.65

Nonsignificant Not 
significant

N/A −1.65 < z 
score < 1.65

Low-confidence 
hotspots

90% < 0.10 > 1.65

Moderate-
confidence 
hotspots

95% < 0.05 > 1.96

High-confidence 
hotspots

99% < 0.01 > 2.58
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literature, which suggests that deeper networks can capture 
complex, hierarchical patterns effectively, especially in eco-
logical data modeling (Haq et  al.  2022). Each hidden layer 
progressively reduced the number of neurons, 128 in the first 
layer, 64 in the second, 32 in the third, and 16 in the fourth, to 
enable the network to build increasingly abstract representa-
tions and reduce computational complexity without sacrific-
ing performance (see Figure 3).

The ReLU (rectified linear unit) activation function was em-
ployed across all hidden layers, introducing nonlinearity into 
the model and enabling it to learn complex patterns in the 
data (Shahade et  al.  2023). The Adam optimizer was chosen 
for its efficient handling of large datasets and adaptive learn-
ing rate, which facilitates faster convergence during training 
(Zhang 2019). The learning rate of 0.001, batch size of 64, and 
200 epochs were selected based on extensive tuning and valida-
tion, as these values provided a balance between convergence 
speed and model accuracy. A systematic approach was adopted 
to tune the key hyperparameters, including the number of 
neurons in the hidden layers, the learning rate, and the num-
ber of epochs. This process was critical in refining the model's 
performance and ensuring accurate NDVI predictions. Table 4 
outlines the final hyperparameters selected after extensive tun-
ing, including a learning rate of 0.001, a batch size of 64, and an 
epoch count of 200.

To prevent overfitting, we incorporated dropout with a rate 
of 0.2 and L2 regularization with a strength of 0.01. Dropout 
randomly deactivates neurons during training, reducing the 
model's reliance on specific neurons and enhancing gener-
alization (Ben Hamida et al. 2024). L2 regularization, which 
penalizes large weight magnitudes, was applied based on lit-
erature supporting its efficacy in improving model robustness, 
especially for regression tasks in environmental applications 

(Kim  2024). A validation set comprising 10% of the training 
data was also used to monitor performance and detect overfit-
ting or underfitting. These hyperparameter choices, informed 
by empirical tuning and supported by relevant literature, en-
abled the model to achieve accurate NDVI predictions while 
maintaining generalization capabilities. To assess the un-
certainty in model predictions, we conducted a Monte Carlo 
simulation involving 1000 iterations, where random noise 
was introduced to key predictor variables (e.g., temperature, 
precipitation, and elevation). This process generated a dis-
tribution of predicted NDVI values for each observation, re-
flecting the variability introduced by uncertainty in predictor 
measurements. We then calculated 95% confidence intervals 
(CI) for each prediction to quantify the expected range of true 
values. Furthermore, observations with high uncertainty (i.e., 
CI width exceeding a predefined threshold) were flagged to 
identify potential areas requiring additional data or model 
refinement.

2.7.2   |   SHAP Feature Importance Analysis

We used SHapley Additive exPlanations (SHAP) as an inter-
pretability framework to analyze the significance of input fea-
tures in our NDVI prediction model. SHAP is model agnostic 
and provides a single measure of feature importance that can 
be used across all machine-learning models (including ANN) 
(Younisse, Ahmad, and Abu Al-Haija  2022). Traditional 
methods, such as feature importance in decision tree-based 
models, are model specific. In contrast, SHAP values provide 
a general and theoretical approach to estimating the contribu-
tions of each feature. SHAP is based on game theory, and the 
SHAP value of a feature is what the model contributes to its 
output (Kim et al. 2023; Nordin et al. 2023). We average this 
contribution over all such combinations to provide an overall 

FIGURE 3    |    Schematic representation of a deep neural network used for regression analysis. The network consists of eight input features (X1 to 
X8), multiple hidden layers (h1–h4), and a single output node (y). Weights (w) and biases (b) are applied to each layer's connection. The hidden layers 
transform the input data through nonlinear activation functions, ultimately predicting the output value.
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feature importance measure. The SHAP value for a given fea-
ture j is defined as (Equation 7):

where F is the set of all features. S is any subset of the features 
F that does not include feature j. ∣S∣ is the number of features 
in subset S. f(S) is the prediction function applied to the subset 
S. f(S∪{ j}) is the prediction function applied to the subset S 
with the addition of feature j. �j represents the SHAP value for 
feature j. This formulation ensures that the SHAP value cap-
tures the average marginal contribution of a feature, consid-
ering all possible interactions with other features (Gebreyesus 
et al. 2023). The computation of SHAP values requires eval-
uating the model on different subsets of features, which can 
be computationally intensive but provides a robust measure of 
feature importance.

In our study, SHAP values were computed using the empirical 
approach implemented in the shapr package (Aas, Jullum, and 
Løland 2021; Kelemen et al. 2024), which ensures robustness 
in the estimation of feature contributions. After training the 
RF model to predict NDVI, an explainer object was created 
using the training dataset. The baseline prediction was set as 
the mean NDVI value of the training data. SHAP values were 
then calculated by evaluating the model's predictions across 
various subsets of input features from the evaluation dataset, 
simulating the contribution of each feature to the predicted 
NDVI. This analysis was performed in two stages: first, for the 
overall study area, and second, specifically for the plantation 
sites associated with the BTAP. SHAP values were calculated 
for each feature for the entire study area to understand their 
contribution to NDVI predictions across different environ-
mental and topographic conditions in KPK. A separate SHAP 
analysis was conducted for the BTAP plantation sites to iden-
tify the key drivers of vegetation recovery within these affor-
estation zones. The SHAP values provided insights into the 
factors most critical in improving NDVI within these areas. 
The dual application of SHAP for the overall area and planta-
tion sites provides a clear understanding of factors influencing 
vegetation dynamics, aiding informed decisions in managing 
and optimizing afforestation strategies in KPK.

2.8   |   Accuracy Assessment

The accuracy of both the RF and ANN models was rigorously 
evaluated using several statistical metrics: root mean square 
error (RMSE), mean absolute error (MAE), coefficient of deter-
mination (R2), mean squared error (MSE), and the relative root 
mean square error (RRMSE%). These metrics were selected to 
assess the models' predictive performance across different di-
mensions comprehensively (Mehmood et al. 2024d; Xinde et al. 
2023). The RMSE was used to quantify the average magnitude 
of the error between the predicted and actual NDVI values. As 
a metric sensitive to significant errors, RMSE provides valuable 
insights into the model's accuracy by measuring how well the 
model predicts NDVI across all data points (Doulah Md and 
Islam Md 2023; Pan, Harrou, and Sun 2023) (Equation 8).

where n represents the number of observations, yi the observed 
values, and ŷ the predicted values.

The MAE was also calculated to complement RMSE. This met-
ric measures the average absolute difference between predicted 
and actual values, providing a straightforward and easily in-
terpretable assessment of prediction accuracy (Ağbulut, Gürel, 
and Biçen  2021; Nadakinamani et  al.  2022; Guo et  al.  2024; 
Zhang et al. 2024a, 2024b). Unlike RMSE, MAE treats all errors 
equally, making it useful for assessing the model's performance 
(Equation 9).

The R2 value, or the coefficient of determination, was used to 
determine the proportion of variance in NDVI that is predict-
able from the independent variables. This metric is beneficial 
for understanding the goodness of fit of the model, indicating 
how well the model captures the variability in the data (Nihar, 
Patel, and Danodia 2022; Suarez, Robson, and Brinkhoff 2023) 
(Equation 10).

where y represents the mean of the observed values.

In addition, the MSE was computed, which represents the av-
erage of the squared differences between predicted and actual 
values (Equation  11), helps identify the variance of residuals, 
offering another perspective on the model's prediction errors 
(Ahmad et al. 2023).

Finally, the RRMSE% was calculated to provide a normalized 
measure of prediction error relative to the mean observed value. 
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TABLE 4    |    Hyperparameters used for training the ANN model.

Hyperparameter Value

Number of hidden layers 4

Learning rate 0.001

Batch size 64

Number of epochs 200

Activation function ReLU

Optimizer Adam

Dropout rate 0.2

L2 regularization 0.01
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RRMSE% (Equation  12), according to Shoko, Mutanga, and 
Dube (2018), is particularly useful in making the error magni-
tude more interpretable in the context of the scale of the data. 
This metric allows for an easier comparison across different 
datasets or studies.

By computing these metrics for the RF and ANN models, we 
ensured a robust and thorough evaluation of their predictive 
accuracy. This comprehensive approach allows for a detailed 
comparison between the models, highlighting their strengths 
and weaknesses in predicting NDVI based on the chosen envi-
ronmental and demographic variables.

3   |   Results

3.1   |   LULC Classification and Change Detection 
Analysis

The LULC classification results for Khyber Pakhtunkhwa (KPK), 
Pakistan, across the years 2015, 2019, and 2023, reveal signifi-
cant changes in land cover (Table 5). The area under tree cover 
increased from 5153.57 km2 (25.02%) in 2015 to 6835.66 km2 
(29.99%) in 2023. Grassland areas expanded from 106.22 km2 
(0.52%) in 2015 to 483.78 km2 (2.12%) in 2023. This growth sug-
gests successful natural succession and practical afforestation 
efforts, contributing to improved ecosystem health. Arable 
land showed a slight fluctuation, increasing from 3164.76 km2 
(15.36%) in 2015 to 3326.47 km2 (15.45%) in 2019 and then de-
creasing to 3024.83 km2 (13.27%) in 2023 (Figure  4). Built-up 
areas expanded significantly from 1641.16 km2 (7.97%) in 2015 
to 2483.85 km2 (10.90%) in 2023, reflecting urban growth and 
development. Barren land decreased from 4251.24 km2 (20.64%) 
in 2015 to 3830.70 km2 (16.81%) in 2023. This reduction indicates 
successful land rehabilitation and increased vegetation cover, 
further supporting the positive outcomes of the BTAP.

The change detection analysis for Khyber Pakhtunkhwa (KPK) 
between 2015 and 2023 provides valuable insights into the im-
pacts of the BTAP, focusing on tree cover, shrubland, and barren 
land classes. Tree cover experienced significant growth through-
out the study period. In the initial phase from 2015 to 2019, 

tree cover increased from 4983.2 km2 to 5898.8 km2, reflect-
ing the early success of the afforestation efforts. This upward 
trend continued from 2019 to 2023, with tree cover expanding 
to 6835.66 km2. Tree cover saw a net increase of 5687.1 km2 
over the entire period. The gains in tree cover amounted to 
6352.1 km2, with a loss of only 665 km2, resulting in a 24.1% net 
change. These figures highlight the project's effectiveness in sig-
nificantly enhancing forest cover in the region.

Shrubland, a crucial vegetation type in the area, underwent 
notable changes, particularly transitioning to tree cover. From 
2015 to 2019, about 475.3 km2 of shrubland was converted to 
tree cover. This trend persisted from 2019 to 2023, with an ad-
ditional 857 km2 of shrubland transitioning to tree cover. Across 
the period, 889.2 km2 of shrubland was converted to tree cover 
(Figure 5). The net change in shrubland was 5232.7 km2, with 
6928.9 km2 gained and 1696.2 km2 lost, resulting in a net change 
percentage of 22.1%. These transitions underscore the success-
ful implementation of afforestation practices to increase forest 
cover while effectively managing shrub ecosystems. Barren land 
saw the most dramatic reduction, reflecting successful land res-
toration efforts by the BTAP. The area of barren land decreased 
from 2734.7 km2 in 2015 to 3022.7 km2 in 2019 and further to 
2293.9 km2 in 2023. Over the entire study period, barren land 
was reduced by 1847.7 km2, with total gains of 3326.9 km2 and 
losses of 2154.8 km2, resulting in a net change of 1172.1 km2 
and a net change percentage of 5%. This significant decrease in 
barren land highlights the project's effectiveness in converting 
degraded lands into productive vegetated areas, contributing to 
ecological restoration. The BTAP has markedly increased tree 
cover and effectively converted shrubland and barren land into 
forested areas, significantly improving the region's environmen-
tal health. The net increases in tree cover and the substantial 
reduction in barren land underscore the success of the BTAP's 
comprehensive approach to sustainable land use and ecological 
restoration in Khyber Pakhtunkhwa.

3.2   |   Buffer Analysis of BTAP Afforestation Project 
Within the Plantation Sites

The BTAP afforestation project's buffer analysis reveals signifi-
cant land-cover improvements across various districts in Khyber 
Pakhtunkhwa (KPK) from 2015 to 2023. The project has suc-
cessfully increased tree cover, a critical indicator of ecological 

(12)RMSE =

(
RMSE

y

)
× 100

TABLE 5    |    LULC classification results for 2015, 2019, and 2023.

Class Area (km2) (%) Area (km2) (%) Area (km2) (%)

2015 2019 2023

Tree 5153.57 25.02 5729.32 26.62 6835.66 29.99

Grassland 106.22 0.52 398.17 1.85 483.78 2.12

Swamp vegetation 473.13 2.30 206.19 0.96 264.78 1.16

Arable land 3164.76 15.36 3326.47 15.45 3024.83 13.27

Shrubland 5811.06 28.21 6123.43 28.45 5866.51 25.74

Built up 1641.16 7.97 1989.04 9.24 2483.85 10.90

Barren land 4251.24 20.64 3752.29 17.43 3830.70 16.81
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12 of 29 Ecology and Evolution, 2025

restoration. For instance, tree cover in Bajaur expanded from 
10.10% in 2015 to 19.20% in 2023, reflecting a remarkable 
90.28% growth. This positive trend is reflected in other districts, 
such as Khyber, where tree cover rose from 8.25% to 14.75% 
over the same period, marking a 78.79% increase. Similarly, 
in Mohmand, tree cover increased from 9.87% to 18.33%, an 
85.74% growth, indicating the effectiveness of the afforestation 
efforts across multiple regions (Figure  6). In addition to tree 
cover, changes in shrubland and other land-cover types provide 
critical insights into the ecological impact of the afforestation 
project. Shrubland proportions have remained relatively stable 
in most districts, with slight variations. For example, in Bajaur, 
shrubland changed from 36.91% in 2015 to 37.22% in 2023, and 
in Khyber, it remained around 35%. In Mohmand, however, 
shrubland increased from 4.80% to 7.34%, suggesting some re-
gions may be experiencing shifts in land-cover types due to the 
project.

The status of afforestation, as indicated by the increased tree 
cover across all districts, is highly encouraging. However, the 
data also highlights potential areas for further plantation efforts. 
Grassland proportions, which have increased in many districts, 
indicate areas that may still be in transition and could benefit 
from additional afforestation activities. For instance, grassland 
in Bajaur rose from 1.11% in 2015 to 6.25% in 2023, while in 
Mohmand, similar increases were noted, suggesting these areas 
have potential for further forest cover expansion. Moreover, 
arable land, which showed minor changes, represents another 
opportunity for future afforestation. In Khyber, arable land 
remained stable, while Bajaur slightly decreased from 16.42% 
to 17.95%. These areas could be targeted for conversion to for-
ested regions, thereby enhancing the overall ecological impact 
of the BTAP project. Barren land areas have shown noteworthy 
changes as well. For example, in Bajaur, barren land decreased 
from 11.35% in 2015 to 7.82% in 2023, indicating successful 

FIGURE 4    |    LULC classification maps for the years 2015, 2019, and 2023 within the study area, illustrating the spatial distribution and changes 
in LULC categories over time. The maps display eight LULC categories: Trees, Grassland, Swamp Vegetation, Arable Land, Shrubland, Built-Up 
Areas, Barren Land, and the Study Area boundary. The accompanying pie charts show the percentage composition of each LULC category for each 
respective year, highlighting shifts in land-cover types.
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conversion to vegetated land. In Khyber, barren land also re-
duced from 9.51% to 6.48% during the same period. These de-
creases reflect the project's success in transforming previously 
barren areas into productive, vegetated land. Continued efforts 
to convert remaining barren regions into forested areas is cru-
cial in sustaining the momentum of the BTAP project.

Overall, within the buffer zones of the plantation sites, significant 
land-cover changes were observed from 2015 to 2023. In 2015, bar-
ren land accounted for 28.94% of the area, which reduced to 26.07% 
in 2019 and 17.48% in 2023 (Figure S1). Meanwhile, tree cover in-
creased from 15.47% in 2015 to 19.20% in 2019, reaching 24.07% in 
2023, indicating substantial afforestation progress. Additionally, 
shrubland proportions slightly decreased from 29.80% in 2015 
to 25.79% in 2023. These changes reflect the effectiveness of the 
BTAP project in transforming barren lands into vegetated areas 
and enhancing overall ecological restoration.

3.2.1   |   Analysis of LULC Transitions Within Plantation 
Buffer Zones

The analysis of LULC changes within 500-m buffer zones around 
plantation sites reveals significant dynamics in land-cover tran-
sitions, highlighting the impact of the BTAP. Notably, there were 
16,057 transitions from barren to barren land, covering 33.4 km2, 
constituting 29.71% of all transitions (Figure 7). This indicates a 
high degree of persistence within barren land areas. However, 
significant transitions from barren land to other uses, such as 
11.7 km2 to crops (17.23%) and 1.02 km2 to trees (22.57%), suggest a 
shift toward productive land-use and potential ecological rehabil-
itation. The built-up area experienced considerable changes, with 
445,497 counts remaining built-up (13.5 km2, 8.21%). There were 
notable transitions from built-up areas to crops (1.19 km2, 16.19%) 
and shrubland (0.968 km2, 27.48%), reflecting ongoing urbaniza-
tion pressures and the potential expansion of suburban areas. The 

FIGURE 5    |    LULC change detection maps for the periods 2015–2019, 2019–2023, and 2015–2023, highlighting transitions between different 
LULC categories within the study area. Each color-coded category in the legend represents a specific type of transition, such as forest-to-grassland, 
arable-to-built up, or shrubland-to-swamp, capturing the direction and nature of land-cover changes over time. These maps reveal areas of signifi-
cant land transformation, indicating patterns of urban expansion, deforestation, and vegetation shifts, which are essential for assessing the ecological 
impact of land-use changes in the region.
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stability of built-up land cover shows continued urban and infra-
structural development, impacting land-use patterns.

Trees remained stable over 30.7 km2, accounting for 22.57% of 
the total transitions, suggesting effective preservation efforts and 
natural resilience. However, transitions from trees to shrubland 
(2.22 km2, 27.48%) and built-up areas (0.676 km2, 8.21%) high-
light urban expansion and infrastructure development pressures. 
Conversely, the transition from shrubland to trees amounted to 
7.21 km2, indicating successful restoration and afforestation ef-
forts to convert degraded lands into forested areas. This transi-
tion underscores the positive impact of BTAP in increasing tree 
cover within degraded regions. The dynamic nature of agricul-
tural land use is evident, with 24.9 km2 of arable land (21.59%) 
remaining in crops, while transitions from crops to barren land 
accounted for 0.493 km2 or 16.19% of transitions. Such shifts 
reflect changes in agricultural practices or land abandonment. 
Notably, arable land also transitioned to tree cover over 5.37 km2, 
representing 22.57%, highlighting efforts to increase forest cover 
through afforestation.

The chi-square test results, with a highly significant p value 
(< 0.001), suggest that the observed LULC changes are not ran-
dom but influenced by underlying factors likely related to the 

impacts of plantation activities. Key insights include poten-
tial deforestation near plantation sites, as indicated by transi-
tions from trees to shrubland and built-up areas, highlighting 
pressures from urbanization and infrastructure development. 
Conversely, the significant transition from shrubland to trees 
underscores successful afforestation efforts to convert de-
graded lands into forested areas. Furthermore, the stability in 
certain land-cover types, such as shrubland and tree cover, im-
plies effective management practices or inherent resilience of 
these ecosystems.

3.3   |   Hotspot Analysis of NDVI Data Within 
the Buffer Zone of Plantation Sites (2015, 2019, 
and 2023)

The hotspot analysis performed on the NDVI data for 2015, 2019, 
and 2023 provides significant insights into the spatial and tempo-
ral dynamics of vegetation in the study area. This section delves 
into the key findings, discussing the observed changes and their 
implications for the BTAP. In 2015, significant portions of the 
study region were classified as cold spots, particularly in the north-
ern and central parts, indicating areas of lower vegetation density. 
By 2019, there was a noticeable increase in hotspots, especially 

FIGURE 6    |    LULC changes in BTAP afforestation project buffer zones from 2015 to 2023. This figure illustrates the proportional changes in dif-
ferent LULC types across districts in the BTAP buffer zones over three time periods (2015, 2019, and 2023). The increase in tree cover (green bars) 
is evident across most districts, highlighting the success of afforestation efforts under the BTAP initiative. Concurrently, a decrease in barren land 
(brown bars) and built-up areas (red bars) can be observed, signifying reduced land degradation and urban sprawl in some districts. Notable shifts in 
grassland (light green) and arable land (orange) proportions suggest varying impacts of land-use policies and local ecological conditions across the 
districts. These results emphasize the regional variability in land-cover changes and the critical role of afforestation in improving vegetation cover.
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in the southern and central regions, suggesting an improvement 
in vegetation density, likely due to the afforestation efforts under 
BTAP (Figure  8). This positive trend continued into 2023, with 
more areas in the northern region also showing high vegetation 
density, indicating a sustained impact of the afforestation project. 
The spatial distribution of hotspots and cold spots suggests that 
the southern areas have consistently improved vegetation density 
over the years, potentially due to targeted afforestation efforts. 
Initially, the northern regions displayed significant cold spots in 
2015 but transitioned to include more hotspots by 2023, reflecting 
effective vegetation recovery efforts in these areas.

The hotspot analysis revealed significant changes in vegeta-
tion density over the years. In 2015, 36.76% of the study area 
was identified as high-confidence hotspots, while 28.03% were 
high-confidence cold spots. By 2019, high-confidence hotspots 
increased to 39.59%, and high-confidence cold spots decreased 
to 25.44%. In 2023, high-confidence hotspots rose to 42.56%, 
while high-confidence cold spots reduced to 21.34%. Moderate- 
and low-confidence hotspots and cold spots showed slight vari-
ations, reinforcing the positive impact of afforestation efforts 
(Table 6). In addition, Moran's I analysis for the years 2015, 2019, 
and 2023 revealed an increasing positive spatial autocorrelation, 
supporting the hotspot analysis findings. In 2015, the Moran's 
I value was 0.929, indicating strong clustering of NDVI values 
(p < 0.001). By 2019, Moran's I value slightly increased to 0.931, 
further clustering NDVI values (p < 0.001). In 2023, Moran's I 
value reached 0.933, suggesting an even stronger clustering of 
high NDVI values (p < 0.001) (Figure 9). The positive correlation 
further confirms the spatial clustering of NDVI, supporting the 
observed increase in vegetation density.

3.4   |   Interannual NDVI Trends and Distribution 
Analysis

This study examines the interannual trends of NDVI across 343 
plantation sites involved in the Billion Tree Afforestation Project 
(BTAP). Utilizing linear regression, the analysis offers insights 
into temporal changes in NDVI, thereby reflecting the ecolog-
ical impacts of the afforestation efforts. The results indicate a 
statistically significant positive trend in NDVI across all planta-
tion sites, with an estimated slope of 0.0030 (p < 0.01), signifying 
a consistent annual increase in vegetation density. This trend 
underscores the success of the BTAP in enhancing vegetation 
cover and improving ecosystem health at these plantation sites 
(Figure 10A).

The density plot of NDVI slopes reveals a right-skewed distri-
bution, suggesting that while most sites experienced moderate 
improvements, a subset achieved exceptionally high growth 
rates (Figure 10B). The peak of this distribution centers around 
a slope of approximately 0.003, further corroborating the overall 
positive trend. Notably, many sites exhibit slopes clustered near 
zero, indicating stable NDVI values with minimal change over 
time (Figure 10C). These observed variations may be influenced 
by local environmental conditions, management practices, or 
species selection, underscoring the need for tailored afforesta-
tion strategies to optimize outcomes across diverse ecological 
contexts.

Among the districts analyzed, Bajaur and Mansehra demon-
strated the most considerable NDVI improvement, with aver-
age slopes of 0.0063 and 0.0061, respectively, reflecting highly 
effective afforestation efforts. Abbottabad and Swat showed 
intermediate performance, with slopes of 0.0040 and 0.0038, 
suggesting moderate success that could benefit from enhanced 
management strategies. Conversely, Lower Dir exhibited the 
lowest improvement, with an average slope of 0.0015, highlight-
ing significant challenges in this region.

3.5   |   Model Performance and Validation

The ANN model's architecture, optimized through careful hy-
perparameter tuning, was subjected to training and validation 
to evaluate its predictive performance. The training process 
spanned 200 epochs, which allowed the model to converge ef-
fectively without imposing excessive computational demands 
(Figure 11A), the training and validation loss curves converged 
smoothly, indicating that the model learned effectively from the 
data without overfitting. This result underscores the success 
of the chosen hyperparameters in balancing model complexity 
with generalization ability.

Further evaluation of the model's performance is depicted in 
Figure 11B, which shows a scatter plot comparing the predicted 
NDVI values against the observed NDVI values. The strong 
alignment of the data points along the diagonal line suggests a 
high degree of accuracy in the model's predictions, with minimal 
deviation from the actual NDVI values. The R2 value of 0.8556 
further confirms that the model explains approximately 85.56% 
of the variance in the observed NDVI values. Additionally, the 

FIGURE 7    |    Sankey diagram illustrating the transitions between dif-
ferent LULC classes within 500-m buffer zones around plantation sites 
from 2015 to 2023.
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RMSE of 0.0607 indicates a low average prediction error, fur-
ther validating the model's robustness (Table  7). The testing 
phase of the model also demonstrated strong performance met-
rics. The MSE was 0.0037, with an RMSE of 0.0607 and an R2 
value of 0.8556. The RRMSE% was calculated at 17.87%, and the 
MAE was 0.0461, reflecting the model's accuracy in predicting 
NDVI values based on the input variables. The validation phase 
involved testing the model on new sites of plantation across 
three districts (Mardan, Charsada, and Peshawar), outside the 
area where the model was trained. This external validation 
highlights the model's ability to generalize to unseen data. The 
validation results include an MSE of 0.0057, RMSE of 0.0758, 
and an R2 value of 0.7818, indicating that the model explains ap-
proximately 78.18% of the variance in the observed NDVI values 

(Figure S4). The MAE of 0.0606 and RMSE% of 21.80% suggest 
a moderate level of accuracy when applied to these new sites, 
demonstrating the model's practical utility in predicting NDVI 
for regions outside the training area.

In addition to the testing results, the training data exhibited 
strong performance, indicating that the model was well-tuned 
during the training phase. The training data results are as 
follows: MSE of 0.0006, RMSE of 0.0255, and an R2 value of 
0.8765. The MAE for the training data was 0.0191, indicating 
the model's effectiveness in learning from the training dataset. 
Additionally, the RRMSE% for the training data was calculated 
to be 7.42%, which reflects the model's accuracy relative to the 
average magnitude of the observed NDVI values. The systematic 

FIGURE 8    |    Spatial distribution of hotspots and cold spots in NDVI data within BTAP plantation buffer zones (2015, 2019, and 2023). This figure 
shows the spatial pattern of hotspots and cold spots of NDVI values within the BTAP plantation buffer zones for the years 2015, 2019, and 2023, using 
the Getis-Ord Gi* analysis. Red areas represent statistically significant hotspots, indicating regions with consistently high NDVI values, while blue 
areas represent cold spots, indicating consistently low NDVI values. The spatial distribution of these areas provides insights into regions with high 
vegetation productivity and regions potentially affected by degradation or other stressors.
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selection of hyperparameters, combined with regularization 
and continuous monitoring during training, resulted in a strong 
model capable of accurately predicting NDVI across diverse 
environmental conditions. The selected hyperparameters min-
imized the validation loss, ensuring the model could generalize 
well to unseen data.

The model's spatial predictions of NDVI, shown in the predicted 
NDVI raster Figure 12A, provide a detailed distribution of pre-
dicted values across the study area, ranging from −0.0462 to 
0.6349. Residual and RMSE rasters were generated to assess spa-
tial accuracy. The residual raster Figure 12B displays prediction 
errors, with values from −0.2713 to 0.2672, indicating areas of un-
derestimation and overestimation. The RMSE raster Figure 12C 
shows average prediction errors, with values from 0.0000007 to 
0.2713, highlighting regions of high accuracy and areas where 
the model's performance was less reliable. The classified RMSE 
accuracy map further categorizes the study area into high-, 
moderate-, and low-accuracy zones, covering 15,848.26 km2, 
6912.53 km2, and 353.23 km2, respectively Figure 12D. This clas-
sification clearly visualizes the model's performance across the 
region, indicating where predictions are most reliable.

An uncertainty analysis using Monte Carlo simulations was 
conducted to evaluate the reliability of the model's predictions. 
As visualized in Figure S3, predicted NDVI values are shown 
alongside their 95% confidence intervals, which represent the 
range of likely true values for each observation. Observations 
with high uncertainty, defined as having confidence interval 
widths exceeding 0.05, are highlighted in red. These observa-
tions indicate areas where the model may require refinement 
or where additional input data could enhance reliability. This 
analysis not only highlights the variability in predictions but 
also underscores the model's overall stability, with the majority 
of predictions exhibiting narrow confidence intervals and high 
reliability.

3.6   |   SHAP Analysis of NDVI Predictors in 
the Study Area and Plantation Sites

A deeper understanding of the factors influencing NDVI 
predictions was achieved by employing SHAP to evaluate 
the relative importance of various environmental and demo-
graphic variables. The analysis was performed separately for 
the entire study area and the specific plantation sites associ-
ated with the BTAP. Elevation emerged as a key factor in the 
broader study area, consistently showing a strong negative 
influence on NDVI. This negative impact was particularly ev-
ident at elevations above 2000 m, where harsh environmental 
conditions, such as lower temperatures and shorter growing 
seasons, significantly limit vegetation growth. The average 
SHAP value for elevation was approximately −0.0506, high-
lighting its critical role in reducing NDVI at higher altitudes 
Figure  13C, where a decline in NDVI with increasing ele-
vation is apparent. Precipitation showed a mixed influence, 
with SHAP values indicating positive and negative effects de-
pending on specific regional conditions. The temperature had 
a more balanced impact, with average SHAP values around 
0.0199, reflecting its varying influence on NDVI based on the 
local climate. On the other hand, soil moisture contributed T
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positively to NDVI, with an average SHAP value of 0.0326, 
underscoring its importance in supporting vegetation across 
the study area Figure 13B.

In the plantation sites associated with the BTAP, the SHAP 
analysis identified soil moisture as the most influential vari-
able, with a strong positive impact on NDVI. The average SHAP 
value for soil moisture was approximately 0.0498, indicating 
its vital role in promoting vegetation growth within these af-
forestation zones. Precipitation was also a significant factor, 
with an average SHAP value of 0.0398, emphasizing the impor-
tance of adequate rainfall for the success of plantation efforts. 
Additionally, SR and POP positively influenced NDVI, with av-
erage SHAP values of 0.0264 and 0.0147, respectively, reflecting 
their roles in vegetation recovery within these managed envi-
ronments Figure  13A. Elevation in the plantation sites had a 
less noticeable but relevant impact, with an average SHAP value 
of 0.0117. Unlike the entire study area, elevation's influence here 
was more balanced, suggesting that the controlled conditions 
within the plantation sites helped mitigate some adverse effects 
typically associated with higher altitudes. This finding reflects 
the targeted management strategies implemented in these areas 
to counteract the challenges posed by elevation.

4   |   Discussion

4.1   |   BTAP Impact on Forest Cover and Land-Use 
Dynamics

The results of this study demonstrate the significant positive 
impact of the BTAP in KPK on forest cover and overall land-
use dynamics between 2015 and 2023. Tree cover increased 

from 25.02% (5153.57 km2) in 2015 to 29.99% (6835.66 km2) in 
2023, while barren land decreased from 20.64% (4251.24 km2) to 
16.81% (3830.70 km2), indicating the success of the afforestation 
efforts in promoting ecological restoration. Similar afforesta-
tion projects have shown comparable outcomes; for instance, 
the “One Million-Mu Plain Afforestation Project” in Beijing led 
to increased forest cover, though with varying greenness levels 
(Chen, Wang, and Jin 2021; Yu et al. 2018).

Additionally, the natural afforestation observed on abandoned 
agricultural lands in Russia and Belarus during the post-Soviet 
period further underscores the positive impact of such ini-
tiatives on forest recovery and ecological restoration (Ershov 
et al. 2022). These comparative studies reinforce the success of 
the BTAP in enhancing forest cover and environmental health 
in the region. Using Sentinel-2 imagery and the RF algorithm 
resulted in high-accuracy LULC classifications, with an over-
all accuracy exceeding 85% for the years analyzed. Comparable 
studies have demonstrated similar efficacy in using RF for land-
cover classification. For instance, a method combining Landsat 
time series data with RF achieved an accuracy of 87% in pre-
dicting afforestation areas, underscoring the effectiveness of 
these techniques in large-scale afforestation monitoring (Avci 
et al. 2023; Cavalli et al. 2023).

Additionally, research mapping forest changes in Guangdong 
Province using Landsat and PALSAR data reported classifica-
tion accuracies between 75% and 85%, further validating the 
reliability of these methods for accurate LULC classification 
(Shen et al. 2019). These studies highlight the robustness of the 
approach used in this analysis. This allowed for a detailed anal-
ysis of changes over time, showcasing the effectiveness of BTAP 
in reversing deforestation and enhancing vegetation density. 

FIGURE 9    |    Moran's I scatterplots for NDVI values in 2015, 2019, and 2023 within BTAP plantation buffer zones.
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Similar outcomes were observed in a World Bank project in 
Nigeria and the Three-North Afforestation Program in China, 
which significantly increased vegetation cover and reversed 
deforestation trends (Zhu et al. 2017). These studies affirm the 
positive impact of BTAP on ecological restoration.

4.2   |   Localized Impacts and Spatial Variability in 
Afforestation

Buffer analysis within the plantation zones revealed significant 
localized improvements, with tree cover in districts like Bajaur, 
Khyber, and Mohmand increasing by 90.28%, 78.79%, and 
85.74%, respectively, from 2015 to 2023, like other successful af-
forestation projects that enhanced forest cover through targeted 
efforts (Ullah et al. 2021). This localized success is likely attrib-
utable to targeted afforestation strategies and favorable environ-
mental conditions within these buffer zones, as shown in studies 
where strategic planning and species selection significantly im-
proved outcomes (Qiu et al. 2019). However, the persistence of 
barren land in some districts, such as the 17.48% observed in 
2023 within the plantation buffer zones, suggests that additional 
efforts are required to fully rehabilitate these areas, consistent 
with findings that ongoing interventions are necessary in arid 
regions (Liu et al. 2018; Tajik, Ayoubi, and Zeraatpisheh 2020). 
The results of the hotspot analysis, which showed an increase in 

high-confidence hotspots from 36.76% in 2015 to 42.56% in 2023 
and a corresponding decrease in high-confidence cold spots 
from 28.03% to 21.34%, further confirm the positive vegetation 
trends resulting from BTAP interventions, aligning with stud-
ies demonstrating satisfactory spatial variability in afforestation 
outcomes (Wu et al. 2021).

4.3   |   Predictive Performance and Spatial 
Consistency in Afforestation

The machine-learning-based NDVI predictions using an ANN 
model yielded an R2 value of 0.8556, with an RMSE of 0.0607, 
demonstrating strong predictive performance, like the high ac-
curacies reported in studies using ANNs for environmental pre-
dictions (Celik et  al.  2022; Emadi et  al.  2020). SHAP analysis 
identified soil moisture (average SHAP value of 0.0498) and pre-
cipitation (average SHAP value of 0.0398) as the most influential 
variables driving vegetation growth, consistent with findings 
that emphasize the critical role of these factors in environmen-
tal modeling (Ren, Ling, and Wang 2023; Zhu et al. 2021). These 
findings suggest that successful afforestation in this region 
heavily depends on adequate water availability, aligning with 
previous research highlighting the importance of moisture for 
vegetation recovery (Akram et al. 2022; Fernández 2023; Otkin 
et al. 2019; Anees, Yang, and Mehmood 2024; Pan et al. 2023).

FIGURE 10    |    NDVI analysis across plantation sites. (A) Boxplot depicting the annual distribution of NDVI values from 2000 to 2023, with a trend 
line indicating the overall increase in vegetation greenness over time. (B) Histogram with density plot showing the distribution of the slope of NDVI 
trends across all plantation sites, highlighting the generally positive trend in NDVI. (C) Histogram illustrating the count of NDVI trend slopes for 
different districts, with each color representing a specific district, indicating variability in vegetation trends across the study area.
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The identification of soil moisture and precipitation as key pre-
dictors offers actionable insights for afforestation management 
(Andreevich et al. 2020; Usoltsev et al. 2020; Shobairi et al. 2022; 
Usoltsev et al. 2022; Gong et al. 2024). For example, areas with 
low soil moisture could benefit from interventions such as 
soil moisture retention techniques, including mulching and 
soil amendments, to enhance vegetation survival and growth 
(Aslam et al. 2022). Additionally, aligning plantation schedules 
with periods of adequate rainfall can maximize the establish-
ment success of young vegetation. These strategies, guided by 
SHAP findings, enable targeted resource allocation and im-
proved decision making in afforestation initiatives, ultimately 
enhancing the resilience and effectiveness of such projects.

The spatial autocorrelation results, measured by Moran's I 
statistic, showed a consistent increase in positive spatial auto-
correlation from 0.929 in 2015 to 0.933 in 2023 (p < 0.001), fur-
ther supporting the observed clustering of NDVI values and 

indicating a sustained and nonrandom distribution of vegetation 
improvements over the study period. This finding aligns with 
studies on vegetation patterns in earthquake-affected Southwest 
China, where Moran's I revealed significant clustering of dam-
aged vegetation (Li et  al.  2019). Another study using Moran's 
I to detect land-cover change patterns in a large-scale remote 
sensing imager demonstrates this statistic's effectiveness in 
identifying spatial clustering (Kiani et al. 2023; Self et al. 2023). 
This spatial consistency underscores the effectiveness of BTAP 
not only in isolated pockets but across the broader landscape of 
KPK, reflecting the broad-scale impact of the project.

While the BTAP has achieved substantial gains in forest 
cover, the findings also highlight areas needing further at-
tention, particularly in districts where barren land remains 
high or where tree cover improvements have been minimal. 
Similar challenges in reforestation, such as those related to 
seedling survival and land degradation, have been observed 
in other regions, underscoring the need for more intensive 
efforts in these areas (Flores et al. 2021; Román-Dañobeytia 
et al. 2015). The persistence of barren land at 17.48% within 
the buffer zones suggests the need for more intensive refor-
estation efforts, a necessity echoed in studies emphasizing 
continuous forest management to address land-use challenges 
and optimize reforestation outcomes (Song et al. 2023; Warner 
et al. 2022). Moreover, the transition of some areas from tree 
cover to shrubland and built-up land, such as the 2.22 km2 
transition to shrubland and 0.676 km2 to built-up areas, sug-
gests potential pressures from urbanization and land-use 
change, which could undermine the long-term success of the 
project. This pattern is consistent with research highlighting 
the negative impacts of urbanization on forest ecosystems and 

FIGURE 11    |    (A) Training and validation losses of the ANN model. (B) Scatter plot of predicted versus observed NDVI values.

TABLE 7    |    Performance metrics of the ANN model.

Metric
Training 

data
Testing 

data

Validation 
data (new 

sites)

MSE 0.0006 0.0037 0.0057

RMSE 0.0255 0.0607 0.0758

R2 0.8765 0.8556 0.7818

MAE 0.0191 0.0461 0.0606

RMSE% 7.42% 17.87% 21.80%
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the challenges it poses to maintaining forest cover (Miroshnyk 
et al. 2022; Rai et al. 2023).

4.4   |   Limitations

This research adopted an all-around approach by running 
hotspot and interannual analyses from 2000 to 2023 and con-
sidering the ground validation of the LULC classification for 
improved accuracy in the results. Yet, a few limitations exist. 
Although ground truth and site visits were done for rigorous 
verification of the LULC classification and effectiveness of 
BTAP, inherent challenges in remote sensing, such as reso-
lution constraints and the potential influence of atmospheric 
conditions on satellite data, can never be fully resolved. 
Moreover, while the study period's length allows for captur-
ing long-term trends, the dynamism and complexity of most 
ecological processes may mean that some subtle or delayed ef-
fects from afforestation are not entirely captured within this 
study. The integration of ground-truthing and site visits further 

strengthens the validity of results, reducing the limitations pre-
sented by this method.

4.5   |   Future Implications

Such future studies could benefit from further integrating re-
mote sensing with ground-based data collection, potentially 
through higher resolution or hyperspectral imagery, LiDAR, and 
UAV data. These technologies offer enhanced detail on vegeta-
tion dynamics, canopy structure, and biomass, which could com-
plement Sentinel-2 imagery to provide a more comprehensive 
understanding of afforestation impacts. Extending the study du-
ration beyond 2023 and increasing the frequency of temporal ob-
servations would also help capture long-term ecological changes 
and potential lag effects resulting from afforestation activities. 
Moreover, employing more sophisticated machine-learning 
models could improve predictive accuracy, accommodating the 
complexities of ecological data and the interactions between en-
vironmental and socioeconomic variables. These advancements 

FIGURE 12    |    Spatial analysis of NDVI prediction accuracy using an ANN model. (A) ANN prediction map displaying predicted NDVI values 
across the study area. (B) Residual map illustrating the difference between observed and predicted NDVI values, highlighting areas of over- and 
underestimation. (C) RMSE map shows the RMSE of the predictions, with lower values indicating better model performance. (D) Accuracy map 
categorizing the study area into zones of high, moderate, and low accuracy based on the residuals and RMSE, providing insight into the model's 
performance across different regions.

 20457758, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.70736 by N

ational Institutes O
f H

ealth M
alaysia, W

iley O
nline L

ibrary on [05/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



22 of 29 Ecology and Evolution, 2025

would support the development of sensitive, adaptive, and sus-
tainable afforestation strategies, ensuring that projects like BTAP 
continue to make positive contributions to environmental resto-
ration. Our findings demonstrate the effectiveness of large-scale 
afforestation in landscape restoration, advocating for continuous 
monitoring and adaptive strategies to address emerging chal-
lenges. The integration of remote sensing and machine learn-
ing offers a robust framework for evaluating and guiding these 
efforts, providing data-driven insights that are essential for sus-
tainable land management and conservation.

5   |   Conclusion

The BTAP assessment conducted in this study demonstrates 
the effectiveness of large-scale afforestation efforts in Pakistan 
using advanced remote sensing and machine-learning tech-
niques. Our approach enabled accurate LULC classification, 

revealing a substantial increase in tree cover from 25.02% in 
2015 to 29.99% in 2023, and a corresponding decrease in barren 
land. Additionally, the hotspot analysis and spatial autocorrela-
tion confirmed positive clustering in vegetation recovery, while 
the ANN model's predictive accuracy underscored the criti-
cal influence of soil moisture and precipitation on vegetation 
health. While these findings affirm the success of the BTAP, 
they also highlight the need for continuous monitoring and 
adaptive management to address challenges such as the per-
sistence of barren land and transitions to shrubland or built-up 
areas in some regions. We recommend that policymakers and 
project managers prioritize ongoing monitoring frameworks 
and adaptive strategies to ensure that afforestation efforts re-
spond effectively to environmental changes. Engaging local 
communities in these efforts is essential, as their involvement 
can enhance land stewardship and contribute to sustainable 
management practices. Furthermore, implementing soil mois-
ture retention techniques and optimizing planting schedules to 

FIGURE 13    |    SHAP analysis of NDVI prediction model. (A) SHAP summary plot for the entire study area, illustrating the influence of various 
environmental and demographic variables on NDVI predictions. The magnitude and direction of SHAP values indicate the contribution of each vari-
able, with positive values boosting predictions and negative values reducing them. (B) SHAP summary plot for the BTAP plantation sites, focusing on 
critical variables affecting NDVI predictions within these zones. Notably, soil moisture (SM) and precipitation (Ppt) emerge as dominant predictors. 
(C) Scatter plot depicting the relationship between SHAP values and elevation, revealing a nonlinear influence of elevation on NDVI predictions. 
Red dots represent negative contributions, while blue dots signify positive contributions, emphasizing the varying impact of elevation across the 
landscape.
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align with precipitation patterns can support vegetation resil-
ience in arid regions. By integrating data-driven insights and 
fostering community partnerships, afforestation programs like 
the BTAP can achieve more sustainable and lasting ecological 
outcomes.

5.1   |   Recommendations

To enhance the effectiveness and sustainability of afforestation 
efforts, the following actions are recommended:

1.	 Intensify reforestation efforts in persistently barren areas 
by utilizing locally adapted species.

2.	 Implement enhanced monitoring and adaptive manage-
ment strategies to ensure continuous sustainability.

3.	 Strengthen community engagement to align afforestation 
initiatives with socioeconomic needs.

4.	 Balance urbanization with ecological restoration through 
stringent land-use planning.

5.	 To refine afforestation strategies, integrate higher resolu-
tion satellite data and advanced machine-learning models 
in future research.
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