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ABSTRACT

This study evaluates the Billion Tree Afforestation Project (BTAP) in Pakistan's Khyber Pakhtunkhwa (KPK) province using
remote sensing and machine learning. Applying Random Forest (RF) classification to Sentinel-2 imagery, we observed an in-
crease in tree cover from 25.02% in 2015 to 29.99% in 2023 and a decrease in barren land from 20.64% to 16.81%, with an accu-
racy above 85%. Hotspot and spatial clustering analyses revealed significant vegetation recovery, with high-confidence hotspots
rising from 36.76% to 42.56%. A predictive model for the Normalized Difference Vegetation Index (NDVI), supported by SHAP
analysis, identified soil moisture and precipitation as primary drivers of vegetation growth, with the ANN model achieving an
R? of 0.8556 and an RMSE of 0.0607 on the testing dataset. These results demonstrate the effectiveness of integrating machine
learning with remote sensing as a framework to support data-driven afforestation efforts and inform sustainable environmental
management practices.

1 | Introduction removes large volumes of CO, from the atmosphere, which is

crucial in combating global warming (Haider et al. 2017; Jallat

Afforestation is important to global climate change mitigation,
land rehabilitation, and biodiversity enhancement strategies. It
has recently been announced that the BTAP Project in Pakistan
is one of seven ambitious global initiatives and policy tools em-
phasizing scaling up forest landscape restoration (Kamal, Ali,
and Yingjie 2018; Ullah et al. 2020). This afforestation activity

et al. 2021; Khan et al. 2020). It also enhances ecosystem ser-
vices related to carbon sequestration and wildlife conservation
(Chen and Zhang 2023; Wang et al. 2022; Wang et al. 2024).
Remote sensing technologies have dramatically changed how
afforestation programs are monitored and evaluated, predom-
inantly through high-resolution satellite imagery (Shawky
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et al. 2023; Zha et al. 2020). Such technological advancement
now allows detailed global land observation, giving open access
to imagery of all spatial scales from local to global (Galidaki
et al. 2017; Zhang et al. 2024a, 2024b). The technology enables
large-scale, comprehensive analyses to increase the extent and
resolution of studies to a new level (Colomina and Molina 2014;
Huang et al. 2018).

Furthermore, when integrated with cloud computing platforms
such as Google Earth Engine (GEE), giving advanced extensive
data processing capabilities, remote sensing becomes an even
more potent tool for the evaluation and monitoring of afforesta-
tion activities on a global scale (Anees et al. 2022a; Mehmood
et al. 2024b). For instance, two panels of Landsat program-
derived, time series surface reflectance data from satellites
(Fassnacht et al. 2019; Furniss et al. 2020), spanning four de-
cades, have added much insight into land-use and forest cover
changes on the surface of the Earth (Smith et al. 2021). They
are beneficial data to test afforestation and deforestation criteria
and serve as an example of metrics in gauging the success or
failure of projects like the BTAP. Advanced classification algo-
rithms, such as RF, can successfully manage and analyze this
vast reference database through platforms such as GEE (Cheng
et al. 2022; Qasimi et al. 2023). RF is beneficial in this regard,
as over the years, it has shown very high accuracy and, at the
same time, meager rates of overfitting due to its ability to model
intricate, non-Gaussian relationships among variables (Ma
etal. 2020; Mehmood et al. 2024e; Pang, Chang, and Chen 2022).

The Landsat program has been acquiring multispectral imag-
ery for the last several decades (Irons, Dwyer, and Barsi 2012),
which has led to spatially continuous and extensive data records
of long-term observations of land surface reflectance (Ouchra,
Belangour, and Erraissi 2023; USGS 2022). Such records are
essential for assessing changes in land use and modifications
in the cover of forests from the past. They are irreplaceable in
estimating the impacts of afforestation projects like the BTAP.
This is a significant strength of the GEE platform: it can pro-
cess and analyze this massive amount of data through advanced
classification methods, such as RF. The RF algorithm, an up-
to-date solution for better predictive power and generalization
capacity, provides a good measure for preventing overfitting and
increases accuracy in environmental assessments.

Remote sensing and machine learning have been increas-
ingly highlighted in studies to monitor large-scale afforesta-
tion, mainly through commercial plantations (Kupssinskii
et al. 2020; Zheng, Abd-elrahman, and Whitaker 2021; Anees
et al. 2024a). The extensive integration of GEE and Landsat
data has widely been applied to assess changes in forest cover
and the sustainability of afforestation initiatives. Among dif-
ferent machine-learning algorithms, RF and ANN performed
well for land-cover classification and afforestation monitoring
(Mehmood et al. 2024a; Shahzad et al. 2024). RF has demon-
strated high success in these types of studies at large scale and
satisfactory accuracy, as it is typically able to separate well be-
tween different land-cover types, with strong lines of evidence
from numerous empirical case examples worldwide. In addition,
the Random Forest's ability to model complex and nonlinearities
in ecological data provides more efficient information for assess-
ing afforestation programs (Hussain et al. 2024b).

In addition, combining remote sensing methods with biodiver-
sity assessments has significantly increased biodiversity, partic-
ularly in degraded ecosystems (Zhang et al. 2024a, 2024b; Chen
et al. 2023; Xie et al. 2023; Jiang et al. 2023). Evidence from
numerous studies indicates that combining vegetation indices,
such as NDVI, with machine-learning models can effectively
assess the ecological impacts of afforestation and support more
strategic conservation efforts (Brieva et al. 2023; Mehmood
et al. 2024c; Roy 2021; Anees et al. 2024a). Sustained, long-
term monitoring is increasingly recognized as crucial, as these
processes often become observable only over decades. Scholars
advocate for using temporal datasets to detect the frequently
gradual or delayed impacts of afforestation initiatives, which are
usually underestimated in short-term studies (Nazir et al. 2019;
Ullah et al. 2023; Zheng et al. 2024).

The applications of remote sensing to massive afforestation ef-
forts face significant challenges and offer great opportunities,
but there is a need for continuous innovation and complemen-
tary data sources. Coupling in situ validation with the integra-
tion of ecological models and remote sensing datasets enables
long-term prediction of ecosystem processes with a high level
of reliability, together with an enhancement in accuracy when
undertaking assessments (Doelman et al. 2020). Besides, proper
monitoring of the effects of afforestation on the storage of soil
carbon, diversity in microorganisms, and general health status
of an ecosystem is essential in the provision of accurate infor-
mation, as noted by studies focusing on the impacts of afforesta-
tion in different regions (Burke et al. 2023; Cao et al. 2011; Kong
et al. 2022; Nave et al. 2013).

Approaches to integrating remote sensing data with biodi-
versity assessments have been demonstrated to improve our
understanding of ecosystems massively (Bunce et al. 2014).
Researchers have shown the efficacy of coupling vegetation in-
dices, such as the NDVI, with machine-learning methods for
characterizing the ecological impacts of afforestation, thereby
facilitating better conservation planning (Xiao, Xiao, and
Sun 2020; Yao, Xiao, and Ma 2021; Anees et al. 2024a, 2024b).
Regional-based strategies benefit from more grounded policy
support, while location specific investments are customized to
local conditions (Jodo et al. 2018).

The need for long-term, consistent monitoring has gained rec-
ognition as necessary to capture the dynamic nature of forest
ecosystems over time. Scholars propose the addition of temporal
datasets to detect delayed or typically slow effects, often under-
estimated in brief-term studies of initiatives like reafforestation
(Hao et al. 2022; Zhang et al. 2022). Although implementing re-
mote sensing within large-scale afforestation projects is filled
with limitations and potential, continuous change through mul-
tisensor data sourcing is essential. The coupling of ecological
models with remote sensing data can provide improved predic-
tions for long-term outcomes, as this approach is validated by
ground surveys, thereby increasing precision, reliability, and
predictive accuracy (Pan, Harrou, and Sun 2023; Pan et al. 2023;
Wang and Fan 2021).

While considerable progress has been made in applying remote
sensing and machine learning to monitor afforestation efforts,
existing work often lacks detailed long-term examination of
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localized ecological outcomes (Anees et al. 2024a). Additionally,
advanced techniques such as ANN and spatial analysis meth-
ods like hotspot analysis and Moran's I are not well exploited
in evaluating vegetation dynamics associated with afforestation
projects. This study aims to (1) review the ecological impact on
land-use and land-cover (LULC) changes in response to the
BTAP from 2015 to 2023, mainly focusing on rapid area changes
using Sentinel-2 imagery combined with the RF algorithm in
the loess lands of Khyber Pakhtunkhwa (KPK) province. The
research also measured major land-cover type changes, such
as tree cover, barren lands, and shrublands. (2) Conduct buffer
analysis, hotspot analysis, and Moran's I spatial autocorrelation
within the BTAP plantation buffer zones to study vegetation
change over time. (3) Utilize machine-learning methods, partic-
ularly ANNS, to forecast NDVI from biotic and abiotic factors,
incorporating SHAP analysis to determine the primary drivers
of vegetation change. This study explored how to effectively
study large-scale afforestation initiatives while drawing out key
lessons applicable to forest cover and ecological restoration ef-
forts more broadly.

2 | Methods and Materials
2.1 | Study Area

The study was conducted in the Khyber Pakhtunkhwa (KPK)
province of Pakistan, located between latitudes 33.0°N and
36.0°N and longitudes 70.5°E and 73.5°E (Ahmed 2011;
Mohiuddin 2007). KPK is a province with substantial geo-
graphic and ecological variation, making it an ideal location for
the BTAP. Situated in the northwestern region of Pakistan, KPK
is bordered by the Hindu Kush mountains to the north and the
Indus River to the south, encompassing a range of climates from
subtropical plains in the south to temperate and alpine zones in
the north (Sohail et al. 2023) (Figure 1). The study focused on

nine districts within KPK: Bajaur, Buner, Dir Lower, Dir Upper,
Kalam, Khurum, Khyber, Malakand, and Mohmand. These dis-
tricts were selected due to their critical role in the BTAP, which
aims to rehabilitate degraded lands and enhance forest cover
across the province.

The climate in KPK varies significantly across these districts.
Southern regions, such as Buner and Khyber, experience hot
summers and mild winters, while northern areas, includ-
ing Kalam and Dir Upper, are characterized by cold win-
ters with significant snowfall (Ali, Khan, and Ahmad 2018;
Muhammad 2023). This climatic variability, combined with the
province's complex topography, ranging from lowland plains
to high mountain peaks, significantly influences the types of
vegetation that thrive in the region (Bacha et al. 2021; Ul-Haq
et al. 2019; Anees et al. 2024b). This study leverages the diverse
landscape and climate to investigate the effects of afforestation
initiatives, like the BTAP, under different environmental condi-
tions. The study sites were chosen based on their ecological sig-
nificance, existing forest cover, and strategic importance within
the BTAP framework. Additionally, the socioeconomic con-
text of KPK, where local communities depend heavily on nat-
ural resources for their livelihoods, must be considered (Khan
et al. 2019). The success of the BTAP is contingent on not only
achieving ecological objectives but also promoting sustainable
land-use practices that benefit these communities.

2.2 | Dataset and Preprocessing

Our study focuses on 344 plantation sites located in nine dis-
tricts of KPK, Pakistan, which are strategically selected for the
assessment of the BTAP. These sites are essential reference
points for evaluating the project’s impact on land-cover changes.
The geographical distribution of these plantation sites is catego-
rized by district (Table 1).
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FIGURE1 | Map of the study area.
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This dataset offers an in-depth view of the plantation sites, en-
abling a thorough evaluation of the BTAP and its impact on
ecological restoration and sustainable land use across KPK. The
spatial variability of the sites across different districts ensures a
comprehensive assessment of the project's impact under diverse
regional ecological and geographical conditions.

This study used Sentinel-2 satellite imagery to assess LULC
changes from 2015 to 2023, specifically focusing on 2015, 2019,

TABLE1 | Distribution of plantation sites across districts in Khyber
Pakhtunkhwa for the BTAP afforestation project (2015-2023).

and 2023. The imagery was acquired for October and November,
a post-monsoon period characterized by significant vegeta-
tion growth and minimal cloud cover (Qiu et al. 2019; Valero
et al. 2021). These periods were selected to exploit optimal con-
ditions for clear, cloud-free habitats necessary for accurate LULC
mapping and vegetation assessment (Yan et al. 2022). Sentinel-2
imagery was preprocessed in the GEE environment using the
Sen2Cor algorithm to create cloud and shadow masks, ensuring
the selection of cloud-free pixels (Bui et al. 2022; Li et al. 2018; Xu,
Li, and Chen 2022). To further enhance image quality, monthly
composites for October and November were generated using me-
dian reflectance values, effectively mitigating residual clouds' im-
pact or atmospheric disturbances (Castaldi et al. 2023; Rumora,
Miler, and Medak 2020). Additionally, NDVTI rasters for the re-
spective years were derived from these processed images, provid-
ing a solid foundation for further analysis. The detailed schematic
diagram of the research methodology is explained in Figure 2.

Buffer and autocorrelation analyses were performed to assess
vegetation health and spatial distribution patterns around
the plantation locations using these NDVI rasters as inputs.
Alongside NDVI, a wide range of environmental variables, in-
cluding temperature (temp), precipitation (Ppt), solar radiation
(SR), soil moisture (SM), elevation, slope, aspect, and population
density (POP) at the nearest second-level administrative unit
level to site locations, were considered as drivers for predic-
tive NDVI models using machine-learning approaches (Anees
et al. 2024a) (Table 2). Utilizing the full-scale computational
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capabilities of GEE, the processing workflow resulted in high-
quality, low-cloud cover composites, ideally suited for LULC
classification and change detection analyses. The carefully com-
piled datasets offer a strong and dependable foundation for as-
sessing the ecological impacts of the BTAP plantation sites in
Pakistan.

2.3 | LULC Classification Using the Random
Forest Algorithm

To classify land use and land cover (LULC) for the years 2015,
2019, and 2023, we employed the Random Forest (RF) algo-
rithm, a robust and widely recognized machine-learning tech-
nique known for its exceptional accuracy in remote sensing
applications (Badshah et al. 2024; Kumar and Agrawal 2023).
The classification process was designed to categorize the land-
scape into seven distinct classes: Trees, Grassland, Swamp
Vegetation, Arable Land, Shrubland, Built-up Areas, and
Barren Land. Training samples for each LULC class were me-
ticulously collected from high-resolution satellite imagery and
validated against ground truth data where available (Hussain
et al. 2024a). These samples were carefully distributed across
the study area to ensure each class's balanced and representa-
tive dataset.

The spectral bands from Sentinel-2 imagery, including visible,
near-infrared, and short-wave infrared bands, were utilized as
input features for the classification. In addition to these bands,
vegetation indices such as the NDVI were calculated and in-
corporated to enhance the discrimination of vegetation related
classes (Marino 2023; Marlina 2022; Anees et al. 2024b). The
RF classifier was trained using thoroughly gathered train-
ing samples (Lange et al. 2017). The RF algorithm operates by
constructing an ensemble of decision trees during the training
phase, subsequently deriving its classification output based on
the mode of the individual trees' predictions (Jun 2021). Key
parameters of the RF classifier, including the number of trees
and the “mtry” parameter, were systematically optimized to
enhance overall classification accuracy. We used 500 decision
trees, which optimized the balance between performance and
computational efficiency. Additionally, the “mtry” parameter,
controlling the number of variables available for splitting at each
node, was tuned through a fivefold cross-validation approach.
This cross-validation framework provided a robust evaluation
process, ensuring that performance metrics were reliable and
not biased by any single data partition. This parameter tun-
ing was essential to ensure both model accuracy and stability
(Anees et al. 2022b; Khan et al. 2024).

The refined RF model was subsequently applied to prepro-
cessed Sentinel-2 imagery for 2015, 2019, and 2023, producing
classified LULC maps for each period. Each pixel was catego-
rized into one of the seven LULC classes based on the model's
predictions during this process. Postprocessing of these maps
included general cleanup tasks like removing isolated pixels
and smoothing out class boundaries to improve the overall
consistency and accuracy of the classification results (Gupta,
Kanga, and Mishra 2024; Wijaya, Munir, and Utama 2023). An
independent set of validation samples was employed to eval-
uate classification accuracy. To ensure spatial independence

and reduce potential overlap with the training data, these val-
idation samples were selected from separate spatial regions.
This spatial separation minimizes the risk of data leakage,
providing a rigorous and unbiased assessment of model per-
formance (Pomme et al. 2022). Feature importance scores
were computed to identify the most influential input variables
for LULC classification, with Sentinel-2's near-infrared and
short-wave infrared bands ranking among the highest. This
analysis provides insight into the factors most critical for
distinguishing between LULC classes and supporting model
transparency.

To determine the BTAP's impact on land-cover dynamics,
a change detection analysis was performed using the LULC
maps from 2015, 2019, and 2023. This analysis involved com-
paring the LULC maps from these time points, focusing on
transitions to and from the “Trees” class, which indicate af-
forestation or deforestation activities (Vujovi¢ 2021). A change
matrix was developed to quantify the transitions between dif-
ferent LULC classes over time, providing detailed insights
into the extent and nature of land-cover changes and identify-
ing areas of significant change (Larbi 2023; Sadhwani, Eldho,
and Karmakar 2023).

Spatial analysis was employed to map areas of significant
land-cover change, utilizing hotspot analysis and Moran's I au-
tocorrelation to detect clusters of change and to evaluate the
spatial patterns underlying these dynamics (Anees et al. 2020;
Gomes et al. 2021). In addition, buffer analysis was conducted
to examine LULC changes within the defined plantation buf-
fer zones (Ziaul Hoque et al. 2022), thereby providing a more
nuanced understanding of the localized impacts of the BTAP.
The combined classification and change detection analyses
yielded a comprehensive knowledge of LULC dynamics across
Khyber Pakhtunkhwa, effectively elucidating the influence of
the BTAP plantation sites over the study period. These analyses
are pivotal in informing future conservation and afforestation
strategies in the region, ensuring that efforts are targeted and
effective.

2.4 | Buffer Analysis

One of the objectives of this study was to assess the spatial-tem-
poral variations in land-cover types across various districts by
analyzing land-cover data within defined buffer zones around
specific locations. This analysis was performed for 2015, 2019, and
2023 using high-resolution classified LULC. A spatial point data-
set containing particular locations within the districts was used
to create buffer zones (Feng et al. 2021). A buffer radius of 500m
was selected to balance ecological and practical considerations, en-
suring the inclusion of diverse land-cover types within each buffer
(Equation 1). A buffer distance of 500m was selected for this study
to capture the immediate ecological impact zone around the plan-
tation sites (Chapagain et al. 2021; Yana and Rahayu 2017).

Preliminary analysis of multiple buffer sizes (100, 250, 500, and
1000 m) indicated that a 500-m buffer provided the best balance
between representing local landscape heterogeneity and captur-
ing the spatial scale of plantation impacts (Horton et al. 2018;
Liu et al. 2023). This distance is commonly used in vegetation
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and ecological studies to achieve a balance between detailed
local analysis and broader generalization. A 500-m buffer ef-
fectively includes the surrounding vegetation and land-cover
types likely influenced by plantation activities, as supported by
previous studies using buffer ranges of 100 to 1000m to assess
afforestation impacts (Janeczko et al. 2019; Wibowo et al. 2015).
Additionally, the 500-m buffer maintains computational feasi-
bility while providing meaningful insights into the direct influ-
ence of the plantation efforts.

Buffer zone area = z X (500 m)? = = 785,398 m?> @
2.41 | Spatial Analysis

Land-cover data were extracted from the corresponding LULC
for each buffer zone. This involved overlaying the buffer zones
on the raster data and calculating the proportion of each land-
cover type within each buffer (Wang et al. 2024). The proportion
of each land-cover type within each buffer zone was computed
(Equation 2)

Area of land — cover type i in buffer j
Total area of buffer j

Propostion; ; =

@

where i denotes the land-cover type and j denotes the buffer
zone.

The proportions of different land-cover types were aggregated
by district and year. This aggregation helped us to understand
the overall land-cover distribution and changes at the district
level over time. The buffer analysis revealed significant im-
provements in land cover across various districts in KPK from
2015 to 2023, highlighting the success of the BTAP afforestation
project.

2.5 | Hotspot Analysis (Getis-Ord Gi* Statistic)

In this study, we conducted a hotspot analysis to identify regions
exhibiting significant variations in vegetation density. These
regions display distinct positive or negative NDVI anomalies,
indicating extensive spatial differences in vegetation. Utilizing
remote sensing capabilities, we applied the Getis-Ord Gi* sta-
tistic (Getis and Ord 2010, 1992; Ord and Getis 1995), a well-
established spatial statistical method, to pinpoint regions with
significant vegetation changes. These regions, marked by nota-
ble NDVI values, show discernible positive or negative devia-
tions in NDVT patterns. The Getis-Ord Gi* statistic is crucial for
locally identifying statistically significant spatial clusters char-
acterized by high (hot-spots) and low NDVI values (cold spots).
(Equation 3).

n B il
o L WX - XX Wy

e 0

1

wherein X; delineates the attribute value associated with feature
J: w,, j represents the spatial weight between features i and j, typ-
ically derived from their spatial relationship. n is the aggregate
count of features.

Furthermore, the mean X and variance S of the attribute values
are defined as Equations (4) and (5):

2;:1 Wi
n

N 2
5':][%_(})2 ®)

The fundamental characteristic of the Gi* statistic is its ability
to calculate the local aggregation of attribute values for a spe-
cific feature compared to its neighboring features, contrasting
it with the aggregation across all features (Baldo et al. 2023).
The presence of a statistically significant cluster is indicated by
a notable departure from the expected local sum that exceeds
the thresholds of random chance. This mathematical framework
allows for a systematic and comprehensive investigation of geo-
graphical patterns, enabling researchers to accurately identify
regions characterized by significant attribute concentration
(Zhou et al. 2023).

X= @

Using ArcGIS Pro's Hotspot Analysis (Getis-Ord Gi*) tool, we
calculated spatial clustering metrics based on the tool's stan-
dardized procedures, which include automatic z-score and
p-value calculations and corrections for spatial dependency
using fixed distance bands. The Getis-Ord Gi* statistic provides
measurements of statistical significance for individual spatial
features or regions. Two main metrics are calculated: the Gi* p
value, which measures the likelihood, and the Gi* z score, which
assesses the standard deviation (Garik 2021). The z score evalu-
ates the level of concentration or dispersion within the features
or regions. At the same time, the p value offers a probabilistic
assessment to determine if the observed hotspot patterns could
result from random spatial distributions. A substantial z score
with a small p value indicates a statistically significant hotspot.
In contrast, a significantly negative z score with a low p value in-
dicates a statistically substantial cold spot. The size of the z score
is directly proportional to the degree of clustering, with larger
absolute values indicating more prominent clustering patterns
(ESRI 2022, 2013).

Cold spot: Regions with a significant clustering of lower NDVI
values, characterized by a Gi* z score less than —1.65. Hotspot:
Areas showcasing a substantial aggregation of elevated NDVI
values, marked by a Gi* z score greater than 1.65. Neutral areas:
Regions that do not exhibit significant spatial correlation, fall-
ing within the z score range of —1.65 to 1.65. Confidence crite-
ria were utilized to determine the statistical significance of the
detected vegetation zones, with thresholds set at 90%, 95%, and
99%. Regions exhibiting pronounced Gi* z scores (either exceed-
ing 2.58 or below —2.58) and minimal Gi* p values (<0.01) are
classified as “high confidence category,” signifying areas with
extreme vegetation values at a 99% confidence level. The classifi-
cation of vegetation zones based on confidence and significance
levels is summarized in Table 3.

Inverse distance weighted (IDW) interpolating the Getis-Ord
Gi* results generated raster maps of hot and cold spots aligned
with Sentinel 2 resolutions (Sanusi et al. 2024). These were sub-
sequently vectorized to produce polygonal representations of
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TABLE 3 | Classification of vegetation hotspots and cold spots
based on Getis-Ord Gi statistic with corresponding confidence and
significance levels*.

Confidence
Classification threshold P z
High-confidence 99% <0.01 <-2.58
cold spots
Moderate- 95% <0.05 <-1.96
confidence cold
spots
Low-confidence 90% <0.10 < —1.65
cold spots
Nonsignificant Not N/A -1.65<z

significant score<1.65

Low-confidence 90% <0.10 >1.65
hotspots
Moderate- 95% <0.05 >1.96
confidence
hotspots
High-confidence 99% <0.01 >2.58
hotspots

the vegetation anomalies. Following the identification and clas-
sification of vegetation hotspots and cold spots, the subsequent
analysis focused on understanding the vegetation properties
characteristic of these zones. This is critical due to the substan-
tial contribution of vegetation to regional sustainability and the
mitigation of environmental impacts.

2.6 | Spatial Autocorrelation

To further evaluate the spatial autocorrelation of NDVT values
within the buffer zones of the BTAP plantation sites for the
years 2015, 2019, and 2023, we employed Moran's I statistic. This
widely used measure for spatial autocorrelation in geographical
data helps to understand the degree to which NDVTI values are
clustered or dispersed within the study area (Mielke et al. 2020).
NDVI data points were obtained from a spatial dataset that in-
cluded coordinates and NDVI values for each observation point
within the BTAP buffer zones. Spatial weights were defined
based on the k-nearest neighbors' approach (Chen 2023).

Specifically, each observation was linked to its four nearest
neighbors. This choice was informed by preliminary spatial
analyses and validated through a sensitivity test over k=3 to
k=8, which confirmed the robustness of observed spatial auto-
correlation patterns. This was achieved using a k-nearest neigh-
bor algorithm, which identifies the eight closest points for each
data point in the dataset (Okunev and Kushnareva 2023). The
spatial weights matrix W was constructed such that w;=1 if lo-
cations i and j are neighbors and w;=0 otherwise. The weights
were row standardized to ensure that the sum of weights for
each row equals one, which normalizes the influence of neigh-
bors (Chen 2021) (Equation 6).

7= E . Zf\il Zjlila)ij(xi—)_c)(xj—)_c)

= ©)
N —\2
So i (x5 -X)
where N is the number of spatial units indexed by i and j. x; is
the NDVI value at location i. X represents the mean of the NDVI
values. w;; are the elements of the spatial weights’ matrix W.

ij
Sy = Zf\i L Zjl\i , @; Corresponds to the sum of all spatial weights.

The significance of Moran's I was tested using a randomization
approach (Chen 2012). The null hypothesis posits no spatial
autocorrelation (i.e., the observed spatial pattern is random). A
low p value (typically less than 0.05) indicates significant spa-
tial autocorrelation, confirming that the observed clustering or
dispersion of NDVI values within the buffer zones is unlikely
to be due to random chance (Gaspard, Kim, and Chun 2019).
By integrating the Getis-Ord Gi* hotspot analysis with Moran's
I spatial autocorrelation, this study provides a comprehensive
understanding of the spatial patterns and vegetation dynamics
within the BTAP plantation buffer zones, highlighting areas of
significant vegetation change and their spatial relationships.

2.7 | Machine-Learning Analysis for NDVI
Prediction

This study employed ANN to predict NDVI based on a suite of
climatic, topographic, and demographic variables. This method
was chosen for capturing complex, nonlinear relationships
within large datasets, making it ideal for ecological and environ-
mental modeling tasks. The dataset included temp, Ppt, SR, SM,
elevation, slope, aspect, and POP variables. These variables were
carefully selected to reflect the key drivers of vegetation dynam-
ics and served as predictors for NDVI, the response variable. The
dataset was divided into training and evaluation subsets, with
70% allocated for model training and 30% reserved for model
evaluation (Bradshaw et al. 2023; Gerber and Nychka 2021;
Anees et al. 2024a; Luo et al. 2024). This split ensured that the
model could be adequately trained while maintaining enough
data to assess its predictive performance independently.

2.7.1 | ANN Model

In this study, we implemented an ANN to predict NDVI using
a comprehensive set of environmental and demographic
variables. The ANN architecture consists of an input layer,
four hidden layers, and an output layer inspired by the com-
putational processes of the human brain (Lot et al. 2020;
Madhiarasan and Louzazni 2022; Zhang et al. 2023; Huang
et al. 2024; Zhang et al. 2022). To assess multicollinearity
among predictors, we calculated the VIF for each variable,
with all values provided in the supporting information (refer
to Figure S2 and Table S1). To ensure robust model perfor-
mance, a fivefold cross-validation approach was employed
during hyperparameter tuning. This method allowed us to
assess model stability across different data splits, providing
a more reliable estimate of predictive accuracy while mini-
mizing the risk of overfitting. The decision to use four hid-
den layers was based on both empirical testing and existing

8 of 29

Ecology and Evolution, 2025

85UB017 SUOWIWOD) 8AITe31D) 8 edldde ayy Aq pausienob ake ss[ole VO ‘88N Jo ss|ni 10} ArIqIT 8UIIUO AB|IM UO (SUORIPUOD-PUB-SWBI W0 A8 | 1M ATeIq 1 BulUO//:SANY) SUOIIPUOD pue SWis | 8U1 88S *[S202/TT/S0] Uo AriqiTauliuo A8 |IM BSARRIN Ul ESH JO SINIIsU| fUOIRN AQ 9€20/°€899/200T 0T/I0p/W0d A8 |imAeIq1pul|uoy//:Sdny wo.y papeo|umoqd ‘Z ‘G20z ‘8G.LLSY02



literature, which suggests that deeper networks can capture
complex, hierarchical patterns effectively, especially in eco-
logical data modeling (Haq et al. 2022). Each hidden layer
progressively reduced the number of neurons, 128 in the first
layer, 64 in the second, 32 in the third, and 16 in the fourth, to
enable the network to build increasingly abstract representa-
tions and reduce computational complexity without sacrific-
ing performance (see Figure 3).

The ReLU (rectified linear unit) activation function was em-
ployed across all hidden layers, introducing nonlinearity into
the model and enabling it to learn complex patterns in the
data (Shahade et al. 2023). The Adam optimizer was chosen
for its efficient handling of large datasets and adaptive learn-
ing rate, which facilitates faster convergence during training
(Zhang 2019). The learning rate of 0.001, batch size of 64, and
200 epochs were selected based on extensive tuning and valida-
tion, as these values provided a balance between convergence
speed and model accuracy. A systematic approach was adopted
to tune the key hyperparameters, including the number of
neurons in the hidden layers, the learning rate, and the num-
ber of epochs. This process was critical in refining the model's
performance and ensuring accurate NDVI predictions. Table 4
outlines the final hyperparameters selected after extensive tun-
ing, including a learning rate of 0.001, a batch size of 64, and an
epoch count of 200.

To prevent overfitting, we incorporated dropout with a rate
of 0.2 and L2 regularization with a strength of 0.01. Dropout
randomly deactivates neurons during training, reducing the
model's reliance on specific neurons and enhancing gener-
alization (Ben Hamida et al. 2024). L2 regularization, which
penalizes large weight magnitudes, was applied based on lit-
erature supporting its efficacy in improving model robustness,
especially for regression tasks in environmental applications

(Kim 2024). A validation set comprising 10% of the training
data was also used to monitor performance and detect overfit-
ting or underfitting. These hyperparameter choices, informed
by empirical tuning and supported by relevant literature, en-
abled the model to achieve accurate NDVI predictions while
maintaining generalization capabilities. To assess the un-
certainty in model predictions, we conducted a Monte Carlo
simulation involving 1000 iterations, where random noise
was introduced to key predictor variables (e.g., temperature,
precipitation, and elevation). This process generated a dis-
tribution of predicted NDVI values for each observation, re-
flecting the variability introduced by uncertainty in predictor
measurements. We then calculated 95% confidence intervals
(CI) for each prediction to quantify the expected range of true
values. Furthermore, observations with high uncertainty (i.e.,
CI width exceeding a predefined threshold) were flagged to
identify potential areas requiring additional data or model
refinement.

2.7.2 | SHAP Feature Importance Analysis

We used SHapley Additive exPlanations (SHAP) as an inter-
pretability framework to analyze the significance of input fea-
tures in our NDVTI prediction model. SHAP is model agnostic
and provides a single measure of feature importance that can
be used across all machine-learning models (including ANN)
(Younisse, Ahmad, and Abu Al-Haija 2022). Traditional
methods, such as feature importance in decision tree-based
models, are model specific. In contrast, SHAP values provide
a general and theoretical approach to estimating the contribu-
tions of each feature. SHAP is based on game theory, and the
SHAP value of a feature is what the model contributes to its
output (Kim et al. 2023; Nordin et al. 2023). We average this
contribution over all such combinations to provide an overall

)
2
3 .
X :
g g
g
h4
8
v h3
h2
hl Hidden Layers

FIGURE3 |

Schematic representation of a deep neural network used for regression analysis. The network consists of eight input features (X1 to

X8), multiple hidden layers (h1-h4), and a single output node (y). Weights (w) and biases (b) are applied to each layer's connection. The hidden layers

transform the input data through nonlinear activation functions, ultimately predicting the output value.
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TABLE 4 | Hyperparameters used for training the ANN model.

Hyperparameter Value
Number of hidden layers 4
Learning rate 0.001
Batch size 64
Number of epochs 200
Activation function ReLU
Optimizer Adam
Dropout rate 0.2
L2 regularization 0.01

feature importance measure. The SHAP value for a given fea-
ture j is defined as (Equation 7):

Y ISIHANT = ISI - D! [AS U LTH = FS)] (7

' SCNIeftlj)

where F is the set of all features. S is any subset of the features
F that does not include feature j. |S| is the number of features
in subset S. f(S) is the prediction function applied to the subset
S. f(Su{j}) is the prediction function applied to the subset S
with the addition of feature j. ¢, represents the SHAP value for
feature j. This formulation ensures that the SHAP value cap-
tures the average marginal contribution of a feature, consid-
ering all possible interactions with other features (Gebreyesus
et al. 2023). The computation of SHAP values requires eval-
uating the model on different subsets of features, which can
be computationally intensive but provides a robust measure of
feature importance.

In our study, SHAP values were computed using the empirical
approach implemented in the shapr package (Aas, Jullum, and
Loland 2021; Kelemen et al. 2024), which ensures robustness
in the estimation of feature contributions. After training the
RF model to predict NDVI, an explainer object was created
using the training dataset. The baseline prediction was set as
the mean NDVI value of the training data. SHAP values were
then calculated by evaluating the model's predictions across
various subsets of input features from the evaluation dataset,
simulating the contribution of each feature to the predicted
NDVI. This analysis was performed in two stages: first, for the
overall study area, and second, specifically for the plantation
sites associated with the BTAP. SHAP values were calculated
for each feature for the entire study area to understand their
contribution to NDVI predictions across different environ-
mental and topographic conditions in KPK. A separate SHAP
analysis was conducted for the BTAP plantation sites to iden-
tify the key drivers of vegetation recovery within these affor-
estation zones. The SHAP values provided insights into the
factors most critical in improving NDVI within these areas.
The dual application of SHAP for the overall area and planta-
tion sites provides a clear understanding of factors influencing
vegetation dynamics, aiding informed decisions in managing
and optimizing afforestation strategies in KPK.

2.8 | Accuracy Assessment

The accuracy of both the RF and ANN models was rigorously
evaluated using several statistical metrics: root mean square
error (RMSE), mean absolute error (MAE), coefficient of deter-
mination (R?), mean squared error (MSE), and the relative root
mean square error (RRMSE%). These metrics were selected to
assess the models' predictive performance across different di-
mensions comprehensively (Mehmood et al. 2024d; Xinde et al.
2023). The RMSE was used to quantify the average magnitude
of the error between the predicted and actual NDVI values. As
a metric sensitive to significant errors, RMSE provides valuable
insights into the model's accuracy by measuring how well the
model predicts NDVI across all data points (Doulah Md and
Islam Md 2023; Pan, Harrou, and Sun 2023) (Equation 8).

®

where n represents the number of observations, y, the observed
values, and y the predicted values.

The MAE was also calculated to complement RMSE. This met-
ric measures the average absolute difference between predicted
and actual values, providing a straightforward and easily in-
terpretable assessment of prediction accuracy (Agbulut, Giirel,
and Bicen 2021; Nadakinamani et al. 2022; Guo et al. 2024;
Zhang et al. 2024a, 2024b). Unlike RMSE, MAE treats all errors
equally, making it useful for assessing the model's performance
(Equation 9).

n ~
1w il
MAE =~ ;:1 = ©)

The R? value, or the coefficient of determination, was used to
determine the proportion of variance in NDVT that is predict-
able from the independent variables. This metric is beneficial
for understanding the goodness of fit of the model, indicating
how well the model captures the variability in the data (Nihar,
Patel, and Danodia 2022; Suarez, Robson, and Brinkhoff 2023)
(Equation 10).

=)’
-y’

R*=1- (10)

where y represents the mean of the observed values.

In addition, the MSE was computed, which represents the av-
erage of the squared differences between predicted and actual
values (Equation 11), helps identify the variance of residuals,
offering another perspective on the model's prediction errors
(Ahmad et al. 2023).

n

MSE=3 Y (v-5)’ an

i=1

Finally, the RRMSE% was calculated to provide a normalized
measure of prediction error relative to the mean observed value.
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RRMSE% (Equation 12), according to Shoko, Mutanga, and
Dube (2018), is particularly useful in making the error magni-
tude more interpretable in the context of the scale of the data.
This metric allows for an easier comparison across different
datasets or studies.

RMSE = (RJ\;SE> % 100 12)

By computing these metrics for the RF and ANN models, we
ensured a robust and thorough evaluation of their predictive
accuracy. This comprehensive approach allows for a detailed
comparison between the models, highlighting their strengths
and weaknesses in predicting NDVI based on the chosen envi-
ronmental and demographic variables.

3 | Results

3.1 | LULC Classification and Change Detection
Analysis

The LULC classification results for Khyber Pakhtunkhwa (KPK),
Pakistan, across the years 2015, 2019, and 2023, reveal signifi-
cant changes in land cover (Table 5). The area under tree cover
increased from 5153.57km? (25.02%) in 2015 to 6835.66 km?
(29.99%) in 2023. Grassland areas expanded from 106.22km?
(0.52%) in 2015 to 483.78km? (2.12%) in 2023. This growth sug-
gests successful natural succession and practical afforestation
efforts, contributing to improved ecosystem health. Arable
land showed a slight fluctuation, increasing from 3164.76 km?
(15.36%) in 2015 to 3326.47km? (15.45%) in 2019 and then de-
creasing to 3024.83km? (13.27%) in 2023 (Figure 4). Built-up
areas expanded significantly from 1641.16km? (7.97%) in 2015
to 2483.85km? (10.90%) in 2023, reflecting urban growth and
development. Barren land decreased from 4251.24km? (20.64%)
in 2015 to 3830.70km? (16.81%) in 2023. This reduction indicates
successful land rehabilitation and increased vegetation cover,
further supporting the positive outcomes of the BTAP.

The change detection analysis for Khyber Pakhtunkhwa (KPK)
between 2015 and 2023 provides valuable insights into the im-
pacts of the BTAP, focusing on tree cover, shrubland, and barren
land classes. Tree cover experienced significant growth through-
out the study period. In the initial phase from 2015 to 2019,

TABLE 5 | LULC classification results for 2015, 2019, and 2023.

tree cover increased from 4983.2km? to 5898.8km?, reflect-
ing the early success of the afforestation efforts. This upward
trend continued from 2019 to 2023, with tree cover expanding
to 6835.66km?2. Tree cover saw a net increase of 5687.1 km?
over the entire period. The gains in tree cover amounted to
6352.1km?, with a loss of only 665km?, resulting in a 24.1% net
change. These figures highlight the project's effectiveness in sig-
nificantly enhancing forest cover in the region.

Shrubland, a crucial vegetation type in the area, underwent
notable changes, particularly transitioning to tree cover. From
2015 to 2019, about 475.3km? of shrubland was converted to
tree cover. This trend persisted from 2019 to 2023, with an ad-
ditional 857 km? of shrubland transitioning to tree cover. Across
the period, 889.2km? of shrubland was converted to tree cover
(Figure 5). The net change in shrubland was 5232.7km?, with
6928.9km? gained and 1696.2km? lost, resulting in a net change
percentage of 22.1%. These transitions underscore the success-
ful implementation of afforestation practices to increase forest
cover while effectively managing shrub ecosystems. Barren land
saw the most dramatic reduction, reflecting successful land res-
toration efforts by the BTAP. The area of barren land decreased
from 2734.7km? in 2015 to 3022.7km? in 2019 and further to
2293.9km? in 2023. Over the entire study period, barren land
was reduced by 1847.7km?, with total gains of 3326.9km? and
losses of 2154.8km?, resulting in a net change of 1172.1km?
and a net change percentage of 5%. This significant decrease in
barren land highlights the project's effectiveness in converting
degraded lands into productive vegetated areas, contributing to
ecological restoration. The BTAP has markedly increased tree
cover and effectively converted shrubland and barren land into
forested areas, significantly improving the region's environmen-
tal health. The net increases in tree cover and the substantial
reduction in barren land underscore the success of the BTAP's
comprehensive approach to sustainable land use and ecological
restoration in Khyber Pakhtunkhwa.

3.2 | Buffer Analysis of BTAP Afforestation Project
Within the Plantation Sites

The BTAP afforestation project's buffer analysis reveals signifi-
cant land-cover improvements across various districts in Khyber
Pakhtunkhwa (KPK) from 2015 to 2023. The project has suc-
cessfully increased tree cover, a critical indicator of ecological

Class Area (km?) (%) Area (km?) (%) Area (km?) (%)
2015 2019 2023
Tree 5153.57 25.02 5729.32 26.62 6835.66 29.99
Grassland 106.22 0.52 398.17 1.85 483.78 2.12
Swamp vegetation 473.13 2.30 206.19 0.96 264.78 1.16
Arable land 3164.76 15.36 3326.47 15.45 3024.83 13.27
Shrubland 5811.06 28.21 6123.43 28.45 5866.51 25.74
Built up 1641.16 7.97 1989.04 9.24 2483.85 10.90
Barren land 4251.24 20.64 3752.29 17.43 3830.70 16.81
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FIGURE 4 | LULC classification maps for the years 2015, 2019, and 2023 within the study area, illustrating the spatial distribution and changes
in LULC categories over time. The maps display eight LULC categories: Trees, Grassland, Swamp Vegetation, Arable Land, Shrubland, Built-Up

Areas, Barren Land, and the Study Area boundary. The accompanying pie charts show the percentage composition of each LULC category for each

respective year, highlighting shifts in land-cover types.

restoration. For instance, tree cover in Bajaur expanded from
10.10% in 2015 to 19.20% in 2023, reflecting a remarkable
90.28% growth. This positive trend is reflected in other districts,
such as Khyber, where tree cover rose from 8.25% to 14.75%
over the same period, marking a 78.79% increase. Similarly,
in Mohmand, tree cover increased from 9.87% to 18.33%, an
85.74% growth, indicating the effectiveness of the afforestation
efforts across multiple regions (Figure 6). In addition to tree
cover, changes in shrubland and other land-cover types provide
critical insights into the ecological impact of the afforestation
project. Shrubland proportions have remained relatively stable
in most districts, with slight variations. For example, in Bajaur,
shrubland changed from 36.91% in 2015 to 37.22% in 2023, and
in Khyber, it remained around 35%. In Mohmand, however,
shrubland increased from 4.80% to 7.34%, suggesting some re-
gions may be experiencing shifts in land-cover types due to the
project.

The status of afforestation, as indicated by the increased tree
cover across all districts, is highly encouraging. However, the
data also highlights potential areas for further plantation efforts.
Grassland proportions, which have increased in many districts,
indicate areas that may still be in transition and could benefit
from additional afforestation activities. For instance, grassland
in Bajaur rose from 1.11% in 2015 to 6.25% in 2023, while in
Mohmand, similar increases were noted, suggesting these areas
have potential for further forest cover expansion. Moreover,
arable land, which showed minor changes, represents another
opportunity for future afforestation. In Khyber, arable land
remained stable, while Bajaur slightly decreased from 16.42%
to 17.95%. These areas could be targeted for conversion to for-
ested regions, thereby enhancing the overall ecological impact
of the BTAP project. Barren land areas have shown noteworthy
changes as well. For example, in Bajaur, barren land decreased
from 11.35% in 2015 to 7.82% in 2023, indicating successful
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FIGURE 5 | LULC change detection maps for the periods 2015-2019, 2019-2023, and 2015-2023, highlighting transitions between different
LULC categories within the study area. Each color-coded category in the legend represents a specific type of transition, such as forest-to-grassland,

arable-to-built up, or shrubland-to-swamp, capturing the direction and nature of land-cover changes over time. These maps reveal areas of signifi-

cant land transformation, indicating patterns of urban expansion, deforestation, and vegetation shifts, which are essential for assessing the ecological

impact of land-use changes in the region.

conversion to vegetated land. In Khyber, barren land also re-
duced from 9.51% to 6.48% during the same period. These de-
creases reflect the project's success in transforming previously
barren areas into productive, vegetated land. Continued efforts
to convert remaining barren regions into forested areas is cru-
cial in sustaining the momentum of the BTAP project.

Overall, within the buffer zones of the plantation sites, significant
land-cover changes were observed from 2015 to 2023. In 2015, bar-
ren land accounted for 28.94% of the area, which reduced to 26.07%
in 2019 and 17.48% in 2023 (Figure S1). Meanwhile, tree cover in-
creased from 15.47% in 2015 to 19.20% in 2019, reaching 24.07% in
2023, indicating substantial afforestation progress. Additionally,
shrubland proportions slightly decreased from 29.80% in 2015
to 25.79% in 2023. These changes reflect the effectiveness of the
BTAP project in transforming barren lands into vegetated areas
and enhancing overall ecological restoration.

3.2.1 | Analysis of LULC Transitions Within Plantation
Buffer Zones

The analysis of LULC changes within 500-m buffer zones around
plantation sites reveals significant dynamics in land-cover tran-
sitions, highlighting the impact of the BTAP. Notably, there were
16,057 transitions from barren to barren land, covering 33.4km?,
constituting 29.71% of all transitions (Figure 7). This indicates a
high degree of persistence within barren land areas. However,
significant transitions from barren land to other uses, such as
11.7km? to crops (17.23%) and 1.02km? to trees (22.57%), suggest a
shift toward productive land-use and potential ecological rehabil-
itation. The built-up area experienced considerable changes, with
445,497 counts remaining built-up (13.5km?, 8.21%). There were
notable transitions from built-up areas to crops (1.19km?, 16.19%)
and shrubland (0.968km?, 27.48%), reflecting ongoing urbaniza-
tion pressures and the potential expansion of suburban areas. The
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FIGURE 6 | LULC changesin BTAP afforestation project buffer zones from 2015 to 2023. This figure illustrates the proportional changes in dif-

ferent LULC types across districts in the BTAP buffer zones over three time periods (2015, 2019, and 2023). The increase in tree cover (green bars)

is evident across most districts, highlighting the success of afforestation efforts under the BTAP initiative. Concurrently, a decrease in barren land
(brown bars) and built-up areas (red bars) can be observed, signifying reduced land degradation and urban sprawl in some districts. Notable shifts in
grassland (light green) and arable land (orange) proportions suggest varying impacts of land-use policies and local ecological conditions across the

districts. These results emphasize the regional variability in land-cover changes and the critical role of afforestation in improving vegetation cover.

stability of built-up land cover shows continued urban and infra-
structural development, impacting land-use patterns.

Trees remained stable over 30.7km?, accounting for 22.57% of
the total transitions, suggesting effective preservation efforts and
natural resilience. However, transitions from trees to shrubland
(2.22km?, 27.48%) and built-up areas (0.676km?, 8.21%) high-
light urban expansion and infrastructure development pressures.
Conversely, the transition from shrubland to trees amounted to
7.21km?, indicating successful restoration and afforestation ef-
forts to convert degraded lands into forested areas. This transi-
tion underscores the positive impact of BTAP in increasing tree
cover within degraded regions. The dynamic nature of agricul-
tural land use is evident, with 24.9km? of arable land (21.59%)
remaining in crops, while transitions from crops to barren land
accounted for 0.493km? or 16.19% of transitions. Such shifts
reflect changes in agricultural practices or land abandonment.
Notably, arable land also transitioned to tree cover over 5.37km?,
representing 22.57%, highlighting efforts to increase forest cover
through afforestation.

The chi-square test results, with a highly significant p value
(<0.001), suggest that the observed LULC changes are not ran-
dom but influenced by underlying factors likely related to the

impacts of plantation activities. Key insights include poten-
tial deforestation near plantation sites, as indicated by transi-
tions from trees to shrubland and built-up areas, highlighting
pressures from urbanization and infrastructure development.
Conversely, the significant transition from shrubland to trees
underscores successful afforestation efforts to convert de-
graded lands into forested areas. Furthermore, the stability in
certain land-cover types, such as shrubland and tree cover, im-
plies effective management practices or inherent resilience of
these ecosystems.

3.3 | Hotspot Analysis of NDVI Data Within
the Buffer Zone of Plantation Sites (2015, 2019,
and 2023)

The hotspot analysis performed on the NDVI data for 2015, 2019,
and 2023 provides significant insights into the spatial and tempo-
ral dynamics of vegetation in the study area. This section delves
into the key findings, discussing the observed changes and their
implications for the BTAP. In 2015, significant portions of the
study region were classified as cold spots, particularly in the north-
ern and central parts, indicating areas of lower vegetation density.
By 2019, there was a noticeable increase in hotspots, especially
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in the southern and central regions, suggesting an improvement
in vegetation density, likely due to the afforestation efforts under
BTAP (Figure 8). This positive trend continued into 2023, with
more areas in the northern region also showing high vegetation
density, indicating a sustained impact of the afforestation project.
The spatial distribution of hotspots and cold spots suggests that
the southern areas have consistently improved vegetation density
over the years, potentially due to targeted afforestation efforts.
Initially, the northern regions displayed significant cold spots in
2015 but transitioned to include more hotspots by 2023, reflecting
effective vegetation recovery efforts in these areas.

The hotspot analysis revealed significant changes in vegeta-
tion density over the years. In 2015, 36.76% of the study area
was identified as high-confidence hotspots, while 28.03% were
high-confidence cold spots. By 2019, high-confidence hotspots
increased to 39.59%, and high-confidence cold spots decreased
to 25.44%. In 2023, high-confidence hotspots rose to 42.56%,
while high-confidence cold spots reduced to 21.34%. Moderate-
and low-confidence hotspots and cold spots showed slight vari-
ations, reinforcing the positive impact of afforestation efforts
(Table 6). In addition, Moran's I analysis for the years 2015, 2019,
and 2023 revealed an increasing positive spatial autocorrelation,
supporting the hotspot analysis findings. In 2015, the Moran's
I value was 0.929, indicating strong clustering of NDVI values
(p<0.001). By 2019, Moran's I value slightly increased to 0.931,
further clustering NDVI values (p <0.001). In 2023, Moran's I
value reached 0.933, suggesting an even stronger clustering of
high NDVI values (p <0.001) (Figure 9). The positive correlation
further confirms the spatial clustering of NDVI, supporting the
observed increase in vegetation density.

3.4 | Interannual NDVI Trends and Distribution
Analysis

This study examines the interannual trends of NDVT across 343
plantation sites involved in the Billion Tree Afforestation Project
(BTAP). Utilizing linear regression, the analysis offers insights
into temporal changes in NDVI, thereby reflecting the ecolog-
ical impacts of the afforestation efforts. The results indicate a
statistically significant positive trend in NDVI across all planta-
tion sites, with an estimated slope of 0.0030 (p < 0.01), signifying
a consistent annual increase in vegetation density. This trend
underscores the success of the BTAP in enhancing vegetation
cover and improving ecosystem health at these plantation sites
(Figure 10A).

The density plot of NDVI slopes reveals a right-skewed distri-
bution, suggesting that while most sites experienced moderate
improvements, a subset achieved exceptionally high growth
rates (Figure 10B). The peak of this distribution centers around
a slope of approximately 0.003, further corroborating the overall
positive trend. Notably, many sites exhibit slopes clustered near
zero, indicating stable NDVT values with minimal change over
time (Figure 10C). These observed variations may be influenced
by local environmental conditions, management practices, or
species selection, underscoring the need for tailored afforesta-
tion strategies to optimize outcomes across diverse ecological
contexts.

Among the districts analyzed, Bajaur and Mansehra demon-
strated the most considerable NDVI improvement, with aver-
age slopes of 0.0063 and 0.0061, respectively, reflecting highly
effective afforestation efforts. Abbottabad and Swat showed
intermediate performance, with slopes of 0.0040 and 0.0038,
suggesting moderate success that could benefit from enhanced
management strategies. Conversely, Lower Dir exhibited the
lowest improvement, with an average slope of 0.0015, highlight-
ing significant challenges in this region.

3.5 | Model Performance and Validation

The ANN model's architecture, optimized through careful hy-
perparameter tuning, was subjected to training and validation
to evaluate its predictive performance. The training process
spanned 200 epochs, which allowed the model to converge ef-
fectively without imposing excessive computational demands
(Figure 11A), the training and validation loss curves converged
smoothly, indicating that the model learned effectively from the
data without overfitting. This result underscores the success
of the chosen hyperparameters in balancing model complexity
with generalization ability.

Further evaluation of the model's performance is depicted in
Figure 11B, which shows a scatter plot comparing the predicted
NDVI values against the observed NDVI values. The strong
alignment of the data points along the diagonal line suggests a
high degree of accuracy in the model's predictions, with minimal
deviation from the actual NDVI values. The R? value of 0.8556
further confirms that the model explains approximately 85.56%
of the variance in the observed NDVI values. Additionally, the
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Hotspot and Cold Spot Analysis of NDVI in BTAP Plantation Zones (2015, 2019, 2023)
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FIGURE 8 | Spatial distribution of hotspots and cold spots in NDVI data within BTAP plantation buffer zones (2015, 2019, and 2023). This figure
shows the spatial pattern of hotspots and cold spots of NDVI values within the BTAP plantation buffer zones for the years 2015, 2019, and 2023, using
the Getis-Ord Gi* analysis. Red areas represent statistically significant hotspots, indicating regions with consistently high NDVI values, while blue
areas represent cold spots, indicating consistently low NDVI values. The spatial distribution of these areas provides insights into regions with high
vegetation productivity and regions potentially affected by degradation or other stressors.

RMSE of 0.0607 indicates a low average prediction error, fur-
ther validating the model's robustness (Table 7). The testing
phase of the model also demonstrated strong performance met-
rics. The MSE was 0.0037, with an RMSE of 0.0607 and an R?
value of 0.8556. The RRMSE% was calculated at 17.87%, and the
MAE was 0.0461, reflecting the model's accuracy in predicting
NDVI values based on the input variables. The validation phase
involved testing the model on new sites of plantation across
three districts (Mardan, Charsada, and Peshawar), outside the
area where the model was trained. This external validation
highlights the model's ability to generalize to unseen data. The
validation results include an MSE of 0.0057, RMSE of 0.0758,
and an R? value of 0.7818, indicating that the model explains ap-
proximately 78.18% of the variance in the observed NDVI values

(Figure S4). The MAE of 0.0606 and RMSE% of 21.80% suggest
a moderate level of accuracy when applied to these new sites,
demonstrating the model's practical utility in predicting NDVI
for regions outside the training area.

In addition to the testing results, the training data exhibited
strong performance, indicating that the model was well-tuned
during the training phase. The training data results are as
follows: MSE of 0.0006, RMSE of 0.0255, and an R? value of
0.8765. The MAE for the training data was 0.0191, indicating
the model's effectiveness in learning from the training dataset.
Additionally, the RRMSE% for the training data was calculated
to be 7.42%, which reflects the model's accuracy relative to the
average magnitude of the observed NDVTI values. The systematic
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Temporal hotspot analysis of NDVI data within BTAP plantation buffer zones (2015, 2019, and 2023).

TABLE 6

Moderate-
confidence cold

Moderate-

High-confidence
cold spots (%) (n)

confidence Low-confidence Nonsignificant Low-confidence
hotspots (%) (n) cold spots (%) (n)

hotspots (%) (n)

High-confidence
hotspots (%) (n)

spots (%) (n)

(%) (n)
23.09 (11,544)

Year

2.50 (1250) 28.03 (14,015)

1.43 (715 points)

5.90 (2950) 2.51 (1256)

36.76 (18,380)

2015

5.44 (2720) 2.20 (1098) 22.29 (11,146) 2.21 (1104) 3.16 (1580) 25.44 (12,720)

39.59 (19,846)

2019

6.06 (3029) 2.26 (1128) 24.04 (12,008) 2.04 (1018) 2.94 (1468) 21.34 (10,668)

42.56 (21,168)

2023

Note: n represents the Pixel counts.

selection of hyperparameters, combined with regularization
and continuous monitoring during training, resulted in a strong
model capable of accurately predicting NDVI across diverse
environmental conditions. The selected hyperparameters min-
imized the validation loss, ensuring the model could generalize
well to unseen data.

The model's spatial predictions of NDVTI, shown in the predicted
NDVI raster Figure 12A, provide a detailed distribution of pre-
dicted values across the study area, ranging from —0.0462 to
0.6349. Residual and RMSE rasters were generated to assess spa-
tial accuracy. The residual raster Figure 12B displays prediction
errors, with values from —0.2713 t0 0.2672, indicating areas of un-
derestimation and overestimation. The RMSE raster Figure 12C
shows average prediction errors, with values from 0.0000007 to
0.2713, highlighting regions of high accuracy and areas where
the model's performance was less reliable. The classified RMSE
accuracy map further categorizes the study area into high-,
moderate-, and low-accuracy zones, covering 15,848.26 km?,
6912.53km?, and 353.23km?, respectively Figure 12D. This clas-
sification clearly visualizes the model's performance across the
region, indicating where predictions are most reliable.

An uncertainty analysis using Monte Carlo simulations was
conducted to evaluate the reliability of the model's predictions.
As visualized in Figure S3, predicted NDVI values are shown
alongside their 95% confidence intervals, which represent the
range of likely true values for each observation. Observations
with high uncertainty, defined as having confidence interval
widths exceeding 0.05, are highlighted in red. These observa-
tions indicate areas where the model may require refinement
or where additional input data could enhance reliability. This
analysis not only highlights the variability in predictions but
also underscores the model's overall stability, with the majority
of predictions exhibiting narrow confidence intervals and high
reliability.

3.6 | SHAP Analysis of NDVI Predictors in
the Study Area and Plantation Sites

A deeper understanding of the factors influencing NDVI
predictions was achieved by employing SHAP to evaluate
the relative importance of various environmental and demo-
graphic variables. The analysis was performed separately for
the entire study area and the specific plantation sites associ-
ated with the BTAP. Elevation emerged as a key factor in the
broader study area, consistently showing a strong negative
influence on NDVI. This negative impact was particularly ev-
ident at elevations above 2000 m, where harsh environmental
conditions, such as lower temperatures and shorter growing
seasons, significantly limit vegetation growth. The average
SHAP value for elevation was approximately —0.0506, high-
lighting its critical role in reducing NDVT at higher altitudes
Figure 13C, where a decline in NDVI with increasing ele-
vation is apparent. Precipitation showed a mixed influence,
with SHAP values indicating positive and negative effects de-
pending on specific regional conditions. The temperature had
a more balanced impact, with average SHAP values around
0.0199, reflecting its varying influence on NDVI based on the
local climate. On the other hand, soil moisture contributed
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FIGURE9 | Moran's I scatterplots for NDVI values in 2015, 2019, and 2023 within BTAP plantation buffer zones.

positively to NDVI, with an average SHAP value of 0.0326,
underscoring its importance in supporting vegetation across
the study area Figure 13B.

In the plantation sites associated with the BTAP, the SHAP
analysis identified soil moisture as the most influential vari-
able, with a strong positive impact on NDVI. The average SHAP
value for soil moisture was approximately 0.0498, indicating
its vital role in promoting vegetation growth within these af-
forestation zones. Precipitation was also a significant factor,
with an average SHAP value of 0.0398, emphasizing the impor-
tance of adequate rainfall for the success of plantation efforts.
Additionally, SR and POP positively influenced NDVI, with av-
erage SHAP values of 0.0264 and 0.0147, respectively, reflecting
their roles in vegetation recovery within these managed envi-
ronments Figure 13A. Elevation in the plantation sites had a
less noticeable but relevant impact, with an average SHAP value
0f 0.0117. Unlike the entire study area, elevation’s influence here
was more balanced, suggesting that the controlled conditions
within the plantation sites helped mitigate some adverse effects
typically associated with higher altitudes. This finding reflects
the targeted management strategies implemented in these areas
to counteract the challenges posed by elevation.

4 | Discussion

4.1 | BTAP Impact on Forest Cover and Land-Use
Dynamics

The results of this study demonstrate the significant positive
impact of the BTAP in KPK on forest cover and overall land-
use dynamics between 2015 and 2023. Tree cover increased

from 25.02% (5153.57km?) in 2015 to 29.99% (6835.66km?) in
2023, while barren land decreased from 20.64% (4251.24km?) to
16.81% (3830.70km?), indicating the success of the afforestation
efforts in promoting ecological restoration. Similar afforesta-
tion projects have shown comparable outcomes; for instance,
the “One Million-Mu Plain Afforestation Project” in Beijing led
to increased forest cover, though with varying greenness levels
(Chen, Wang, and Jin 2021; Yu et al. 2018).

Additionally, the natural afforestation observed on abandoned
agricultural lands in Russia and Belarus during the post-Soviet
period further underscores the positive impact of such ini-
tiatives on forest recovery and ecological restoration (Ershov
et al. 2022). These comparative studies reinforce the success of
the BTAP in enhancing forest cover and environmental health
in the region. Using Sentinel-2 imagery and the RF algorithm
resulted in high-accuracy LULC classifications, with an over-
all accuracy exceeding 85% for the years analyzed. Comparable
studies have demonstrated similar efficacy in using RF for land-
cover classification. For instance, a method combining Landsat
time series data with RF achieved an accuracy of 87% in pre-
dicting afforestation areas, underscoring the effectiveness of
these techniques in large-scale afforestation monitoring (Avci
et al. 2023; Cavalli et al. 2023).

Additionally, research mapping forest changes in Guangdong
Province using Landsat and PALSAR data reported classifica-
tion accuracies between 75% and 85%, further validating the
reliability of these methods for accurate LULC classification
(Shen et al. 2019). These studies highlight the robustness of the
approach used in this analysis. This allowed for a detailed anal-
ysis of changes over time, showcasing the effectiveness of BTAP
in reversing deforestation and enhancing vegetation density.
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different districts, with each color representing a specific district, indicating variability in vegetation trends across the study area.

Similar outcomes were observed in a World Bank project in
Nigeria and the Three-North Afforestation Program in China,
which significantly increased vegetation cover and reversed
deforestation trends (Zhu et al. 2017). These studies affirm the
positive impact of BTAP on ecological restoration.

4.2 | Localized Impacts and Spatial Variability in
Afforestation

Buffer analysis within the plantation zones revealed significant
localized improvements, with tree cover in districts like Bajaur,
Khyber, and Mohmand increasing by 90.28%, 78.79%, and
85.74%, respectively, from 2015 to 2023, like other successful af-
forestation projects that enhanced forest cover through targeted
efforts (Ullah et al. 2021). This localized success is likely attrib-
utable to targeted afforestation strategies and favorable environ-
mental conditions within these buffer zones, as shown in studies
where strategic planning and species selection significantly im-
proved outcomes (Qiu et al. 2019). However, the persistence of
barren land in some districts, such as the 17.48% observed in
2023 within the plantation buffer zones, suggests that additional
efforts are required to fully rehabilitate these areas, consistent
with findings that ongoing interventions are necessary in arid
regions (Liu et al. 2018; Tajik, Ayoubi, and Zeraatpisheh 2020).
The results of the hotspot analysis, which showed an increase in

high-confidence hotspots from 36.76% in 2015 to 42.56% in 2023
and a corresponding decrease in high-confidence cold spots
from 28.03% to 21.34%, further confirm the positive vegetation
trends resulting from BTAP interventions, aligning with stud-
ies demonstrating satisfactory spatial variability in afforestation
outcomes (Wu et al. 2021).

4.3 | Predictive Performance and Spatial
Consistency in Afforestation

The machine-learning-based NDVI predictions using an ANN
model yielded an R? value of 0.8556, with an RMSE of 0.0607,
demonstrating strong predictive performance, like the high ac-
curacies reported in studies using ANNs for environmental pre-
dictions (Celik et al. 2022; Emadi et al. 2020). SHAP analysis
identified soil moisture (average SHAP value of 0.0498) and pre-
cipitation (average SHAP value of 0.0398) as the most influential
variables driving vegetation growth, consistent with findings
that emphasize the critical role of these factors in environmen-
tal modeling (Ren, Ling, and Wang 2023; Zhu et al. 2021). These
findings suggest that successful afforestation in this region
heavily depends on adequate water availability, aligning with
previous research highlighting the importance of moisture for
vegetation recovery (Akram et al. 2022; Fernandez 2023; Otkin
et al. 2019; Anees, Yang, and Mehmood 2024; Pan et al. 2023).
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FIGURE11 | (A)Training and validation losses of the ANN model. (B) Scatter plot of predicted versus observed NDVI values.

TABLE 7 | Performance metrics of the ANN model.

Validation

Training Testing data (new
Metric data data sites)
MSE 0.0006 0.0037 0.0057
RMSE 0.0255 0.0607 0.0758
R? 0.8765 0.8556 0.7818
MAE 0.0191 0.0461 0.0606
RMSE% 7.42% 17.87% 21.80%

The identification of soil moisture and precipitation as key pre-
dictors offers actionable insights for afforestation management
(Andreevich et al. 2020; Usoltsev et al. 2020; Shobairi et al. 2022;
Usoltsev et al. 2022; Gong et al. 2024). For example, areas with
low soil moisture could benefit from interventions such as
soil moisture retention techniques, including mulching and
soil amendments, to enhance vegetation survival and growth
(Aslam et al. 2022). Additionally, aligning plantation schedules
with periods of adequate rainfall can maximize the establish-
ment success of young vegetation. These strategies, guided by
SHAP findings, enable targeted resource allocation and im-
proved decision making in afforestation initiatives, ultimately
enhancing the resilience and effectiveness of such projects.

The spatial autocorrelation results, measured by Moran's I
statistic, showed a consistent increase in positive spatial auto-
correlation from 0.929 in 2015 to 0.933 in 2023 (p <0.001), fur-
ther supporting the observed clustering of NDVI values and

indicating a sustained and nonrandom distribution of vegetation
improvements over the study period. This finding aligns with
studies on vegetation patterns in earthquake-affected Southwest
China, where Moran's I revealed significant clustering of dam-
aged vegetation (Li et al. 2019). Another study using Moran's
I to detect land-cover change patterns in a large-scale remote
sensing imager demonstrates this statistic's effectiveness in
identifying spatial clustering (Kiani et al. 2023; Self et al. 2023).
This spatial consistency underscores the effectiveness of BTAP
not only in isolated pockets but across the broader landscape of
KPXK, reflecting the broad-scale impact of the project.

While the BTAP has achieved substantial gains in forest
cover, the findings also highlight areas needing further at-
tention, particularly in districts where barren land remains
high or where tree cover improvements have been minimal.
Similar challenges in reforestation, such as those related to
seedling survival and land degradation, have been observed
in other regions, underscoring the need for more intensive
efforts in these areas (Flores et al. 2021; Roman-Dafiobeytia
et al. 2015). The persistence of barren land at 17.48% within
the buffer zones suggests the need for more intensive refor-
estation efforts, a necessity echoed in studies emphasizing
continuous forest management to address land-use challenges
and optimize reforestation outcomes (Song et al. 2023; Warner
et al. 2022). Moreover, the transition of some areas from tree
cover to shrubland and built-up land, such as the 2.22km?
transition to shrubland and 0.676 km? to built-up areas, sug-
gests potential pressures from urbanization and land-use
change, which could undermine the long-term success of the
project. This pattern is consistent with research highlighting
the negative impacts of urbanization on forest ecosystems and
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FIGURE 12 | Spatial analysis of NDVI prediction accuracy using an ANN model. (A) ANN prediction map displaying predicted NDVI values
across the study area. (B) Residual map illustrating the difference between observed and predicted NDVI values, highlighting areas of over- and
underestimation. (C) RMSE map shows the RMSE of the predictions, with lower values indicating better model performance. (D) Accuracy map
categorizing the study area into zones of high, moderate, and low accuracy based on the residuals and RMSE, providing insight into the model's

performance across different regions.

the challenges it poses to maintaining forest cover (Miroshnyk
et al. 2022; Rai et al. 2023).

4.4 | Limitations

This research adopted an all-around approach by running
hotspot and interannual analyses from 2000 to 2023 and con-
sidering the ground validation of the LULC classification for
improved accuracy in the results. Yet, a few limitations exist.
Although ground truth and site visits were done for rigorous
verification of the LULC classification and effectiveness of
BTAP, inherent challenges in remote sensing, such as reso-
lution constraints and the potential influence of atmospheric
conditions on satellite data, can never be fully resolved.
Moreover, while the study period's length allows for captur-
ing long-term trends, the dynamism and complexity of most
ecological processes may mean that some subtle or delayed ef-
fects from afforestation are not entirely captured within this
study. The integration of ground-truthing and site visits further

strengthens the validity of results, reducing the limitations pre-
sented by this method.

4.5 | Future Implications

Such future studies could benefit from further integrating re-
mote sensing with ground-based data collection, potentially
through higher resolution or hyperspectral imagery, LIiDAR, and
UAV data. These technologies offer enhanced detail on vegeta-
tion dynamics, canopy structure, and biomass, which could com-
plement Sentinel-2 imagery to provide a more comprehensive
understanding of afforestation impacts. Extending the study du-
ration beyond 2023 and increasing the frequency of temporal ob-
servations would also help capture long-term ecological changes
and potential lag effects resulting from afforestation activities.
Moreover, employing more sophisticated machine-learning
models could improve predictive accuracy, accommodating the
complexities of ecological data and the interactions between en-
vironmental and socioeconomic variables. These advancements
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FIGURE 13 | SHAP analysis of NDVI prediction model. (A) SHAP summary plot for the entire study area, illustrating the influence of various

environmental and demographic variables on NDVI predictions. The magnitude and direction of SHAP values indicate the contribution of each vari-

able, with positive values boosting predictions and negative values reducing them. (B) SHAP summary plot for the BTAP plantation sites, focusing on

critical variables affecting NDVI predictions within these zones. Notably, soil moisture (SM) and precipitation (Ppt) emerge as dominant predictors.

(C) Scatter plot depicting the relationship between SHAP values and elevation, revealing a nonlinear influence of elevation on NDVTI predictions.

Red dots represent negative contributions, while blue dots signify positive contributions, emphasizing the varying impact of elevation across the

landscape.

would support the development of sensitive, adaptive, and sus-
tainable afforestation strategies, ensuring that projects like BTAP
continue to make positive contributions to environmental resto-
ration. Our findings demonstrate the effectiveness of large-scale
afforestation in landscape restoration, advocating for continuous
monitoring and adaptive strategies to address emerging chal-
lenges. The integration of remote sensing and machine learn-
ing offers a robust framework for evaluating and guiding these
efforts, providing data-driven insights that are essential for sus-
tainable land management and conservation.

5 | Conclusion

The BTAP assessment conducted in this study demonstrates
the effectiveness of large-scale afforestation efforts in Pakistan
using advanced remote sensing and machine-learning tech-
niques. Our approach enabled accurate LULC classification,

revealing a substantial increase in tree cover from 25.02% in
2015 t0 29.99% in 2023, and a corresponding decrease in barren
land. Additionally, the hotspot analysis and spatial autocorrela-
tion confirmed positive clustering in vegetation recovery, while
the ANN model's predictive accuracy underscored the criti-
cal influence of soil moisture and precipitation on vegetation
health. While these findings affirm the success of the BTAP,
they also highlight the need for continuous monitoring and
adaptive management to address challenges such as the per-
sistence of barren land and transitions to shrubland or built-up
areas in some regions. We recommend that policymakers and
project managers prioritize ongoing monitoring frameworks
and adaptive strategies to ensure that afforestation efforts re-
spond effectively to environmental changes. Engaging local
communities in these efforts is essential, as their involvement
can enhance land stewardship and contribute to sustainable
management practices. Furthermore, implementing soil mois-
ture retention techniques and optimizing planting schedules to
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align with precipitation patterns can support vegetation resil-
ience in arid regions. By integrating data-driven insights and
fostering community partnerships, afforestation programs like
the BTAP can achieve more sustainable and lasting ecological
outcomes.

5.1 | Recommendations

To enhance the effectiveness and sustainability of afforestation
efforts, the following actions are recommended:

1. Intensify reforestation efforts in persistently barren areas
by utilizing locally adapted species.

2. Implement enhanced monitoring and adaptive manage-
ment strategies to ensure continuous sustainability.

3. Strengthen community engagement to align afforestation
initiatives with socioeconomic needs.

4. Balance urbanization with ecological restoration through
stringent land-use planning.

5. To refine afforestation strategies, integrate higher resolu-
tion satellite data and advanced machine-learning models
in future research.
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