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ABSTRACT Cardiovascular diseases (CVDs) are the leading cause of global death, with approximately 80%
of such CVD mortalities occurring in low and middle-income regions. Early detection of cardiac abnormal-
ities is essential for timely intervention and minimizing mortalities. Automated CVD detection methods are
vital, particularly in areas with limited healthcare resources. However, most existing AI-based techniques
lack three critical aspects: model interpretability, longer-duration analysis, and effective use of nonlinear
time-frequency approaches, which are necessary for ECG signals due to their nonlinear, nonstationary, and
multi-component nature. This study proposes explainable intelligent classifiers incorporated with a novel
sequence of time-frequency energy Gini Index (GI) features from the QRS complexes of ECG signals
to address these challenges and enable early-stage CVD detection. These features are extracted using the
Choi-Williams Time-Frequency method, reporting the first instance application of GI measures to nonlinear
time-frequency distribution (TFD) for ECG analysis. Features are computed from one-minute windows,
covering 30 minutes of ECG recordings. These interpretable features provide clear insights into normal and
abnormal ECG patterns. The proposed method was trained and validated using theMIT-BIHArrhythmia and
Fantasia-Normal databases. Eight machine learning classifiers, including SVM, Random Forest, XGBoost,
Gaussian Naïve Bayes, KNN, LinearBoost, CatBoost, and Logistic Regression were tested. The best model
achieved 100% sensitivity, 94.4% accuracy, 95.24% F1-score, 90% precision, and 92.59% AUC on the test
dataset. High sensitivity ensures reliability for medical screening by reducing False Negatives, making the
approach suitable for integration into any type of smart device for accurate online and offline monitoring of
CVD abnormalities.

INDEX TERMS Cardiovascular disease (CVD), electrocardiogram (ECG), explainable AI (XAI), Gini index
(GI), machine learning (ML), time-frequency distribution (TFD).

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Zhang.

I. INTRODUCTION
It is an undeniable fact that cardiovascular diseases (CVD)
are becoming the main cause of mortality of humankind
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across the globe. As reported by the World Health Orga-
nization (WHO), Every year CVDs have taken the lives of
tens of millions of humans. CVDs if not discovered, have a
prolonged latency period, and are challenging to treat once
they develop [1]. Despite the considerable developments in
CVD research as well as the advancements in diagnostic
and treatment techniques, it remains the leading cause of
mortalities for a prolonged period across the globe. It is
estimated that about 80% of CVD-related mortalities happen
in low and middle-income territories [2]. It is necessary to
implement effective strategies for treating and intervening
CVDs by detecting them at the earliest possible stages. There
is a growing amount of evidence that indicates that extensive
engagement in rehabilitation and recovery activities signif-
icantly enhances the prognostication of the victims. Some
studies further demonstrate that involvement in such pro-
grams can reduce the risk of prolonged hospital readmission
by close to 25% and the risk of mortality rate by more than
40% [3]. The electrocardiogram (ECG) is a vital pervasive
and non-invasive tool used to observe cardiac conditions
during the clinical phases as it provides useful information
on cardiac health and pathology. This enables the specialists
to take part in diagnostics in the early stages through real-time
ECG monitoring. The time and the administrative processes
taken for transferring between the General Practitioners (GP)
to the Specialists will vary depending on the countries and
regions based on the available health facilities. Not only are
cardiologists involved in the diagnostics and medications of
cardiovascular diseases, but neurologists and neurosurgeons
also play a crucial role, particularly in managing stroke-
related complications [4]. Hence, the initial screening process
is crucial in guiding the patient toward the right direction for
further relevant analysis and treatments.

Cardiac Arrhythmia is one of the major CVD types that
can lead to other major complications. Arrhythmia is a con-
dition of irregularities in the rhythms of the heart, where
the heartbeats can be excessively fast (Tachycardia), too
slow (Bradycardia), or irregular patterns. Certain types of
arrhythmias pose a significant threat to life, while others may
be chronic and irreversible [5]. If not intervene they might
require expensive long-term healthcare management through
medications and lifestyle changes. Several observations of
clinical assessments have demonstrated that majority of the
arrhythmias are either sudden or sporadic, lacking a consis-
tent pattern in their timing and frequency. This unpredictable
nature necessitates long-term continuousmonitoring to detect
arrhythmias as they occur andminimize the risk of underdiag-
nosis [6]. Given the variability and deviations in pathological
ECG readings, the same underlying condition may present
differently on ECGs across various patients or even within
the same individual. Consequently, cardiologists need exten-
sive expertise and considerable clinical experience to make
accurate and reliable diagnoses. Identifying abnormal heart
rhythms is a challenging task that demands significant effort
from GPs during the initial medical screening process, and

fatigue can lead to missed or misdiagnosed cases, poten-
tially delaying crucial treatment. To improve accuracy and
efficiency in detecting heart rhythm abnormalities, there is
a growing anticipation for automated technologies includ-
ing Artificial Intelligence. Automated technologies have the
potential to minimize the strains on doctors and enhance
timely patient care.

These heart abnormal conditions are detected automati-
cally using several techniques varying from Digital Signal
Processing (DSP) techniques to modern-day machine and
deep learning techniques, and the hybrid combination of
both. Even though the prediction performances are higher
in deep learning models, they lack in interpretability of
diagnostic results and model generalizability, where it will
perform poorly on unseen data. Further, Deep learning is
more prone to model overfitting [7]. Most of the existing
deep learningworks have utilized a very small chunk duration
of the ECG signals varying from a few seconds to a single
minute. Analyzing longer-duration signals is crucial in accu-
rately identifying abnormal conditions and reducing false
negatives [8]. Some of the abnormalities with intermittent
or transient occurrences may occur sporadically and require
longer observations to detect [6]. Signal processing tech-
niques vary from time domain (temporal) analysis, frequency
domain (spectral) analysis, and Joint time-frequency (JTFD
or TFD) analysis. Joint time-frequency methods are diver-
sified into linear and non-linear approaches. Time domain
analysis has severe limitations since it is not able to cap-
ture the frequency features. Similarly, frequency domain
techniques would not be able to capture the time domain
information. Hence, the usage of joint time-frequency tech-
niques will enable the ability to capture both time and
frequency (spectro-temporal) domain features simultane-
ously [9]. Joint time-frequency techniques are believed to be
powerful tools in signal processing, especially in biomedical
engineering, telecommunications, audio signal processing,
and seismology. They perform better in analysing and under-
standing the non-stationary signals with dynamic frequency
components such as ECG signals, audio signals, mechan-
ical and vibration signals. TFD approaches can be further
categorized into linear and non-linear approaches [9]. It is
widely accepted that non-linear TFD techniques are more
appropriate compared to linear techniques for analysing and
representing ECG signals due to their non-stationary and non-
linear nature. Furthermore, these techniques could help to
overcome the noise and artifact effects in the signals. Hence,
they perform better feature extraction from such signals [10].
Nonlinear TFD techniques like CWD more accurately cal-
culate the energy contents of nonlinear signals compared to
linear methods. This results in richer feature extraction, cap-
turing transient and frequency-modulated components that
might be lost in linear methods. Different classifiers handle
non-linearity differently by using various approaches such
as ensemble of trees, nonlinear kernels, nonlinear activation
functions, and deep architectures. Advanced methods like
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ensemble models can exploit these nonlinear structures more
effectively. However, suitable models for different datasets
can only be identified through rigorous experimentation,
as these ML techniques are entirely data-driven, and their
performance is highly dependent on the characteristics of the
datasets. Nonetheless, many researchers still rely solely on
either time-domain or frequency-domain features for auto-
mated cardiac anomaly detection due to the lack of familiarity
and skills, limited computing resources, and the lack of
awareness about the potential of TFD techniques.

Our study proposes a novel approach of using an existing
nonlinear TFD technique incorporated with a sequence of
novel Gini Index (GI) [11] feature vectors obtained from the
nonlinear TFD energy concentration values of QRS com-
plexes towards classifying the abnormal ECG signals from
healthy signals. These novel nonlinear TFD energy Gini
Index feature vectors have significantly increased the classi-
fication performance of some of the selected ML classifiers.
The QRS wave segments of an ECG signal represent the
rapid depolarisation of the ventricles, serving as the critical
marker for analysing heart rhythm, detecting heart anoma-
lies, and diagnosing cardiac conditions. This study further
focuses on addressing the association between heart abnor-
malities and the variationmeasure of the energy content of the
ECG signals and finally classifies the abnormal and normal
cases. Choi-Williams Distribution (CWD), a well-known and
well-performing TFD has been utilized to compute the energy
concentration and the related variation measurements [12].
This would greatly help to interpret the final diagnosis results
to the required parties. Moreover, a 30-minute duration of
each ECG record was considered to incorporate a larger
number of heartbeats to provide accurate, reliable, and con-
sistent results. It has been suggested from several studies that
analysing a long series of beats will improve the diagnosis of
heart problems [13].

The principal contributions of this work could be listed
as follows: 1. This work utilizes the Gini Index values of
CW-TFD as feature vectors for an intelligent classifier to
detect cardiac abnormalities during the initial ECG screen-
ing process. 2. The work enhances model explanation by
analyzing Gini Index patterns that capture energy variations
between normal and abnormal ECG signals. 3. It incorporates
a larger number of heartbeats with 30-minute ECG records
to ensure error-free screening and robust diagnosis. 4. The
proposed method achieves a 100% sensitivity rate, a crit-
ical factor in medical applications for example screenings
to eliminate false negatives. 5. Additionally, we provide a
comparative analysis of classification performance across
multiple machine learning models to validate its efficacy.
The Gini Index is an exceptional sparsity index measure
that is widely applied in machinery fault diagnosis and
radar communication applications by adopting signal pro-
cessing approaches. Nonetheless, it is already being adopted
for time-domain features of ECG signals for cardiovascu-
lar classification tasks. As far as authors are aware, this
is the first time, the Gini index is applied on nonlinear

TFD in ECG signal analysis and the subsequent CVD clas-
sification flow. Further, this study is among the tops to
incorporate a larger number of heartbeats, approximately
183,000 for a single ECG lead using conventional machine
learning-based CVD classification tasks. However, some of
the recent deep learning-based CVD classification studies
have utilized datasets containing millions of heartbeats but
much on the shorter ECG duration unlike the 30-minute
duration [14], [15], [16].

The subsequent sections of this manuscript are arranged
sequentially as follows. First, Section II discusses the
overview of the pertinent and related works and the foun-
dational background of the CW-TFD. The comprehensive
demonstration of the experimental setup and the correspond-
ing methodologies are detailed under section III. Then,
Section IV provides the findings of all experiments and
discusses them in detail. Finally, the manuscript is con-
cluded with derived conclusions and the recommended future
directions under section V.

II. RELATED WORKS
A. SIGNAL PROCESSING AND AI TECHNIQUES IN ECG
SIGNAL CLASSIFICATION
In recent times, the use of deep learning techniques in cardiac
abnormality prediction has shown significant growth across
the continents. The primary difference between conventional
machine learning and deep learning algorithms lies in the
approach to feature extraction. Machine learning relies on
handcrafted text or numerical features as input, whereas deep
learning models like CNN automatically extract features dur-
ing the learning process [17]. Hence, several images or very
large dimensions of matrices can be directly fed into the deep
learning models without being constrained by the challenges
associated with the multiple dimensions of the features.
Nonetheless, the main challenge in deep learning models is
the interpretability of the diagnosis results inmedical settings.
Recently, researchers have been adopting various techniques
for creating Explainable AI models (XAI) to address the need
of model interpretability in the medical and healthcare sec-
tors [18], [19]. Moreover, a notable influencing factor is that
many researchers employing deep learning models and AI
techniques may lack background knowledge or expertise in
the signal processing domain, as it is predominantly covered
within a limited range of curricula.

Several deep learning models including single and
multi-dimensional Convolutional Neural Networks (CNN)
[14], [15], [16], [20], [21], [22], Recurrent Neural Networks
(RNN) such as Long Short-TermMemory (LSTM) [23], [24]
and Gated Recurrent Units (GRU) [25], hybrid combination
of both CNN and RNN techniques [26], [27], [28], and
more recently, Transformer based models [29], [30], [31]
have been used in classifying major types of heart anomalies
with better prediction accuracy values. However, the inter-
pretability or the reasons behind the projected classes and
the generalizability of the classification model for practical
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applications on unseen data are prone to low performance.
Moreover, the ECG signal durations are typically in a few
seconds were considered by the researchers while employing
deep learning models most of the time due to the limita-
tions in computing resources and the time required for the
training process. The use of time-frequency transformation
or frequency transformation is limited while using deep
learning models. They are solely used for noise removal
and pre-processing or 1D to 2D conversion of input data
which is required in 2D-CNN-based deep learning mod-
els. Linear-type time-frequency approaches such as wavelet
transformation and short-time Fourier transform (STFT)
are exclusively used for such objectives. The researchers
have also indicated that this transformation helped
them to enhance the classification performance of their
models.

However, researchers persist in employing conventional
machine learning algorithms in ECG signal classification
applications instead of deep learning techniques for various
reasons [32], [33], [34]. When signal processing techniques
are meticulously implemented during feature engineering
and extraction phases, they effectively reduce the feature
set to lower dimensions that are more appropriate for
machine learning algorithms as opposed to deep learning
methods. Most of the researchers have been choosing to
employ deep learning techniques primarily to circumvent
the need for handcrafted feature extraction. Deep learning
will accomplish this autonomously for them with min-
imal human intervention. However, handcrafted features
would significantly aid in the interpretation of diagnos-
tic results, particularly in medical settings. Furthermore,
the computational overhead and training duration are min-
imal when implementing conventional machine learning
models.

Time-domain analysis, frequency-domain analysis, and
time-frequency domain analysis are the main categories of
signal processing techniques. They have been widely used in
ECG signals, Electroencephalogram (EEG) signals, telecom-
munication signals, audio signals, seismology signals, and
vibration signals for numerous years. In [35], researchers
have extracted time domain features from QRS wave seg-
ments and ST-T segments of the ECG signals and used
machine learning classifiers such as Support VectorMachines
(SVM), Decision Tree (DT), and K-means clustering to clus-
ter the Ischemia, Arrhythmia, and Healthy datasets. They
used the venerable but limited Pan-Tompkins time-domain
algorithm for detecting the R-peaks of the ECG signals. The
same group of researchers in their subsequent work [36]
have used both time domain features and frequency domain
features for classifying the same classes of abnormalities.
They have utilized Naïve Bayes (NB) and Linear Discrim-
inant Analysis (LDA) classifiers by using these extracted
features subsequently. In [8], researchers have used the CWD
method to extract time-frequency features from PR and ST
segments of ECG signals to detect the Ischemia cases and

healthy cases from several databases. They used an SVM
classifier for classifying the cases. R.R. Sharma et al. used
the TFD approach using a combination of Hilbert Transform
and Hankel Matrix to extract multiple local and global fea-
tures [37]. These features are derived from Average time
frequency, frequency average, and time average from the
TFD matrix. Thereafter, all features were inputted into the
Random Forest and Decision Tree to classify the healthy
and CVD patients. Zaid Abdu et al. proposed a heart sound
classification method using photoplethysmogram (PPG) sig-
nals for identifying abnormal heart sounds [38]. Initially, they
used fractional Fourier transform, a linear TFD approach to
obtain the Mel-frequency coefficients and then the obtained
features were fed into multiple classifiers such as KNN,
SVM, and ensemble classifiers for the final classification.
Researchers have also used the Fractional Fourier Transform
to obtain multiple time-frequency domain features from the
ECG signals and subsequently fed them to the SVM and
Multilayer Perceptron (MLP) classifiers to categorize mul-
tiple types of Arrhythmia abnormalities [39]. They have also
utilized Discrete Wavelet Transform (DWT) for noise and
artifact removal before applying Fractional Fourier Trans-
form. Another joint time-frequency approach was investi-
gated in the experiment of extracting petal ECG signals
from abdominal ECG signals of pregnant mothers [40]. They
further validated their method with the Arrhythmia dataset
as well.

They have applied the Stockwell transform (S-transform)
to retrieve the Shannon energy entropy features. The use
of nonlinear time-frequency techniques is relatively mini-
mal when compared to linear TFD and time-domain tech-
niques in cardiac anomaly detection applications. Nonlinear
approaches are more crucial in analyzing signals like ECG
that are non-linear and non-stationary. Hence, in this work,
we are proposing a nonlinear time-frequency approach for
extracting the features and subsequently, machine learning
algorithms for the final ECG anomaly classification.

B. CHOI-WILLIAMS TIME-FREQUENCY DISTRIBUTION
(CW-TFD)
The underlying objective of using a time-frequency distri-
bution technique is to derive a function that simultaneously
represents the energy density of a signal in both time and
frequency domains. This approach is valuable for many appli-
cations involving signals with time-varying spectra [13]. Joint
TFDs are especially important for analyzing nonstationary
and multicomponent ECG signals [40]. Since there is no
single, universal way to depict the energy distribution of a
signal across time and frequency, various methods have been
proposed [12]. One of the most widely recognized methods
is the quadratic, or Cohen’s class, representation. Nonethe-
less, this approach often suffers from interference between
frequency components, known as cross-terms. To mini-
mize these unwanted cross-terms, one of the most effective

VOLUME 13, 2025 86669



M. Aashiq et al.: TFDGiniXML: A Novel Explainable Machine Learning Framework for Early Detection

techniques is the Choi-Williams class kernel (CWD) for time-
frequency analysis [12]. This can be expressed using (1).

CWD (t, ω) =
1
2π
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∞
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where, t and ω symbolize frequency and time compo-
nents respectively. K (θ, q) is the exponential kernel function
utilized in the CW-TFD. The kernel function could be
considered as a low-pass filter, suppressing the cross-term
interference effectively [8]. This kernel function of CWD is
defined by (2) as below.

K (θ, q) = exp
[
−

θ2q2

σ

]
(2)

Here, σ is a real value parameter that can adjust the res-
olution and minimize the cross-term effects. The discrete
formulation version of CWD for the sampled ECG signal data
x[m] could be defined mathematically as below in (3) [8],

CWD (n, ω) = 2
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Another technique was suggested in [41] to further reduce
cross-terms in Cohen’s time-frequency classes by ensuring
that only the positive components of the matrix retain the
underlying information, whereas the negative components,
which correspond to cross-term effects, are excluded from the
CWD matrix output. And this approach successfully applied
in various fields including in the analysis of ultrasound and
electromyogram (EMG) signals for much-reduced comput-
ing and memory reasons for calculating CWD. The signals
exhibit frequency components that vary over time, and the
power density or marginal conditions are represented by
the instantaneous spectrum [42]. The instantaneous power
can be obtained by integrating the TFD over the frequency
components as below in (4).∫

+∞

−∞

TFD (t, ω)dω = |x (t)|2 (4)

Similarly, the integration of TFD function over the range
of time components yields the energy spectrum of this TFD
as follows in (5):∫

+∞

−∞

TFD (t, ω)dt = |X (ω)|2 (5)

Hence, the total power or energy can be derived as follows:
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various distributions fromCohen’s classes are used to analyze
bio signals, seismic signals, mechanical vibration signals,
etc. The CWD provides dependable and precise outcomes,

striking an effective balance between minimizing unneces-
sary cross-term effects and maintaining the strength of the
TFD [9].

III. EXPERIMENTAL METHODOLOGY
A. ECG DATABASES
There are various ECG databases available to the public
for ECG-based research works. They are mainly from the
PhysioNet public repository [43]. These databases are con-
sidered golden standard databases for such tasks. We have
selected two databases that were more than 30 minutes in
duration due to the reason that all experiments were per-
formed up to 30 minutes for each record by dividing them
into one-minute windows. MIT-BIH Arrhythmia [44] and
Fantasia Normal databases [45] from the Physionet public
repository were used. The MIT-BIH Arrhythmia database
comprises 48 Arrhythmia records from 47 patients for 30-
minute durations. 25 male volunteers (Ages between 32 and
89) and 22 female volunteers (ages between 23 and 89).
This took around 4 years for the cardiologists to process and
annotate the beats.
Fantasia Normal includes the records of 40 healthy people

with 20 young adults aged between 21 and 34, and 20 elderly
subjects aged between 68 and 85. They were observed for
120 minutes while lying in a supine position, during which
continuous electrocardiogram (ECG) and respiration data
were recorded. Uncalibrated continuous non-invasive blood
pressure measurements were also taken for half of each age
group. Both subgroups consist of an equal amount of male
and female subjects. MIT-BIH Arrhythmia records are con-
sidered for abnormal cases, and the Fantasia Normal records
are considered as normal or healthy cases. Class labelling is
accomplished accordingly. Thirty minutes of the MIT-BIH
Arrhythmia database accounts for 109,494 beats for a sin-
gle lead and the first 30 minutes of the Fantasia Normal
database accounts for 73,510 beats approximately. The total
duration of the Fantasia database lasts for 2 hours for each
record. MIT-BIH Arrhythmia database includes two ECG
leads, lead ML II and V5. However, the Fantasia Normal
database contains only a single ECG lead, and the other
two signals are the respiratory signal and the blood pressure
waveform.

B. ECG SIGNAL PROCESSING
The collected ECG datasets were to undergo meticulous
preprocessing prior to extracting the joint-time frequency fea-
tures of QRS complexes. A resampling step was performed
ahead due to the differences in the sampling rates across
the selected databases. All ECG data were resampled at
360 samples per second as it is one of the typical sampling
rates in related ECG studies. American Heart Association
(AHA) recommends selecting the appropriate sampling rate
for the accurate measurement of R-peaks and the range of
250-500 Hz or perhaps even higher rates are optimum [46],
[47]. However, this would affect time-domain-based signal
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analysis, on the contrary, it will not have any impact on
our time-frequency approach as we are not performing any
types of R-peak detection in the time domain. However,
we maintain a higher sampling rate as they are more infor-
mative for discrete or digital analysis. The digital noise
filters were applied to get rid of ECG artifacts and enhance
the signal quality. A first-order high-pass Infinite Impulse
Response (IIR) filter was applied to eliminate the baseline
wandering effects, while a bandpass filter, with bandwidth
at 0.5 Hz and 40 Hz of center frequencies, was employed
to suppress the muscle noise artifacts and the high-frequency
powerline interferences. The ECG raw data were also scaled
to mitigate dynamic fluctuations caused by physiological
differences and activities. This scaling step was crucial for
ensuring uniform comparisons across different databases
and for consistent feature extraction in a generalized
algorithm.

Algorithm 1 illustrates the necessary steps for the
elimination process of baseline drift and suppression of
high-frequency artifacts.

Algorithm 1 Algorithm for Eliminating Baseline-Wander
and High-Frequency Noise
Input: input_signal, sampling_rate, filter_coeff,

cutoff_bp_low, cutoff_bp_high, filter_order
Output: final_filtered_signal

1: Initialize: Design the IIR high pass filter with filter
coefficients filter_coeff
2: filtered_signal_hp← Apply IIR Filter (filter_coeff,

input_signal)
3: bp_coefficients← Design Bandpass_Filter

(cutoff_bp_low, cutoff_bp_high,
sampling_rate, filter_order)

4: final_filtered_signal← Apply Bandpass_Filter
(filtered_signal_hp,
bp_coefficients)

5: return final_filtered_signal

Figure 1 visualizes the ECG signal before and after per-
forming the noise removal steps. It can be noticed clearly
from the figure that after removing the baseline wanders,
the isoelectric level of the ECG signal is distinctly defined
in contrast to the baseline wander-affected signal. This is
crucial for precise measurements of the parameters and
to avoid misleading clinical interpretations. The spectral
contents of baseline wanders are usually confined to a fre-
quency range below 0.5 Hz [48]. It is also visible from
the figure that high frequency which is more than 40 Hz
artifacts are removed after performing the bandpass
filtering.

C. MEMORY AND COMPUTATIONAL REQUIREMENTS FOR
QUADRATIC TIME-FREQUENCY DISTRIBUTIONS
TFDs are represented as two-dimensional functions, which
demand significant computing and memory resources for
analyzing larger datasets. Typical quadratic TFD algorithms

FIGURE 1. (a) ECG signal affected by baseline wander and high-frequency
noises. (b) ECG signal after eliminating the baseline wanders. (c) Cleaned
ECG signal after eliminating both baseline wanders and high-frequency
noises.

hold approximately N 2 log2 N operations, and 2N × N
size of memory. The real signal S (t) is converted into an
analytical signal Z (t) before forming the TFD function.
This will eliminate the negative frequency components and
prevent cross-term interference between negative and posi-
tive frequencies in the time-frequency domain. The general
mathematical form of a quadratic class distribution for an
analytical signal Z (t) can be expressed from the Equation (7)
below.

ρZ (t, f ) = DZ (t, f ) ∗t ∗f γ (t, f ) (7)

where, ∗t∗f represents TF convolution, DZ (t, f ) represents
the TFD, and γ (t, f ) is the TF kernel function. In this
study, the approach from [49] that reduces memory and
computational load is applied. This algorithm decreases
memory usage from 2N×N times to N×N times sample
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FIGURE 2. Two-dimensional (2D) representation of Choi-Williams
transformation for a (a) normal ECG and (b) abnormal ECG signals.

points and the computation load is reduced from N 2 log2 N
to 1/2N 2 log2 N numerical calculations. Despite using a
memory-efficient algorithm, the need for additional mem-
ory remains, especially when analysing long-duration data.
For instance, one minute of data sampled at 360 samples
per second requires (60 × 360)2× 8 bytes, which equals
approximately 3.47 GB of computer memory. Figure 2 shows
the differences between healthy and abnormal ECG sig-
nals using CWD in 2-D representation. Similarly, Figure 3
visualizes the same in 3-D representation. It can be noted
from Figure 3 that the energy distribution of QRS com-
plexes in healthy subjects is well-defined and localized in
both time and frequency domains. The 3D plot exhibits
smooth and sharp peaks corresponding to the periodic
occurrence of QRS complexes, indicating stable cardiac
activities. Least background noises or spurious energy con-
centrations reflect efficient cardiac electrical conduction and
regular heartbeats. In contrast, abnormal cases show broader
and more scattered energy distributions. The QRS energy
peaks appear more dispersed in both time and frequency,
indicating irregularities in electrical conduction. Addi-
tional energy fluctuations outside the QRS region suggest

FIGURE 3. Three-dimensional (3D) representation of Choi-Williams
transformation for (a) normal ECG and (b) abnormal ECG signals.

commonly associated cardiac abnormality variations. Some
secondary energy components are linked to repolarization
abnormalities.

D. EXPERIMENTAL SETUP
All experiments were performed in a high-end workstation
equipped with 128 GB of RAM and 12 Physical CPU Cores
(24 Logical Processors). The operating system used wasWin-
dows 10. An NVIDIAGeForce RTX 2080 Ti with 74.8 GB of
GPU memory was also included in the same PC. All signal
processing tasks were performed in MATLAB R2023a ver-
sion, and the Machine Learning classification was performed
in Python version 3.11.7 and the scikit-learn version 1.2.2.

E. TIME-FREQUENCY ENERGY CONCENTRATIONS
The QRS segments of the ECG signals, which lie within
the frequency range of 5 to 22.5 Hz are the primary region
used to ascertain the normality or abnormality. Total energy
concentration will be computed by setting up the time slots
and frequency slots over the TFD function obtained from the
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FIGURE 4. Methodology flow diagram for the proposed CVD anomaly detection system.

above CWD function given in Eq. 1 and computed as shown
below in (8).

TEQRS (t, f ) =

 N∑
t=1

22.5∑
f=5

CWD (t, f )

 (8)

Similarly, the marginal energy at the instant frequency fi is
computed as per the below in (9),

EQRS (t, f0) =

(
N∑
t=1

CWD (t, f0)

)
, f0 ∈ [5, 22.5] (9)

Here, N indicates the total number of samples for the
one-minute window of the ECG signal.

F. FEATURE EXTRACTION FOR TIME-FREQUENCY ENERGY
GINI COEFFICIENTS
Feature extraction and feature engineering are essential
in machine learning as they involve forming new and
domain-specific features or modifying existing ones for a
better representation of the underlying patterns in the data.
Researchers have used multiple instances of a single fea-
ture [8], [9], [50], [51], [52] or single instance of multiple
features or multiple instances of multiple features [5], [53],
[54] in their respective works and achieved commendable
classification performances in all these three approaches.
In this work, we are proposing a sequence of Gini index

values or Gini coefficients as the feature vector to be used
with several machine learning models.
These Gini index measures are obtained from the energy

concentrations of QRS complexes by using the CW-TFD
function as described in the above sections. Gini index
measures can be used to indicate the fluctuations in QRS
complex energy concentrations of TFD representation of
abnormal and normal ECG signals. After computingmarginal
time-frequency energy values of all QRS complexes, the Gini
index measures are computed for each one-minute window
throughout the whole 30-minute duration for each record.
Hence, 30 instances of GI measures are extracted and used
as the input feature vector for the specified machine-learning
classifiers.
The Gini index is commonly regarded as an exceptional

sparsity index measure by researchers. It was introduced
by Conrado Gini, an Italian Mathematician to study the
income variation of a given society, and it originated from
the Lorenz curve. GI exhibits the most consistent gradient
behavior and outperforms commonly used sparsity statisti-
cal measures including Kurtosis, Lp/Lq norm, and Hoyer
measures [55]. The Gini index has been widely used in
economics and sociology to study mainly the wealth inequal-
ities among populations. It is also well utilized in other
areas of applications, including but not limited to detecting
faults in machinery [55], gene studies [56], bacterial stud-
ies [57], healthcare resource distribution [58], pathological
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studies such as tumor detection [59] and cardiovascular
studies [60]. However, GI measure has been applied only
in the time domain features of the ECG signals such as
R-R intervals and other heart rate variability (HRV) mea-
sures [60]. To the best of the authors’ understanding, this
is the first occurrence of the GI measure being applied
to study the variations of QRS segment energy concentra-
tion derived from a nonlinear joint TFD for ECG signal
analysis.

The respective GI expression could be incorporated with
the sum of energy concentration values as indicated below,

GI
(
Ef 0

)
= 1−

2
|Ef 0|1

N∑
i=1

Ef 0s (i)
(
N − i+ 1/2

N

)
(10)

where, Ef 0 = EQRS (t, f0) and |Ef 0|1 is the L1 norm of
the ETValues. Ef 0s :

∣∣Ef 0s (1)∣∣ ≤ . . . ≤
∣∣Ef 0s (N )

∣∣ are
the ascending order sorted values of elements Ef 0. The GI
values range between 0 and 1 (GI ∈ {0, 1}), Where 0 rep-
resents the equal distribution and 1 signifies the complete
inequality in the distribution. Hence, this GI measure would
be more appropriate for concentration measurements com-
pared to other commonly used metrics. The GI is useful
for identifying the representation of most concentrated TFD,
particularly, for the signals that exhibit intrinsic and nonlinear
characteristics in the time-frequency domain. Furthermore,
it could serve as an effective metric for determining the
optimal parameter values of the TFD that best align with
the analyzed signal. After obtaining the GI values of all
subjects, they will be fed to the final intelligent classifier
to determine whether the subject is healthy or has any kind
of heart abnormalities. Algorithm 2 describes the complete
sequence of computation of Choi-Williams transformation,
Marginal energy concentration of QRS segments, and the
extraction of Gini Index feature vectors of the TFD distri-
bution. Figure 4 illustrates the comprehensive workflow of
the proposed normal-abnormal ECG classification problem,
which is described in the above Sections B, E, and F. Ini-
tially, the collected signals underwent high pass and bandpass
filtering for noise and artifacts removal, following that, sig-
nals were segmented into one-minute window frames and
resampled to 360Hz rates. After that, these ECG signals were
transformed into CWD-TFD form and the mean energy val-
ues of QRS components were computed subsequently. From
the computedmean-energy values, Gini-Indexmeasures were
derived respectively. These Gini-Index values are used as the
feature vector for training and testing the provided intelli-
gent classifiers subsequently. Finally, normal and abnormal
ECG classification is accomplished by using these GI feature
vectors.

G. INTELLIGENT CLASSIFIERS
Eight supervised machine learning algorithms are used as
the intelligent classifier and their classification performances
were compared with each other. All Gini Index feature vec-
tors are labelled either abnormal or normal according to

Algorithm 2 Algorithm for Computing Choi-Williams
Transformation and Extracting Gini Index Values from
Temporal-Spectral Energy Concentrations
Input:

ecg_input: ECG signal data in Array format
f0: The original sampling rate of the ECG signal
ft : The target sampling rate for resampling
qrs_range: Frequency range of the QRS complex
W : Duration of each window segment
N : Number of 1-minute segments

Output: gini_coefficients
1: resampled_ecg_signal← Resample (ecg_input, f0, ft )
2: for i = 1 to N do
3: seg_start = (i− 1) ∗W ∗ ft
4: seg_end = i ∗W ∗ ft
5: ecg_segment← resampled_ecg_signal

(seg_start: seg_end)
6: cwd← Compute TFD (ecg_seg) using the

given Equation (1).
7: qrs_freq_range = [lf_qrs, hf_qrs]
8: for j = lf _qrs to hf _qrs do
9: marginal_qrs_energy← Compute Marginal

Energy (j) > 0
as per the Equation (9)

10: end for
11: gini_coefficients← Compute Gini (marginal _

qrs_energy) using the
given Equation (10)

12: end for
13: return gini_coefficients

the annotated labels of the original datasets. Many of these
classifiers are widely used in ECG classification and other
types of classification problems in various domains. Brief
descriptions of these classifiers are discussed below,

1) K-NEAREST NEIGHBOR (KNN) CLASSIFIER
KNN classifier is a supervised and non-parametric machine
learning algorithm that functions without making any prior
assumptions about the underlying data, making it particularly
well suited for complex, nonlinear classification tasks [61].
Unlike parametric models, KNN classifies data points exclu-
sively based on the proximity of similar instances in the
feature space. The ultimate outcomes of the test instances are
decided by the majority voting scheme among their closest
‘‘k’’ neighbors, based on distance measures like Euclidean,
Manhattan, and Chebyshev measures. In this work, the k
value of 3 is selected and the default values are used for
the rest of the parameters. The default distance metric is
Euclidean distance. Model transparency and simplicity are
the main benefits of the KNN classifier. However, a notable
drawback is it requires the retention of all training data,
demanding substantial memory resources when the dataset
is huge. KNN is widely adopted in biomedical applications.
Studies such as this have demonstrated the use of KNN
to classify various ECG signals. The straightforward and
reliable design of KNN on similarity-based classification
enables it to accurately distinguish between various cardiac
disorders.
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2) SUPPORT VECTOR MACHINE (SVM) CLASSIFIER
SVM is a non-probabilistic and linear classification model
widely applied in binary classification tasks [62]. It attains
classification by creating a hyper-plane that effectively sepa-
rates data points into distinct classes. Support VectorMachine
(SVM) represents each feature point in an N-dimensional
space and identifies an optimally positioned hyperplane that
would maximize the distance to the closest sample points on
both sides from the hyperplane, given a training set of N-
dimensional features. This process strengthens the classifier’s
robustness in handling noisy data, as it aims to hold new,
unseen data points correctly classified even if they fall close
to the boundary. The data points within the closest premise
of the hyperplane are typically known as support vectors,
which are crucial for determining the appropriate separation
boundary. If the dataset is complex and nonlinear, the SVM
can introduce nonlinearity through various kernel functions
such as Quadratic, Cubic, or Gaussian, allowing the data to
be projected in a multidimensional space, where it becomes
linearly separable. SVM has been widely used for many years
in various ECG-related applications to detect anomalies.
Researchers have been able to accurately detect the presence
of anomalies that might otherwise be indistinguishable in a
lower dimensional space. We have used the default linear
kernel as the kernel function in this work.

3) RANDOM FOREST (RF) CLASSIFIER
Random Forest is one of the ensemble-based ML techniques
that builds several decision trees to enhance classification
accuracy and minimize the overfitting [63]. A single decision
tree is prone to noise and model overfitting when it deals with
complex datasets. The forest is constructed by training each
tree on a randomly selected subset of features. This bagging
or bootstrap aggregation mechanism is used to capture vari-
ous patterns in the data. The class for a given input is predicted
by each decision tree independently. Consequently, the final
classification is ascertained with a majority vote among all
trees, making the model robust and less sensitive to individual
outliers. Furthermore, at each of the trees, only a random
subset of selected features is considered for splitting, adding
an extra layer of randomness, and this dual randomness will
help tominimize the chances for overfitting, even if themodel
is applied to high-dimensional data. Feature importance met-
rics could be used for the model’s interpretability. Random
Forest is widely used in ECG classification and various other
biomedical tasks due to its balance of accuracy, robustness,
and model interpretability. We have used default values for
the applicable hyper-parameters in this work.

4) EXTREME GRADIENT BOOSTING (XGBOOST) CLASSIFIER
XGBoost is a tree-based ensemble method with gradient
boosting to attain an enhanced performance in both classi-
fication and regression tasks [64]. XGBoost iteratively builds
an ensemble of trees where each tree rectifies the errors of
its predecessors. This sequential gradient boosting approach

enables XGBoost to address the complexity and the non-
linearity in the data. The model’s complexity is controlled
by the Lasso (L1) and Ridge (L2) regularization parameters
which reduce the risks of overfitting and improving gen-
eralization. XGBoost uses parallel processing to optimize
computational efficiency and uses tree-pruning to handle
sparse data. An objective function is used by this classifier.
It is a combination of a loss function and a regularization
term to lead an accurate and stable model. XGBoost has
been successfully utilized in many biomedical applications
such as CVD prediction, cancer prediction, gene expression
analysis, etc. Model interpretability using feature importance
metrics, speed, and accuracy are the major positive factors
of XGBoost. Conversely, one of the main drawbacks of this
classifier is better performances could be achieved for large
and multi-dimensional datasets. Default values are used for
the applicable hyper-parameters for our work.

5) GAUSSIAN NAÏVE BAYES (GNB) CLASSIFIER
GNB is a probabilistic classification technique that employs
Bayes theorem and presumes that features adhere to a Nor-
mal (Gaussian) distribution [65]. Each feature is assumed to
contribute independently to the final classification outcome.
This algorithm calculates the probability of each class using
the Gaussian probability density function to estimate the like-
lihood of each feature belonging to each class. GNB assigns
a test instance to the highest posterior probability class.
The algorithm’s simplicity allows it to handle larger datasets
efficiently and helps with fast predictions. GNB has been
applied in ECG classification, genomics, and other bioin-
formatics tasks. Additionally, GNB provides some level of
interpretability by inspecting the feature’s likelihood contri-
bution to the prediction. Normally distributed features make
GNB a valuable classifier in biomedical data analysis and
diagnostics. In this work, default values are used for the rele-
vant hyperparameters analogous to the preceding classifiers.

6) CATEGORICAL BOOSTING (CATBOOST) CLASSIFIER
CatBoost is one of the supervised gradient-boosting algo-
rithms widely applicable in classification and regression
studies [66]. It builds an ensemble of several decision trees,
optimizing a gradient-boosting mechanism to minimize a
loss function. CatBoost is particularly popular in handling
structured data. Its effective handling of overfitting ren-
ders it suitable for biomedical applications characterized by
high-dimensional or imbalanced datasets. CatBoost enhances
prediction speed and model interpretability through the uti-
lization of techniques such as oblivious trees (symmetric
trees), rendering it especially advantageous for applications
such as disease risk prediction, patient classification, and
genomic analysis. Another significant advantage of CatBoost
is its capability to handle smaller datasets, a prevalent diffi-
culty in biomedical research where data acquisition is limited.
Although CatBoost is proficient in handling categorical data,
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its complexity may render it less intuitive for interpretation
as opposed to more straightforward and simpler models.

7) LINEARBOOST (LB) CLASSIFIER
LinearBoost algorithm, is another variant of boosting meth-
ods that combines multiple weak linear models to build a
stronger predictive model [67]. Instead of using multiple
decision trees as base models, LB uses multiple linear classi-
fiers as underlying base models. This method is particularly
effective for high-dimensional data, where linear relation-
ships are dominant, and a series of boosted linear models can
capture the underlying patterns without overfitting. Linear-
Boost is computationally efficient and less resource intensive
as opposed to some other complex models. It has been
reported that the LinearBoost algorithm outperforms some
other prominent Gradient Boosting Decision Tree-based clas-
sifiers such as CatBoost, XGBoost, and LightGBM after
being tested on a few benchmark datasets. LB has been
applied to some biomedical tasks such as genomic studies.
To the best of our understanding, this is the first occurrence
of LinearBoost being applied in ECG signal classification.

8) LOGISTIC REGRESSION CLASSIFIER
Logistic Regression is also a supervised ML algorithm
which is commonly utilized in biomedical and ECG appli-
cations [68]. It is commonly applied to binary classification
tasks. The probability of the test instance that belongs to a par-
ticular class is estimated based on the provided feature vector.
Either the sigmoid or logistic function is used to project the
predicted values into a probability range from 0 to 1. It seeks
to find an optimum fitting model that delineates the links
between a collection of independent variables and the binary
outcome variable. This property is particularly useful when
interpreting the model. Each coefficient delineates the associ-
ation between a feature and the probability of the target class,
rendering it a popular option for healthcare and biomedical
research for the interpretability of the results. While logistic
regression is simple and interpretable, it presumes a linear
relation between input features and the logarithmic trans-
formation of outcomes, which may no longer be applicable
in the presence of more intricate and nonlinear interactions.
However, Logistic Regression remains a robust and effective
choice for classification tasks in biomedical research, where
the interpretability of the decision and the model simplicity
are priorities.

IV. RESULTS AND DISCUSSIONS
Training and evaluation processes were performed on 88 indi-
vidual records by combining two different gold-standard
public ECG databases as described earlier.We have used 80%
of the dataset for training the intelligent classifiers and the
remaining 20% of the dataset is for testing the classification
models. Further, the ‘‘subject-specific’’ scheme as suggested
by the Association for the Advancement of Medical Instru-
mentation (AAMI) is used to divide the dataset for training
and testing. This partition ensures the interpatient separation

which implies that the data corresponds to the same individual
is not present in both the training set and the testing set to
form an unbiased model. These ECG databases are among a
few that contain longer than 30minutes in duration for each of
the individual records. Our experiments were performed for
30 minutes duration of ECG data. Hence, the total number
of accounted heartbeats is 183,000 and this is the first time
such a larger number of beats are accounted for conven-
tional machine learning-based studies for longer duration
ECG signals. TABLE 1 summarizes the accounted number of
beats and the analyzed durations of the normal and abnormal
ECG signals. Longer duration analysis will help to prevent
the subjects from misdirection or misinterpretation by the
medical professionals. People will worry unnecessarily if the
result is a false positive, and they will not consider it seriously
if the result is a false negative. Longer duration analysis is
also crucial for detecting a few specific types of abnormal
conditions. Moreover, a few minutes from the initial period
of the ECG data are unreliable due to several factors such
as patient’s fear around the testing equipment, particularly
for first-time users, body movements of the patients, and
ECG artifacts. Such effects will not have significant impacts
while considering the longer-duration signals. Most of the
reported studies incorporate very short durations of ECG
signals which are even less than a singleminute. Additionally,
beat-wise classification, either normal or abnormal in a single
database may introduce uncertainty in the medical process.
For instance, how can a decision be made for a one-minute,
or a several second duration ECG recording that indicates half
of abnormal and half of normal beats (50% normal) using
single beat analysis approaches?

All the experiments were performed on a single lead since
the Fantasia-Normal database has only a single lead for ECG
signals. The other two leads are, one for respiratory signal and
the other is Blood Pressure waveform, meanwhile MIT-BIH
Arrhythmia database has two ECG leads. First ECG lead from
all the MIT-BIH Arrhythmia records and the first 30 minutes
duration of the Fantasia database were selected for the subse-
quent experiments.

In signal processing applications, energy concentration
within time-frequency space plays a crucial role in diagnostic
tasks, feature reconstruction and extraction, and classification
tasks particularly for non-stationary and multi-component
signals. As a result, when using energy concentration of a
signal as a feature, it becomes essential to choose a TFD that
maximizes the energy concentration for the selected signal.
Biomedical signals are vulnerable to several forms of noise
during the data-gathering phase. These artifacts can result
from poor electrode contact with the body, external interfer-
ences such as electrical power noise, or breathingmovements.
Utilization of TFD for biosignal studies could help mitigate
such potential artifacts and enhance the accuracy in detecting
abnormal conditions.

According to the existing literature, joint time-frequency
analysis methods have performed very well in detecting
the abnormalities in ECG signal analysis, seismic signal
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TABLE 1. Summary of the databases analyzed in the proposed
experiments.

FIGURE 5. Energy concentration variation over the range of frequencies
for (a) abnormal ECG for (b) normal ECG.

studies, and machinery fault analysis despite very lim-
ited studies being conducted compared to time-domain and
frequency-domain approaches.Meanwhile, the CWDmethod
performed well compared to the other Cohen’s class of
time-frequency methods due to its less susceptible nature
to cross-term interference and noisy components that are
present in the signals. The Gini index is considered as an
exceptional statistical sparsity index to identify the inequal-
ities or dispersions among a particular distribution. This
metric has been successfully applied in non-stationary and
multi-component signal applications such as machinery fault
diagnosis and radar communication. However, this is the first
time, the Gini index has been applied on time-frequency
energy features in ECG signal analysis. Except the works
provided in [69] and [70], Gini index values were derived

FIGURE 6. Variation of Gini Index measures on 1-second segmentation
over the total duration of 60 seconds.

FIGURE 7. Variation of Gini Index measures on 1-minute segmentation
over the total duration of 30 minutes.

only from the time domain features in all previously reported
signal processing applications.

It is clearly visible from Figure 5 that energy level varia-
tions associatedwith the normal and abnormal ECG signals in
each frequency contain meaningful information derived from
the signal energy spectrum within the QRS segments. Such
information is the reflection of various cardiac activities that
can vary at any moment. The QRS wave segments are known
to be the most informative region of the ECG signal, as it
comprises valid information related to the left-right ventricle
depolarizations.

Gini Index measures show commendable performance in
classifying the abnormal and normal ECG signals signifi-
cantly as illustrated in Figure 6 and Figure 7. While the
time-window size is increased from 1 second to 1 minute, the
distinct difference between abnormal ECG and normal ECG
increases in most of the one-minute windows throughout the
whole 30-minute duration. This indicates that variations in
QRS complex signal energy are higher in abnormal ECG
signals as opposed to normal ECG signals.

Detecting Normal and Abnormal ECG is a classification
problem in the wide spectrum of machine learning appli-
cations. In our study, the performance and effectiveness of
each intelligent classifier is assessed using the recommended
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FIGURE 8. Confusion Matrices for all Intelligent Classifiers on Test Data (a). Logistic Regression, (b). K-Nearest Neighbors, (c). Support Vector Machine,
(d). Gaussian Naïve Bayes, (e). Random Forest, (f). CatBoost, (g). XGBoost, and (h). LinearBoost respectively.

TABLE 2. Performance metrics of all eight intelligent classifiers on the
testing dataset. highlighted in bold entries are the highest obtained
values.

metrics from the AAMI. These metrics include Confusion
Matrix, Accuracy (Acc), Precision (Pre), Sensitivity (Sen) or
Recall, Specificity (Spe), F1-Measure, and Area Under the
Curve (AUC). Here, abnormal occurrences are classified as
positive, and normal occurrences are classified as negative.
Hence, Accuracy denotes the proportion of correctly diag-
nosed normal and abnormal events out of the total, Precision
describes the correctly classified abnormal events that are
classified as abnormal, Sensitivity (Recall) reflects the rate of
correctly identifying abnormal events, and Specificity shows
the rate at which normal events are accurately classified as
normal. The harmonic-mean between precision and sensitiv-
ity is represented by the F1 measure.

These measures are derived from the confusion matrix
as described in the following mathematical expressions
(Equations 11-15). AUC denotes the area beneath the
Receiver Operating Characteristics (ROC) curve that visu-
alizes the association between the True Positive Rate
(Sensitivity) and the True Negative Rate (1-Specificity).

AUC = 1 denotes an ideal classifier, AUC = 0.5 (50%)
denotes the model which is not superior to a random guess,
and AUC < 0.5 suggests poor performance. Figure 8 demon-
strates the confusion matrix for all eight intelligent classifiers
for the testing dataset.

Accuracy =
TP+ TN

TP+ TN + FN + FP
(11)

Precision =
TP

TP+ FP
(12)

Sensitivity =
TP

TP+ FN
(13)

Specificity =
TN

TN + FP
(14)

F1−Measure =
2 x Precision x Sensitivity
Precision+ Sensitivity

(15)

From themedical and healthcare point of view, the sensitiv-
ity measure is more critical when compared to accuracy and
other metrics as it will help to find out the rate of disease cases
that are misclassified as healthy cases which are more danger-
ous than that of healthy cases are misclassified into disease or
abnormal category. This can be identified from the number
of TP and FN instances. This also complements the existing
practice of an expert-in-the-loop approach where a medical
expert provides the diagnosis with the help of technology.
Precision and Specificity metrics are influenced by the num-
ber of FPs, whereas further medical screening procedures
could assist in corroborating the FP cases. However, high sen-
sitivity rates will ensure that most of the abnormal cases are
detected at the initial screening process accurately and sub-
sequent treatments can significantly improve the outcomes.
This can help to avoid serious health consequences, treatment
delays, and life-threatening situations. TABLE 2 provides a
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FIGURE 9. Comparative Analysis of ROC Curves for (a). Training Dataset
and (b). Test Dataset from Eight Machine Learning Classifiers: Logistic
Regression, K-Nearest Neighbor, Support Vector Machine, Gaussian Naïve
Bayes, Random Forest, CatBoost, XGBoost, and LinearBoost. The AUC
metric is used to assess the effectiveness of each intelligent classifier,
with a higher AUC value indicating better performance.

summary of the assessment metrics of each machine learning
classifier. It can be noticed from TABLE 2 that three of
our intelligent classifiers: Random Forest, Gaussian Naïve
Bayes, and XGBoost have achieved a remarkable 100% sen-
sitivity on the evaluated 20% of the testing records. Further
to that, Random Forest and Gaussian Naïve Bayes models
have outperformed the remaining six classifiers. The Random
Forest has achieved 94.44% accuracy, 90% precision, 87.50%
specificity, and 95.24% F1-score. Similarly, Gaussian Naïve
Bayes has achieved 94.44% accuracy, 90% precision, 88.89%
specificity, and 94.74% F1-score respectively.

Moreover, the ROC curves in Figure 9 illustrate the curves
for training dataset (80%) and testing dataset (20%) sep-
arately. Based on the AUC values of the curves, Random
Forest and Gaussian Naïve Bayes precede other classifiers
with AUC values of 90.12% and 92.59% on the testing dataset

respectively. Even though Logistic Regression and Support
VectorMachines resulted in higher values for AUCof 92.59%
on the testing set, they have resulted in low AUC values
on training datasets with 72.70% and 73.61% respectively.
Further, their accuracy, precision, specificity, and F1-score
values are relatively lower compared to those achieved by the
Random Forest and the Gaussian Naïve Bayes classifiers.

Our best models (RF and GNB) have achieved 100% sensi-
tivity as they effectively identified all the positive cases due to
the distinctive nature of Gini Index features, ensuring no false
negatives. The 90% precision was due to some false positives,
potentially caused by borderline cases. Accuracy of 94.4%
was due to the same false positives. The F1-score of 95.24%
was due to the balance between precision and sensitivity.
The AUC value of 92.59% demonstrated robust discrim-
ination between healthy and CVD cases across different
thresholds.

Random Forest has outperformed several other conven-
tional machine learning classifiers more often in ECG signals
and other biomedical classification tasks as reported in the
literature. Random Forest is a common choice in many win-
ning real-world data analysis competitions [71]. This could
be due to various possible reasons such as it is one of the
ensemble approaches consisting of multiple decision trees,
which reduces the overfitting and achieves higher accuracy
values. Each single tree will be trained on a randomly selected
subset of features and data. Further, it can capture complex,
nonlinear as well as linear relationships among the features.
Hence, it is not required to make a few assumptions on the
data like linearity, normality, or homoscedasticity. Random
Forest is also robust to noisy and imbalanced data. On top
of this award and accolade-winning classifier, the final per-
formance would become explosive when feeding with the
powerful and novel TFD-GI features.

Conversely, Gaussian Naïve Bayes will perform exception-
ally well for Gaussian or Normally distributed data. Hence,
we performed the Shapiro-Wilk normality test on each feature
vector separately. The Shapiro-Wilk test evaluates the null
hypothesis which assumes the data samples come from a
Gaussian-distributed population. A p-value that is less than a
selected alpha level (α = 0.05) will recommend the rejection
of null hypothesis. Meanwhile, A p-value which is greater
than α = 0.05 will suggest that the data is normally dis-
tributed. Among the total of 88 records, 59 feature vectors
have resulted in supporting of normality hypothesis with p >

0.05, And 29 feature vectors are against the null hypothesis
assumption with p < 0.05. This is illustrated in Figure 10.
Hence, most of the feature vectors are normally distributed,
this could be a potential reason for Gaussian Naïve Bayes
classifier performed well in the proposed work.

Our model has exceptionally performed well in distin-
guishing abnormal (arrhythmic) and normal ECG conditions
in the heart comparable to other best-performing state-of-
the-art techniques reported in existing literature. Notably,
our model has outperformed other techniques in sensitivity
measure by 100%, which is a crucial factor in medical and
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TABLE 3. Comparison of different Methodologies between our work and some of the existing relevant state-of-the-art techniques on Arrhythmia related
anomaly detection.

healthcare settings, where sensitivity is paramount. Further,
we have incorporated and analyzed a larger number of heart-
beats in the time-frequency domainwith a 30-minute duration
of two publicly available gold-standard ECG databases. Only
a limited number of research studies surpassed the num-
ber of beats analyzed in total and their approach was in
time-domain and deep learning-based classification, where
the interpretability of the diagnosis is limited.

Moreover, they performed a cardiologist level of iden-
tification in which they categorize the different types of
arrhythmia-related beat types, whereas our study focuses on
the initial medical screening process to detect the abnormal
conditions present in the heart. Our approach can assist Gen-
eral Practitioners (GPs) who are not certified cardiologists
during the initial medical screening process for CVD-related
diseases prone to human errors due to the lack of expertise
level of GPs compared to the Medical Specialists in that

specific field [37]. Table 3 provides a synopsis of differ-
ent types of approaches used in the ECG signal anomaly
detection literature and Table 4 provides a performance com-
parative analysis summary of our proposed approach with
some of the existing state-of-the-art techniques.

However, it is worth highlighting that there is a possi-
bility that some researchers may have selectively chosen
data in favor of their algorithms, as certain studies did not
utilize all individual records or the whole duration of the
signals from the used databases. In work [5], [21], [22],
[27], [35], and [36], researchers have not covered all the
individual records available in that specific database. Most
of the highlighted studies analyzed a portion of the time
window of the signal except the works presented in [20],
[75], and [77]. Meanwhile, researchers in [35] and [36] did
not divide the data into training and testing cohorts, they
have just used the complete data exclusively for training

86680 VOLUME 13, 2025



M. Aashiq et al.: TFDGiniXML: A Novel Explainable Machine Learning Framework for Early Detection

TABLE 4. Comparative analysis of performances between our work and some of the existing relevant state-of-the-art techniques on Arrhythmia related
anomaly detection.

FIGURE 10. Results from Shapiro-Wilk test by p-value category for each
feature vector for the total number of records. P>=0.05 supports the null
hypothesis which assumes data come from a normal distribution,
whereas p<0.05 will reject the assumption of null hypothesis.

only and reported the accuracy metrics regarding the training
dataset.

Unlike traditional closed box models, XAI techniques help
health experts understand why a model predicts certain types
of abnormalities, improving both diagnostic confidence and
patient outcomes. The concept of explainability is not new;
it has evolved from conventional probability-based models,
rule-based models, decision trees to the recent explainable
AI tools such as LIME, SHAP, and Grad-CAM. Four levels
of explainability are applied for AI-ECG applications: 1.
For justifying the decisions, 2. For enhancing the model
performance, 3. For controlling the decisions, 4. For discov-
ering and learning new patterns [18]. Our proposed approach
falls under model explainability for justifying the obtained

decisions. Most of the previously reported XAI works can
be summarized into the following explainability techniques:
intrinsic or post-hoc analysis, Global or Local, model-
specific or model-agnostic. A detailed comparison of applied
explainability techniques of previous works can be found in
Table 2 ofwork [19]. Except KNN and SVM,most of the clas-
sifiers employed in this study are decision tree-based models,
while the Naïve Bayes classifier is based on probabilistic
principles. Notably, all these classifiers fall under the cate-
gory of XAI techniques. Moreover, the features represented
by the Gini Index measures of non-linear time-frequency
energy concentration variations depicted in Figure 6 and
Figure 7 would also be helpful in model explainability for
justifying the diagnostic decisions. However, unlike the pre-
viously reported works in Table 2 of [19], our work has a
combination of Intrinsic-Global-Model Agnostic nature of
model explainability. Intrinsic nature is due to the simple
internal structure and decision-making process without the
need for additional explanation techniques. The globality
nature is achieved by the underlying Gini Index features that
have a significant impact on its predictions across the entire
dataset rather than focusing on individual data points. Model
agnostic is independent of specific architecture or internal
workings of the model. Hence, this work is a unique contribu-
tion to model explainability compared to the earlier reported
works.

V. CONCLUSION AND FUTURE DIRECTION
Conventionally, ECG signal classification is performed in
two ways. One approach is classifying the heartbeats exclu-
sively into specific types of Arrhythmias such as Ventricular
tachycardia, Atrial flutter, Bradycardia, Atrial fibrillation,
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Supraventricular tachycardia, Ventricular fibrillation, Pre-
mature heartbeat, Supraventricular arrhythmias, Premature
contraction, and Normal heartbeats. This is referred to as
cardiologist-level detection which reflects a medical expert.
The second approach is classifying the patients or subjects
whether they have any types of cardiovascular disorders,
or whether their heart is healthy. This latter approach is
very crucial in the initial medical screening stages, which
are generally done by a General Physician prior to the case
being transmitted to the experts or further advanced screening
stages. This process is prone to human errors due to the level
of experience and skills of GPs when compared to the level of
an expert in that field, who are limited in number. Moreover,
GPs focus on a broad spectrum of diseases and are not limited
to a single type of illness. Hence, our study proposes an auto-
mated solution to this kind of initial screening process due to
the significance of CVDs that could support mainly the GPs
or could be deployed in remote areas across the world where a
very limited number of medical professionals are available or
expensive to reach them. On the other hand, smart wearable
devices such as smartwatches are limited to detecting a single
type of Arrhythmia condition only. Our proposed algorithm
could be used with such types of smart devices as well that
have now become more pervasive wearable. Moreover, many
of the current algorithms including such smart devices are
based exclusively on time domain analysis only, which is
not capable of capturing the complex, non-stationarity, multi-
component, and non-linearity nature of ECG kinds of signals.

Our proposed approach has the following advantages and
contributions,

1. Providing a nonlinear time-frequency approach for
analyzing the ECG signals that are non-stationary and
multicomponent in nature.

2. Longer duration analysis for each subject is about
30 minutes duration and covers a larger number of
heartbeats which is important to reduce the detection
errors.

3. Proposing a novel method of extracting Gini index
features from the Nonlinear TFD energy contents of
ECG signals.

4. These Gini index measurements of energy content
could be helpful in explaining or interpreting the final
diagnostic results.

5. Providing a comparative assessment of various intelli-
gent classifiers and their effect on the final classifica-
tion performance.

6. Obtained a 100% sensitivity rate which is more advan-
tageous in medical settings. Other metrics are also
commendable in comparison to the current state-of-
the-art approaches (Acc = 94.40%, Pre = 90.00,
F1-Score = 95.24%, and AUC = 92.59%)

7. Our algorithm can be integrated into any kind of
wearable device, web-based platform, and any other
type of offline-online monitoring system, due to less
data-intensive machine learning approach compared to
deep learning.

One of the challenges in this approach is the requirement of
high memory and processing for nonlinear time-frequency
analysis. However, this is negligible in front of the expo-
nential growth in computing resources in recent times
including cloud-distributed based high-performance comput-
ing platforms. This processing part could be executed in the
centralized back-end system. Hence, it will not be constrained
by the front-end devices. Our research is currently limited
to arrhythmia-based abnormality on MIT-BIH Arrhythmia
and Fantasia Normal databases. However, longer duration (30
minutes or more) arrhythmia databases are very limited in
the public domain. Hence, we are currently in the process of
collecting our own arrhythmia-abnormal cases in Malaysia
to further validate the model and to ensure the practical
applicability, model generalization, and robustness of the
proposed approach. Moreover, we expect to incorporate other
severe types of cardiac diseases such as Ischemia in the future
work. Furthermore, different types of features with similar
strengths of the Gini index will be incorporated to enhance
the robustness and accuracy of this proposed algorithm.
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