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Faculty: Engineering 

The numerical solution of linear and nonlinear partial differential equations plays a 

prominent role in many areas of engineering and physical sciences. In many cases 

all that is desired is a moderately accurate solution at a few grid points that can be 

calculated rapidly. 

The standard finite difference method currently in use have the characteristic that 

the solution must be calculated with a large number of mesh points in order to 

obtain moderately accurate resuhs at the points of interest. Consequently, both the 

computing time and storage required often prohibit the calculation. Furthermore, 

the mathematical techniques involved in the finite difference schemes or in the 

Fourier transform methods, are often quite sophisticated and thus not easily learned 

or used. 
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The differential quadrature method (DQM) is a numerical solution technique, 

which has been presented in this thesis. This method is a simple and direct 

technique, which can be applied in a large number of cases to circumvent the 

difficulties of progrannning complex algorithms for the computer, as well as 

excessive use of storage and computer time. The initial and/or boundary value 

problems can be solved by this method directly and efficiently. The accuracy of the 

differential quadrature (DQ) method depends mainly on the accuracy of the 

weighting coefficient computation, which is a vital key of the method. In this 

thesis, the technique has been illustrated with the solution of six partial differential 

equations arising in Heat transfer, Poisson and Torsion problem with accurate 

weighting coefficient computation and two types of mesh· points distribution 

(equally spaced and unequally spaced). In all cases, the obtained DQ numerical 

results are of good accuracy with the exact solutions and hence show the 

potentiality of the method. It is also shown that the obtained DQ results in this 

thesis either agree very well or improved than those of some similar published 

results. This method is a vital alternative to the conventional numerical methods, 

such as finite difference and finite element methods. It is expected that this 

technique can be applied in a large number of cases in science and engineering to 

circumvent both the above-mentioned conventional difficulties. 
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April 2003 
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Fakulti: Kejuruteraan 

Kaedah penyelesaian berangka bagi persamaan pembezaan lelurus separa dan tidak 

lelurus memainkan peranan penting dalam pelbagai bidang kejuruteraan dan sains 

fizik. Dalam kebanyakan kes, kaedah-kaedah ini memerlukan penyelesaian yang 

tepat pada titik-titik grid dan bentuk pengiraannya boleh dilakukan secara 

berulangan. 

Kaedah pembezaan terhingga yang sering digunakan pada masa ini kebiasaannya 

mempunyai penyelesaian yang perlu dikira bersama jumlah pada titik setara bagi 

mendapatkan keputusan yang tepat pada titik yang diingini. Hasilnya, kedua-dua 

pengiraan simpanan dan masa yang diperlukan tidak termasuk di dalam pengiraan 

tersebut. Tambahan lagi teknik matematik yang terlibat di dalam skema ini 

(Pembezaan Terhingga) atau di dalam kaedah Jelmaan Fourier agak kompleks dan 

tidak mudah dipelajari serta digunakan. 
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Tesis ini memperkenalkan satu teknik penyelesaian berangka yang dikenali sebagai 

Kaedah Pembezaan Sukuan. Kaedah ini sangat ringkas dan tepat. Ia boleh 

diapgunakan dalam pelbagai kes bagi mengatasi masalah-masalah pengaturcaraan 

algorithma yang kompleks pada komputer. Contohnya seperti penggunaan masa 

dan penyimpanan memori yang terlalu lama dan banyak di dalam komputer. 

Dengan menggunakan kaedah ini juga masalah pada peringkat awal danlatau pada 

nilai sempadan dapat diselesaikan secara terus dengan rapi. Ketepatan kaedah 

Pembezaan Sukuan ini adalah bergantung sepenuhnya kepada ketepatan pengiraan 

pekali pemberat, di mana ia merupakan kunci utama dalam kaedah ini. Di dalam 

tesis ini juga membincangkan teknik di mana penyelesaian bagi enam Persamaan 

Pembezaan Sebahagian yang diterbitkan di dalam masalah Perpindahan Haba, 

Poisson dan Torsion telah dimasukkan bersarna pengiraan pekali pemberat yang 

tepat dan juga berserta dua jenis pembahagian titik setara Garak yang sarna dan 

jarak yang tidak sarna). Dalam semua kes, keputusan berangka Pembezaan Sukuan 

yang diperolehi adalah baik dari segi ketepatan berserta penyelesaian yang betul 

dan ini menunjukkan keupayaan kaedah ini. Keputusan Pembezaan Sukuan yang 

diperolehi dalam tesis ini juga memberi persetujuan di mana keputusan yang 

diperoleh adalah lebih baik daripada semua keputusan yang seakan-akan sarna 

diterbitkan. Kaedah ini merupakan alternatif kepada kaedah berangka yang biasa 

digunakan iaitu Pembezaan Terhingga dan Kaedah Unsur Terhingga. Ia dijangka 

dapat digunakan di dalam pelbagai perkara dalam bidang sains dan kejuruteraan 

bagi mengatasi masalah-masalah yang berkaitan dengan kedua-dua kaedah yang 

disebutkan di atas. 
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CHAPTERl 

INTRODUCTION 

1.1 Background 

Presently there are many numerical solution teclmiques known to the 

computational mechanics community. Differential Quadrature Method (DQM) is 

one of those numerical solution teclmiques to solve initial and/or boundary value 

problems which arise in problems of engineering and physical sciences. The 

essence of the DQM is that a partial derivative of a function is approximated by a 

weighted linear sum of the function values at given discrete points. Richard 

Bellman and his associates developed this numerical solution teclmique in the 

early 1970s and since then, the technique has been successfully employed in a 

variety of problems in engineering and physical sciences. This relatively recent 

origin numerical technique has been projected by its proponents as a potential 

alternative numerical solution technique to the conventional numerical solution 

techniques such as finite difference method and finite element method. Compared 

with those methods, the DQM requires less computational times and computer 

storage. 

Due to its rather recent origin, the DQM is possibly not well known to the 

computational mechanics community. However, Belhnan and Casti (1971), in 

their introductory paper, proposed the Differential Quadrature Method (DQM) as 

a new technique for the numerical solution of initial and/or boundary value 

problems of ordinary and partial differential equations. The paper was apparently 
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aimed toward offering an alternative solution technique in view of the problems 

of numerical stability. But the paper included no details such as the determination 

of weighting coefficients and example application of the method. The proposed 

new technique was fully illustrated in a subsequent paper by Bellman et al (1972) 

where they solved numerically some partial differential equations arising in 

different models of fluid flow and turbulence. 

Here we focus on the accurate determination of weighting coefficients, which is a 

vital need to solve engineering problems numerically using DQM technique. 

Hence the efficiency of the method along with weighting coefficient 18 

investigated by solving some example application engineering problems m 

mechanics. 

1.2 The Reasons for Using Differential Quadrature Method (DQM) as a 

Numerical Solution Technique 

The Differential Quadrature Method has been used due to the following reasons: 

(i) The method is very efficient to find the accurate numerical solution 

even with fewer number of grid points. 

(ii) Efficient technique in terms of memory consumption and 

computational time. 

(iii) There is no need of coordinate transformation from physical domain 

to computational domain. 

(iv) The method is mathematically less cumbersome. 
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(v) In recent years, the DQ method has become increasingly popular in 

the numerical solution of initial and boundary value proble�. 

(vi) It is still under developing stage and has wide scope of applications. 

1.3 Research Objective 

The research objective is to apply the numerical solution technique DQM to solve 

accurately initial and/or boundary value problems of ordinary and partial 

differential equations, which arise in problems of engineering mechanics. 

In this thesis, six engineering problems have chosen to solve accurately and 

efficiently the following six problems by the differential quadrature method 

(DQM). The problems are: 

(i) Temperature distribution in a triangular fin 

(ii) Torsion of a rectangular cross-section shaft 

(iii) Solution of Poisson equation in a rectangular domain 

(iv) Temperature distribution in an Insulated tip rectangular fin 

(v) Temperature distribution in a Convection tip rectangular fin 

(vi) Temperature distribution in a very long rectangular fin 

In order to solve the above problems accurately, the main objectives of this thesis 

are: 

(i) To compute the weighting coefficients accurately 

(ii) To develop a computer code for the DQM 

(iii) To apply it to solve problems in engineering mechanics 
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(iv) To verifY the accuracy of the results by comparing with the exact 

solution and with the published numerical solution. 

1.4 Contribution of the Thesis 

In the thesis, all the six application problems of engineering mechanics, which 

are mentioned in section 1.2, have been solved independently by the method of 

differential quadrature (DQM). The results are found to agree very well with the 

exact solution and either agree or sometimes better than the published numerical 

solution (whenever available) in the literature. 

To the best of author's knowledge, the solution of poisson equation in a 

rectangular domain and the solutions of rectangular fin problems (insulated tip 

fin, convection tip fin and long fin) have not been solved earlier by the 

differential quadrature method (DQM). 

It is expected that this thesis will contribute something additional with the 

potentiality of the differential quadrature method to the computational mechanics 

community. 

In order to meet the objectives of this work, the main contributions of this thesis 

are: 

(i) The weighting coefficients are determined accurately to obtain 

relatively accurate DQ numerical solution. 
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(ii) The computer codes are developed for DQM to solve problems in 

engineering mechanics. 

(iii) Six application problems in heat transfer (temperature distnbution), 

Poisson and elasticity are solved numerically using DQM. 

(iv) The performance of DQ numerical results is evaluated comparing with 

exact results and some other published similar results. 

1.5 Organization of the Thesis 

The thesis is consisted of six Chapters. Following an introduction, the chapter 2 

discusses a through literature review on past and present research of DQM which 

has been presented in detail. From the very beginning to present development of 

the DQM inclusive of the areas of interest covered by the method has been 

discussed. 

In Chapter 3, the quadrature rule and determination of the weighting coefficients 

of DQM are discussed and formulated. The computation of weighting 

coefficients is a vital task for the method as the accuracy of the DQ numerical 

solution depends on the accuracy of the weighting coefficients. The formulae for 

percent error calculation, equally and unequally spaced sampling points 

distribution are also presented in this chapter. 

In chapter 4, mathematical formulations of application problems of differential 

quadrature method have been illustrated in detail including exact solutions. The 

example application problems in engineering mechanics are: heat distribution in a 
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triangular fin, torsion of a rectangular cross-section shaft, solution of Poisson 

equation in rectangular domain, temperature distribution in an insulated tip fin, 

temperature distribution in a convection tip fin and temperature distribution in a 

very long fin. Quadrature analog equations of the governing equations, exact 

equations and boundary conditions are presented in this chapter too. 

The results and discussions of the application problems are presented in chapter 

5. Results for both equally spaced and unequally spaced sampling points are 

shown in terms of tables and graphs. Cubic spline interpolation results are 

presented wherever necessary. Convergence and comparison of the solutions for 

equally and unequally spaced and for odd and even number of sampling points 

are depicted in the figures. Maximum percent errors for equal and unequal 

spacing sampling points are shown. In two-dimensional torsion problem and 

poisson problem, surface graphs are presented for exact and numerical solutions. 

Chapter 6 concludes the thesis by highlighting the efficiency and accuracy of our 

DQ numerical solutions and future research directions. Finally, references and 

biodata of the author are added at the end of the thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Differential Quadrature Metbod (DQM) 

The Differential Quadrature Method (DQM) was first proposed by Bellman et al 

(1972) who solved some initial and boundary value problems of ordinary 

differential equation (ODE) and partial differential equation (PDE). The method 

has a relatively recent origin and is being gradually employed as a separate 

solution technique for the initial and boundary value problems of engineering and 

physical sciences. Areas of the problems in which the applications of DQM may 

be found in the literature include fluid mechanics, bioscience, statics and 

dynamics of structural mechanics, transport processes, static aero-elasticity and 

lubrication mechanics. It has been found that the DQM has a better capability of 

producing highly accurate solutions with minimal computational effort. A 

comprehensive literature review on DQM is given in Bert and Malik. (1996). 

Here, most part of literature review is taken from that review paper. 

Bellman and Casti (1971), in their preliminary paper, formulated the quadrature 

rule for a derivative as an analogous extension of quadrature for integrals. The 

paper did not include any details such as the determination of weighting 

coefficients nor provide any application of the method although the work 

apparently aimed at offering an alternative technique for solution in view of 

problems of numerical stability and large computation times involved with long-
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