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Faculty Engineering 

The effect of thick film Silicon-On-Insulator (SOl) substrate on device fabrication 

and performance is studied. Enhancement-type Partially-Depleted SOl MOS device 

is fabricated on bonded SOl (BSOI) substrate based on bulk silicon MIMOS 0.5 J.Lffi 

CMOS technology with full compatibility maintained. The substrate employed is 

commercially available with the specification 1.5 J.Lffi silicon device layer with ±0.5 

J.lm within wafer variation on 2 J.Lffi buried oxide achieved by bonding followed by 

mechanical thinning .. 

Prior to device fabrication, sacrificial oxidation is applied to adjust the top silicon 

layer thickness. Throughout the fabrication, monitoring steps using spectroscopic 

reflectometry technique are taken in ensuring enough silicon thickness is left on the 

top BSOI surface for device construction. To allow comparison of substrate effects, 

bulk silicon substrates are included in the fabrication as control wafers. 
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Three main electrical parameters were extracted from all sites of all the wafers. 

Bonded SOl (BSOI) substrate is observed to undesirably increase threshold voltage 

and decrease drive current capability. Sacrificial oxidation technique to adjust the 

silicon layer thickness worsens device performance and yield. However, BSOI 

substrate offers much improved off-state leakage current compared to bulk devices. 

Further current-voltage sweep data analysis show that BSOI substrate improves the 

subthreshold slope, reduces the drain-induced barrier lowering effect and improves 

resistance towards latchup. Peculiar device characteristics typical to Partially

Depleted SOl devices were observed from the output characteristics. These include 

early breakdown voltage, negative conductance in the saturation region of body

contacted devices at high gate voltages and kink effect when the body is left floating. 

The results show that SOl fabrication is achievable using existing bulk silicon 

fabrication technology. Even though devices on BSOI substrate show certain 

improvements in device characteristics, the full potential of the SOl structure could 

not be achieved with the thickness and uniformity of the BSOI substrate applied. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

FABRIKASI DAN PENCIRIAN PERANTI MOSFET O.5-�m TEKNOLOGI 
SILIKON BONGKAH DI ATAS SUBSTRAT SILIKON-ATAS-PENEBAT 

TERIKAT 

Oleh 

WAN F AZLIDA HANIM ABDULLAH 

Mac 2003 

Pengerusi Dr. RosUna Mobd Sidek 

Fakulti Kejuruteraan 

Kajian dilakukan ke atas kesan substrat silikon-atas-penebat (SOl) lapisan silikon 

tebal terhadap fabrikasi dan prestasi operasi peranti. Peranti MOS jenis peningkatan 

separa-susut difabrikasi atas substrat SOl terikat (BSOI) berdasarkan teknologi 

silikon bongkah 0.5-� CMOS hak MIMOS dengan mengekalkan keserasian proses 

fabrikasi sepenuhnya. Substrat SOl yang digunakan boleh diperolehi secara komersil 

dengan spesifikasi lapisan silikon 1.5 � dengan variasi ± 0.5 J.LIIl di atas oks ida 

tertanam setebal 2 � yang disediakan menggunakan teknik pengikatan diikuti 

dengan penipisan mekanikaL 

Sebelum pemprosesan peranti bermula, pengoksidanan korban dilakukan bagi 

menipiskan lagi lapis silikon di atas penebat. Langkah pengawasan diambil 

sepanjang pemprosesan peranti bagi memastikan ketebalan yang mencukupi masih 

terdapat pada lapisan atas substrat untuk pembuatan peranti. Bagi membolehkan 

perbandingan kesan substrat dikaji, substrat silikon keseluruhan disertakan sepanjang 

fabrikasi sebagai wafer kawalan. 

IV 



Tiga parameter elektrikal utama diekstrak dari setiap tapak peranti kesemua wafer. 

Substrat (BSOl) memberi kesan yang tidak dingini dengan meninggikan voltan 

ambang dan merendahkan daya arus. Teknik penipisan lapisan silikon secara 

pengoksidanan korban menerukkan lagi prestasi peranti dan peratusan penghasilan. 

Walau bagaimanapun, substrat BSOl menjadikan arus boeor status tutup jelas lebib 

baik berbanding peranti silikon keseluruhan. 

Analisa lanjutan ke atas data arus-voltan menunjukkan substrat BSOl 

memperelokkan keeerunan bawah ambang, ,mengurangkan kesan perendahan 

kawasan susutan eetusan parit dan menambahkan kekebalan terhadap fenomena 

lekapan. Melalui pendemonstrasian eiri luaran arus-voltan, eiri peranti separa-susut 

SOl dapat diperhatikan. Antaranya adalah voltan runtuhan awal, konduksi negatif 

dalam kawasan tepu pada voltan get tinggi dan kesan penambahan mendadak pada 

arus parit apabila badan peranti dibiarkan terapung. 

Hasil penyelidikan menunjukkan bahawa fabrikasi peranti SOl boleh dieapai 

menggunakan teknologi silikon bongkah. Walaupun peranti di alas substrat BSOl 

mempamirkan eiri peranti tertentu yang semakin baik, potensi struktur SOl tidak 

dapat dimanfaatkan sepenuhnya dengan ketebalan dan ketidak-seragaman substrat 

BSOl yang diguna-pakai. 
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CHAPTER 1 
INTRODUCTION 

1.1 CMOS Technology Development Summary 

The core structure in the Complementary Metal-Oxide-Semiconductor (CMOS) 

technology is the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). 

This section provides a digest on the development of the MOSFET structure that 

promotes the progress of the CMOS technology making it the dominant logic 

technology in the electronics industry since the past three decades. The Silicon-On

Insulator (SOl) CMOS technology forms part of the picture in an effort to fuel the 

growth of CMOS technology. 

1.1.1 Evolution of the MOSFET 

In pursuit of better performance and to satisfy the requirements of a wide variety of 

applications, the MOSFET goes through evolutionary changes involving scaling 

down of device dimensions and device architecture modification since its invention 

half a century ago. Guided by the scaling theory [1], downsizing CMOS achieves 

higher packing density, higher speed and lower power [2]. Exploring altered 

transistor structures and material modifications on the other hand seeks solutions to 

allow shorter channel length or to accomplish improved performance for a given 

channel length [3]. In relation to successfully accomplishing improved packing 

density, Moore's Law predicted the number of components per chip would double 

every one to two years that was proven in the technology trend for the next 25 years 

[4]. The smallest transistor built in 1965 had a channel length of 25 J.1m [5). In 1999, 

it was predicted that between 2003 and 2006, transistors with a minimum channel 



length of 0.05 IJlll would be fabricated with the accompanying lower power-supply 

of 1.2 V and lower threshold voltage near 0.25 V [6]. ConfIrming the prediction in 

200 1, 50 nm gate length transistors for embedded processor core applications was 

reported [7]. 

The CMOS industry issues IS-year forecasts of technology roadmaps to project 

future trends and to identify potential roadblocks in order to focus on the needs and 

develop timely solutions [8]. The most recent published projection to date, the 200 I 

International Technology Roadmap for Semiconductors [9], presents the technology 

trend projection up to year 2016 with a targeted physical gate length of 9 nm and 11 

nm for high performance logic and low operating logic power requirements 

respectively. Some of the important challenges highlighted by the 2001 ITRS are in 

the front-end process referring to the fabrication of the MOSFET transistors [10]. 

Among the expected barriers include important physical phenomena such as gate-to

channel, body-to-drain and source-to-drain tunnelling currents (11J-[12J, severe short 

channel effects [13]-[14] and problems associated with wiring [15]. 

Among the proposed solutions to achieve the 200 1 ITRS projection [16] require 

device architecture modifications in order to allow further scaling at room 

temperature without reduction in performance improvement rate [17]. The most 

recent of the state-of-the-art research efforts include exploring gate insulator material 

with higher dielectric constant [18] and non-classical device structures such as ultra

thin body Silicon-On-Insulator (SOl), band-engineered transistors incorporating 

SiGe or strained silicon channel and double-gate/surround-gate devices as shown in 

Table 1.1. 
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Table 1.1: Non-classical CMOS demonstrating device architectural modification 
aiming towards higher performance, higher transistor density and lower power 

Device 

ULTRA-THIN 
BODY SOl 

BAND
ENGINEERED 
TRANSISOTR 

VERTICAL 
TRANSISTOR 

FINFET 

DOUBLE
GATE 
TRANSISTOR 

dissipation. [19] 
Schematic Cross-Section 

�.� . . . , 

L_. _____ _ . 

Concept 

Fully Depleted 
SOl 

SiGe or 
Strained si 
Channel: 
bulk or SOl 

Double-gate or 
surround-gate 
structtire 

1.1.2 SOl CMOS Technology 

AdvantaJl;es 

-Improved subthreshold 
slope 
- Vt controllability 

- Higher drive current 
- Bulk and SOl compatible 

-Higher drive current 
-Lithography Independent 
Lg 

-Higher drive current 
-Improved subthreshold 
slope 
-Improved short channel 
effect 
-Stacked NAND 

-Higher drive current 
-Improved subthreshold 
slope 
-Improved short channel 
effect 
-Stacked NAND 

The Silicon-On-Insulator MOSFET structure is one of many device architectural 

modifications that have caught the attention of the CMOS industry since the late 

1970s. The initial motivation towards the implementation of the structure is based on 

its radiation hard properties, orienting the application of SOl devices towards space 

and military purposes [20]. From the 80s onwards, the trend of SOl research is 

directed towards low-voltage, low-power and high-speed properties and applications 

[21]. 

SOl technology leads to steeper subthreshold slope, absence of CMOS latchup, 

smaller off-state leakage current and reduced parasitic capacitances [22] leading to 
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improved speed-power products. Added advantage with SOl design is the versatility 

of SOl structure design owing to additional physical parameters available for 

manipulation towards optimized scaling [23]. Furthermore, SOl enables increased 

chip functionality without the cost of major process equipment changes involving 

higher resolution lithography tools. Contemporary SOl applications encompass 

CMOS VLSl circuits, bipolar, power, Broadband LANs, micro-displays and MEMS 

circuits [24]. 

Cost factor involved in SOl substrate fabrication is an obstruction for the migration 

from bulk silicon to SOl technology. However, �cent developments have shown that 

several semiconductor companies have begun to produce SOl devices commercially 

in moderate volumes to benefit from the potential gains [25]. Further device design 

making full use of the SOl substrate raises the possibility of reducing process steps 

thus compensating the cost increase. 

1.2 Research Objectives 

Despite the fiscal implication being a barrier to the implementation of SOl research, 

the interest of local microelectronics industry to venture the possibilities of SOl 

technology would be inevitable. For this research effort, the research work is 

implemented in MIMOS Berhad that runs the fIrSt wafer fabrication facility in 

Malaysia. This is the first fabrication attempt involving SOl substrates on the 

MIMOS production line. As SOl technology research work has yet to be reported in 

Malaysia, the strategy adopted would be to implement an existing bulk silicon 

technology to SOl substrates whilst maintaining its compatibility, only allowing 
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