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ABSTRACT With the development of wireless technology, the public is exposed to electromagnetic fields
(EMF), which has led to concerns about the potential health effects of EMF exposures. This paper aims
to evaluate personal EMF exposures from wireless signals in indoor and outdoor micro-environments in
Malaysia. According to the influencing factors, four different types of micro-environments are selected.
A radiation exposure meter called ExpoM-RF 4 is used to measure the electric field strength across
these micro-environments. From the measurement campaigns, three machine learning (ML) techniques
are simulated to model the Electric Field Strength in each micro-environment. The ML techniques are
Fully connected neural network (FCNN), eXtreme Gradient Boosting (XG Boost), and Linear Regression
(LR) to predict the RMS and Maximum radiation exposure. From the ML models, Total Emission Ratio
(TER), Root Mean Square Error (RMSE) and Coefficient of Determination (R2) are evaluated to measure
the performance of ML. By comparison, it is found that LR performs well with single and simple data
set, while XG Boost and FCNN demonstrate superior capabilities in handling multiple types of data
sets. The FCNN model provides the most accurate predictions, particularly in urban and suburban areas
where extreme values are observed. Finally, the measured data and the predicted radiation exposure
levels are compared against public exposure limit by International Commission on Non-Ionizing Radiation
Protection (ICNIRP), Malaysian Communications and Multimedia Commission (MCMC) and Federal
Communications Commission (FCC). The results demonstrate that typically personal radiation exposure is
lower than the exposure limit (61.4 V/m), which is similar to the most research results. However, in areas with
dense population and numerous base stations, the maximum exposure can approach 56.7365 V/m (measured
data), which is close to the exposure limit.

INDEX TERMS Electromagnetic fields (EMF), personal radiation exposure, micro-environments, ExpoM-
RF 4, machine learning (ML), exposure limit, indoor and outdoor environment.

I. INTRODUCTION

With the rapid advancement of wireless networks, wireless
technology has become an integral part of human daily
life. The widespread deployment of wireless networks,
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the growing usage of mobile devices, and the expanding
use of the Internet of Things (IoT) have significantly
increased public exposure to electromagnetic fields (EMF)
[1]. However, awareness and understanding of exposure to
EMF remains limited. There are cases in some countries
where some of the citizens seem to be apprehensive about
radio frequency- electromagnetic fields (RF-EMF) exposures
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from telecommunication services that they actively oppose
the installation of base stations. Furthermore, the potential
health impacts of RF-EMF in sensitive environments such
as kindergartens, hospitals, and other public spaces have
been a topic of significant academic and public interest [2].
Therefore, it is essential to conduct a comprehensive and
systematic assessment of RF-EMF exposure levels across
various public environments.

EMF radiation is pervasive in everyday life, encompassing
sources such as visible light, mobile phone and X- rays.
While ionizing radiations such as X- rays and gamma rays has
enough energy to break molecular bonds and ionize atoms,
potentially causing skin burns and DNA damage at high
intensities, non-ionizing radiations lacks sufficient energy
to induce ionization. With the continuous advancement
of broadcast and mobile telecommunication technologies
worldwide [3], especially on introduction of 5G technology
has raised concerns about the radiation safety. However,
5G operates within the radio frequency (RF) band of the
non-ionizing electromagnetic spectrum. Organizations such
as the International Commission on Non-Ionizing Radiation
Protection (ICNIRP) have set strict exposure limits to
prevent adverse health effects [4]. For example, in the high-
frequency EMF (100 kHz-300 GHz), ICNIRP guidelines
restrict temperature increase to 1 °C for the whole body,
2 °C for the head, and 5 °C for limbs, ensuring safe exposure
levels [4], [5].

The International Agency for Research on Cancer clas-
sified RF-EMF as a possible human carcinogen in 2011
[6]. The World Health Organization (WHO) also classifies
radio frequency radiation as a probable human carcinogen
(Group 2B), indicating the need for further research into
the long-term effects of low levels exposure from wireless
devices. Since then, interest in human exposure to RF-EMF
and its potential health effects has grown significantly [7].
During the COVID-19 pandemic, there have been a series
of arson attacks on 5G base stations across the UK, which
are believed to be linked to the spread of the virus. This
extreme reaction highlights the lack of proper information.
Increasing people’s understanding of individual RF-EMF
exposure levels can offer great help toward acceptance of
technology, psychological prevention, and social stability.
In a paper, people with more education on obtaining
relevant EMF information are more confident in facing EMF
radiation [8].

Mobile phones and base stations are the primary sources
of RF radiation in outdoor environments [9]. When mobile
phone is in use, it communicates with nearby base stations
through RF signals. The level of exposure varies based on
several factors, including the distance from the base station,
the power output of the phones and base stations, and the
frequency of the phone usage. In addition, base stations
emit RF radiation to provide network coverage over a broad
area, contributing to overall outdoor RF exposure. For indoor
environment, the main source of RF radiation is Wi-Fi.
Wi-Fi routers and connected devices emit RF signals to
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enable wireless internet access. The extent of Wi-Fi exposure
depends on the distance from the router [10], the duration
of exposure, and the router’s power settings. Other common
sources of RF radiation include Bluetooth devices, Frequency
Modulation (FM) radio, Digital TV, Industrial, Scientific,
and Medical (ISM) Bands. These signals propagate and
get attenuated by the environments it propogates through,
influencing overall exposure levels in the environments.
Below is a list of customized frequency bands (with their
central frequencies) in Malaysia [11], [12]:

TABLE 1. Frequency bands (with their central frequencies) in Malaysia.

Services to be fimin fimax Fcentre Fdiff BW
Monitored [MHz] [MHz] [MHz] [MHz] [MHz]
FM Radio 88 108 98 20 35
D(igi;il/;;’ 470 545 507.5 75 75
D(i)giTtél)TIY 545 620 582.5 75 75
]?]i)gTit\a,]) ?1\1/ 620 695 657.5 75 75
Mobile700TDD 758 798 778 40 35
Mobile800TDD 798 803 800.5 5 35
Mobile850UL 814 849 8315 35 35
Mobile850DL 859 894 876.5 35 35
Mobile900UL 880 915 897.5 35 35
ISM1 902 928 915 26 35
Mobile900DL 925 960 942.5 35 35
Mobile]800UL 1710 1785 1747.5 75 75
Mobile1800DL 1805 1880 1842.5 75 75
DECT 1880 1890 1885 10 35
M"bﬂeé%OTD 1900 1920 1910 20 35
Mobile2100UL 1920 1980 1950 60 75
2?:[)8?]1;) 2010 2025 2017.5 15 35
Mobile2100DL 2110 2170 2140 60 75
2%8';“;]) 2300 2400 100 100 100
ISM2(WLANI) 2400 2500 2450 100 100
Mobile 2600UL 2500 2570 2535 70 75
22:[)8';11;]) 2570 2620 2595 50 35
Mobile 2600DL 2620 2690 2655 70 75
Mobile TDD1 355 3500 34625 75 75
Mobile TDD2 3500 3600 3550 100 100
Mobile TDD3 3600 3700 3650 100 100
WLAN2 5150 5250 5200 100 100
WLAN3 5250 5350 5300 100 100
WLAN4 5450 5550 5500 100 100
WLANS 5550 5650 5600 100 100
WLAN6 5650 5750 5700 100 100
WLAN7 5750 5850 5800 100 100

All these signals are systematically measured and analyzed
in this paper. Specifically, this list of 32 custom bands with
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their center frequencies are also registered into the ExpoM-
RF4 device for measurement.
The main contributions of this paper are as follows:

1. Integrating field measurements with machine learning
models to evaluate personal radiation exposure from
wireless signals in indoor and outdoor environments in
Malaysia. A total of 32 distinct signals were recorded,
comprehensively considering various signal sources in
the environment.

2. A comprehensive analytical formula was developed,
incorporating electromagnetic field (EMF) parameters
along with four related influencing factors, and was
subsequently utilized within the machine learning
framework.

3. Compare the measured data and the predicted value
with public exposure limits. New discoveries have
been made compared with previous studies. Typically
personal radiation exposure is lower than the exposure
limit, which is similar to the most research results.
However, in areas with dense population and numerous
base stations, the maximum exposure will be very close
to the exposure limit.

Il. RELATED WORK

International multiple studies have been conducted to
monitor individual RF-EMF exposure with most findings
indicating that human RF-EMF exposures remain well below
the ICNIRP public exposure limits [2], [6], [13], [14],
[16]. However, previous research often focuses on specific
conditions in isolation or fails to account for non-detect
values, which may affect the accuracy of their conclusions.
In 2015, UK researchers Enver Hamiti et al. [13] choose five
different types of micro-environments and obtained 122,944
measurement samples. The results obtained are compared
with exposure limits given by ICNIRP. However, non-detect
values were not analyzed in this phase of the study, so there
is limitation on their methodology. Another study measured
RF-EMF exposure across 94 participants in urban areas
of eight European countries. Public transportation and city
centers were consistently found to have the highest exposure
levels, particularly due to downlink signals from mobile base
stations [14]. However, individual activity patterns had an
influence on the accuracy and variability of personal RF-EMF
exposure measurements. These studies [13], [14] illustrate
potential limitations of overlooking non-detect values in
research of RF-EMF exposure. Therefore, comprehensive
assessment that consider various factors within different
micro-environments is crucial for obtaining reliable exposure
data.

A paper presented five ML-based models for Uplink (UL)
throughput prediction, comparing the performance of five
different ML algorithms [15]. However, the geomagnetic
measurements of this study are collected from the same
environment, which may limit their general usage in different
environments. Another Conducted RF-EMF measurements
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on electric buses in Samsun, Turkey. Highest RF-EMF
observed was 6.01 V/m, much lower than ICNIRP public
limits [16]. But this research scope is limited to two urban
bus routes, and the conclusion may not be applicable to other
vehicle types, such as subways or traditional buses. These
studies [15], [16] show that full consideration of influencing
factors and selection of appropriate environment have a great
impact on the applicability of experimental results.

Integrating machine learning (ML) techniques into electro-
magnetic field research can improve modeling accuracy and
computational efficiency. One study introduces a physics-
informed ML approach using gradient-boosted decision trees
to model radio frequency EMF exposure from 5G massive
MIMO base stations, enabling the extrapolation of exposure
levels at greater distances [17]. Another study proposed
a deep residual convolutional neural network (DRCNN)
to expedite full-wave electromagnetic simulations [18].
The DRCNN effectively captures complex electromag-
netic behaviors while significantly reducing computation
time compared to traditional methods. Other research has
employed multiple ML models to analyze RF-EMF expo-
sure and assess their predictive performance. For instance,
a study on physical layer measurements of uplink and down
link throughput compared five different ML algorithms to
evaluate their performance [15]. Another study on RF-
EMF exposure assessment for 5G base stations used three
ML techniques to predict exposure levels, comparing the
results with measured data for validation [19]. These studies
highlight the advantages of using multiple ML models for
analysis. Compared to relying on a single model, employing
a diverse set of ML techniques improves data processing,
enhances predictive accuracy, and leads to more robust and
reliable conclusions.

The limitation of existing research on radio frequency elec-
tromagnetic field (RF-EMF) exposure can be summarized as
follows:

These papers [13], [14], [15], [16] illustrate the critical
importance of considering influencing factors and selecting
appropriate environment to ensure reliability and applicabil-
ity of experimental results. Therefore, achieving meaningful
and generalizable findings requires not only strict adherence
to international standards, but also to comprehensively
consider the impact of various influencing factors when
selecting the appropriate types of micro-environments.

The regulation of RF-EMF exposure is essential to
safeguard public health amid the increasing prevalence of
wireless technologies. International organizations such as the
ICNIRP supported by the World Health Organization (WHO)
[20] have developed comprehensive guidelines to regulate
RF-EMF exposure. The ICNIRP guidelines, widely recog-
nized and adopted globally, set limits on RF-EMF exposure
based on detailed risk assessments. These guidelines consider
both thermal and non-thermal effects [21], aiming to protect
against known health risks.

Different countries have adopted and adapted international
guidelines to fit their specific regulatory framework. For
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TABLE 2. Related work and informative limits.

Article Finding Limitation
Measured 122,944
measurement samples, Non-detectable values

[13] Enver Hamiti et
al 2015

[14] T. S. Joseph et
al 2020

[15] E. Eyceyurt et al
2022

[16] Z. E. Albayrak
etal 2024

found that exposure levels
were lower than the
reference values set by

(ICNIRP).

Measured RF-EMF
exposure in eight
European countries,

results showed public
transport and city centers
had the highest exposure
values.

Presented an ML-based
Uplink (UL) throughput
prediction model, which
applies to 4G and

possibly, 5G  mobile
networks.
Conducted RF-EMF

measurements on electric
buses in Samsun, Turkey
and magnetic field
exposure remained below

were not analyzed, which
could affect the accuracy
of the results.

Individual activity patterns
had an influence on the
accuracy and variability of
personal RF-EMF
exposure measurements.

Measurements are
collected from the same
environment, which may
limit their general usage in
different environments.

The research scope is
limited to two urban bus
routes, and the conclusion
may not be applicable to

ICNIRP public limits. other vehicle types.

example, Australia and Malaysia closely follow ICNIRP
guidelines. The Australian Radiation Protection and Nuclear
Safety Agency (ARPANSA) and Malaysian Communications
and Multimedia Commission (MCMC) adopts the same
exposure limits as ICNIRP 2020 guidelines [22], [23].
However, other countries, such as Italy and Switzerland, have
implemented even stricter regulations due to public concern
and precautionary principles. They set lower exposure limits
in certain areas such as in residential zones and schools [24].
The FCC (Federal Communications Commission) in the
United States set a maximum SAR limit of 1.6 W/kg averaged
over 1 gram of tissue for public exposure [25], which is
slightly more stringent than the ICNIRP standard.

The ICNIRP ’s guidelines are based on a comprehensive
evaluation of peer-reviewed scientific studies. The FCC ’s
guidelines are informed by the recommendations of expert
panels, including the National Council on Radiation Pro-
tection and Measurements (NCRP), which reviews current
research and provides guidance on safe exposure levels [26].
Therefore, this study adopts ICNIRP and FCC as the standard
to assess human exposure to the magnetic field. Key metrics
used to evaluate personal radiation exposure include electric
field strength E (V/m), magnetic field strength H (A/m),
and power density S (W/m?). Since the data measured with
ExpoM-RF 4 is the Root Mean Square (RMS) values of the
signal electric field strength, electric field intensity E (V/m)
is used to determine whether personal radiation exposure
complies with the safety standards. RMS can be defined as
follows:

ey

RMS: Root Mean Square, a measure that captures the overall
energy or amplitude fluctuations of a signal.
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N: Number of signals.

xi: The electric field strength of each signal.

TABLE 3 and TABLE 4 shows public exposure limits
for electromagnetic fields from ICNIRP and FCC guidelines
respectively.

TABLE 3. ICNIRP guidelines 2020 [5].

Frequency Electric field Magnetic Power
Exposure field .
scenario range strength Strength Density
2
(Hz -GHz) E (V/m) H (A/m) S (W/m?)
0.1- 07 07
30MHz 300/fy 2.2/f\ -
30-
Genel:al 400Mhz 27.7 0.073 2
public 400
- e 0.5 c 0.5
2000Mhz 1.35fy 0.0037f\ fu/200
2-300GHz - - 10
TABLE 4. FCC OET Bulletin 65 [21].
Frequency Electric field Magnetic Power
Exposure h field Densi
scenario range strengt Strength ens1ty2
MHz E (V/m) H(Am) S Wem)
30- 275 0.073 02
300MHz ’ T ’
General 300-
public 1500Mhz . f71500 2
1500-
100000Mhz 10 /200

As presented in TABLE 3 and TABLE 4, for signals of
different frequencies, the limit of electric field strength is
calculated in different ways, including fixed values, given
formulas, or calculated by power density. The relationship
between power density and electric field strength can be
calculated by the following formula:

E2

S=—
Zy

@)
S: power density, W/m?,

E: electric field strength, V/m,

Zo: the impedance of free space, typically Zy = 377 2 [27]

The results of the ICNIRP and FCC standard electric field
strength limits are shown as follows:

TABLE 5. Limits of electric field strength (ICNIRP).

Electric field strength

Frequency range Formula E(V/m)
30 MHz - 400 MHz - 27.7V/m
400 MHz -2 GHz E=1.35 fu%? 27 V/m - 60.4 V/m
EZ

2 GHz - 6 GHz S:Z—(SZIOW/mZ)

0

61.4 V/im

Personal radiation exposure to EMF is influenced by
various environmental and infrastructural factors. The build-
ing materials utilized in indoor environments significantly
attenuate wireless signals from external sources, such as
glass can cause significant insertion loss to wireless signals
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TABLE 6. Limits of electric field strength (FCC).

TABLE 7. Influencing factors of electric field strength.

Electric field strength
E(V/m)

27.7 Vim

Frequency range Formula

30 MHz - 400 MHz -

400 MHz -2 GHz E= ﬂf
150

EZ
2 GHz - 6 GHz S:?(S=10W/m2)
0

27.5V/m-61.4V/m

61.4 V/im

passing through it [28]. The outdoor environment is relatively
more complex due to the due to the multiple direct radiation
sources such as base stations, dense buildings, moving
vehicles, which contribute to signal reflection and scattering.
Urban areas with tall and dense packed buildings can
influence exposure levels by causing signal reflection and
scattering. However, a study indicates that the building height
has a limited effect on overall radiation exposure [29].
The number of base stations and population density also
have significant effects on local electromagnetic exposure.
The higher the population density, the higher the number
of base stations is deployed to meet user needs, which
may affect individual radiation exposure levels. However,
increasing base station density can reduce the transmission
power required for individual devices, potentially reducing
individual radiation exposure levels [30]. The distance to
base stations significantly affects exposure levels, as closer
distances allow devices to operate at lower power, reducing
overall exposure. In a paper which analyzes the downlink,
uplink, and joint downlink and uplink exposure induced by
the radiation from base stations and personal user equipment
(UE) [31]. In a formula, it is provided to support this view
that the strength of the electric field is inversely proportional
to the square of the distance [32]. In another study, a formula
is provided to support that different frequency bands have
varying propagation characteristics. Related equation [4]:

S_ 4 Pr 3)
T A2G
C
h=c @)
E=Zy-S 5)

P; is the received power (W), XA is the wavelength in free
space,
G is the gain of the antenna, Z0 is the free space impedance.
After tidying up:

2 7 Pr
E=-,Zo- — -f
C G

Vegetation can attenuate electromagnetic waves [33] and thus
reduce field strength.
The relationship between Electric Field Strength and
relevant influencing factors can be summarized as follows:
In the outdoor micro-environment, vegetation coverage,
population density, building density and base station density
are different in different occasions, which will affect the

(6
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Article

Finding

Influencing factors

[29] Building and
Environment, vol.
124, 2017.

[30] G. Bianchi et
al 2020

[31] L. Chen et al
2023

[32] M. Gustafsson
et al 2007

[33] J. Smith et al
2019

Discuss the effects of
buildings on scattering
and reflection of
electromagnetic fields.

5G  deployments will
change the EMF
exposure landscape but
can be maintained within
safe thresholds.

Use a combination of
simulation and
theoretical analysis to
jointly optimize system
performance metrics and
EMEF exposure.

Present a framework for
deriving physical
limitations on antenna
quality factor (Q),
bandwidth, and other
performance metrics.

The study analysed the
influence of  urban
vegetation on
electromagnetic field
attenuation

It is pointed out that
the building height has
a limited effect on
radiation exposure.

Increasing base station
density can reduce the

transmission ~ power
required for individual
devices,  potentially
reducing  individual
radiation exposure
levels.

The equation between

power density and
Electric Field
Strength.

The strength of the
electric field is
inversely proportional
to the square of the
distance, with
equation is provided
to support this view.
Vegetation can
attenuate EMF waves
and thus reduce field
strength.

attenuation (reflection, scattering and absorption) and propa-
gation of electromagnetic waves and then affect the radiation
value. Therefore, different types of micro-environment
should be divided according to the influencing factors.

lll. METHODOLOGY
The methodology of this work is outlined in Figure 1,
including experimental measurement, statistical modeling,
machine learning and comparative analysis.

Literature Review

Related
work issues

Influencing
factor

Choose micro-environment

Analyze
data

Choose ML

Compare with public exposure
limits (ICNIRP, FCC)

FIGURE 1. The flow chart of the methodology.

Machine leaining

|I

Training

Test

Evaluation

TRE, RMSE, R"2
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First, a comprehensive literature review is conducted to
identify current research gaps and key influencing factors.
Based on these findings, appropriate micro-environments are
selected for this study. Next, data is collected in each micro-
environment using the ExpoM-RF 4 radiation exposure
meter. From the measurement campaign, the relationship
between data and influencing factors are analyzed, such
as frequency range and population density. For predictive
modeling, three machine learning (ML) techniques are
applied, namely FCNN, XG Boost and LR. Total Exposure
Ration (TER), RMSE and R? are calculated to assess the
performance of the model. Finally, the measured data and
the predicted value are compared against public exposure
limits set by ICNIRP and FCC. Further details on each step
is described below.

A. MEASUREMENT EQUIPMENT

ExpoM-RF4 as shown in Figure 2 is used to measure
RF-EMF in micro-environments. Compared to other mea-
surement devices, it is compact and lightweight, making it
convenient to carry in a waist pack. This device measures
electric field strength (V/m) of EMF and can automatically
record the peak value, the minimum value, and RMS value
of each signal every six seconds. Additionally, its ability to
configure custom frequency band lists from 50 MHz to 6 GHz
provides exceptional flexibility, ensuring compatibility with
future changes in frequency band allocations and regula-
tions [34]. A total 32 custom frequency bands (with their
central frequencies) in Malaysia have been recorded in the
TABLE 1. These bands have been programmed into the
ExpoM-RF4 for precise measurement and analysis.

FIGURE 2. ExpoM-RF4.

After measuring data, use the software ExpoM-RF4 Utility
to connect the ExpoM-RF 4 device to the PC. The raw
data, including Google Earth the KML files that visualizes
measurement paths, are exported.

B. MEASUREMENT CAMPAIGN

The measurement campaign starts with selecting a suitable
micro-environment. Based on the literature review, several
factors influence radiation levels including population den-
sity, frequency, range, vegetation coverage, building height
and base station density. Considering these influencing
factors, four distinct micro-environments are selected which
are urban (6 high population density areas in Kuala Lumpur),
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suburban (7 low population density areas in Cyberjaya), park
(3 park areas) and one indoor micro-environment.

For indoor measurement, precautions are taken to min-
imize interference by avoiding the use of other electronic
devices nearby during data collection. For outdoor micro-
environments, predefined walking paths are established on
a map to ensure consistency in measurement. These paths
are defined as 1-2 km long and require a 20-30-minute walk
to complete, which follow the ICNIRP stipulates. Google
Maps is used to define the path length and walking area,
with each micro-environment linked to a corresponding
Google Maps route for reference. During data collection, the
researcher follows the predetermined path while measuring
RF-EMF exposure. The details of each micro-environment
are provided in APPENDIX A.

To ensure accurate RF-EMF measurements while using
Google Maps for navigation and minimizing interference
from mobile phone radiation, each measurement campaign
requires three team members. The first person used Google
Maps to navigate the predefined walking path. The second
person records environmental details including vegetation
coverage, building features, number of base stations, and
their proximity. To avoid interference, the third person carries
only ExpoM-RF4 device in waist pact and is not allowed to
bring any electronic equipment, mobile phone or Bluetooth-
enabled equipment. This person follows the other two people
while assisting in identifying any missing base stations.
Those three should keep as much distance as possible to
prevent interference from cell phone frequency. To account
for the body-shielding effect during the measurements, the
team walks to a designated point and then returns along the
same path. This ensures that the ExpoM-RF4 device able
to measure the RF-EMF exposure from both front and back
direction.

C. MACHINE LEARNING (ML) MODELS

This study used machine learning to predict both maximum
and RMS value of Electric Field Strength, considering
various factors that influence EMF. Based on comprehensive
literature review and recorded environmental characteristics,
this study analyzed the influence factors on radiation value.

Figure 4 shows measured radiation exposure from
97.5 MHz to 5800 MHz.

As shown in Figure 3, the distribution of electric field
intensity is shaped in a Gaussian distribution, with data
mostly concentrated at the center and gradually decreasing
to the sides.

TABLE 8 shows the calculated population density of each
micro-environment along with the maximum RMS value and
maximum electrical field strength. The population density is
ranked from highest to lowest.

Figure 4 displays the maximum RMS value and maximum
electric field strength against population density.

Electric field strength tends to be higher in densely
populated areas and lower in sparsely populated regions.
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L. H’ hi ’Hh -

FIGURE 3. Measurement of electric field strength with respect to
frequency range.

|

TABLE 8. The variation of electric field strength with population density.

Population Maximum Max
Location Name density RMS Value
{People/Km?} (V/m) (V/m)
JIn Tun Razak 10541 7.961 56.737
KLCC area 6890 8.480 39.249
KLCC Park 6429 6.101 20.831
Hotel Geo 5739 6.026 32.096
Petaling Jaya (PJ) 5291 3.724 21.256
Bukit bintang 4790 10.427 30.455
Bukit Jalil
Recreational Park 1541 0.499 2603
Selangor Cyber 1200 3.006 12.821
Valley
Cyberjaya City 1074 1.576 15.624
Centre
Bangsar 1000 6.245 33.080
Cyberjaya Hospital 1000 4.504 27.234
Wisma Shell 987 3.556 16.477
Public Park 950 2.631 17.292
Dpulze Shopping 945 1.787 26355
Center
Cyber Heights Villa 045 1467 6322
area
Putrajaya Wetlands 430 1430 3.699
Park

As can be observed from Figure 4, the distribution appears
to follow a linear trend.

As for the average height of the building in the micro-
environment, due to the complexity of the environment, it is
challenging to obtain accurate value. Instead, the height range
is estimated from the minimum to the maximum building
height to minimize its impact on the analysis.

The number of base stations in the micro-environment is
recorded, along with the shortest distance to the nearest base
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0 2000 4000 6000 8000 10000 12000
Population density {People/Km?}

FIGURE 4. Trends with population density.

station. The maximum value of maximum personal radiation
exposure is in JIn Tun Razak which reaches 56.7365 V/m.
There are a total of four base stations in this area, and the
nearest base station is only 0 meters away. The lowest value
of maximum personal radiation exposure is in Bukit Jalil
Recreational Park where has no base station in it, the value
is just 2.6027 V/m. However, due to the different types of
micro-environment, even when the number of base stations
remains the same, the measured EF strength can differ
significantly across different areas, this variability affects the
EF strength from base station density. Since it has been found
that the number of base stations has a significant impact
on the radiation value. Additionally, vegetation coverage
plays a crucial role in attenuating EM waves influencing
the measured field strength. To account for these factors,
machine learning models are trained separately for different
environmental categories.

The combined formula method is applied in machine
learning to analyze the data. Through a comprehensive
analysis of the data, the relationship between electric field
intensity and its influencing factors had been found, then
create an equation for the electric field strength in relation to
all relevant factors. In the measured dataset, the relationship
between frequency range and electric field intensity follows a
Gaussian distribution, whereas theoretical models indicate a
linear relationship. To address this discrepancy, a logarithmic
function is applied to smooth out rapid variation in features
values, making the relationship more linear or near-linear
while reducing the impact of extreme values. The equation
is as follows:

log(E) = log(a+ 1)+ > (B1i - log(fi+1))+B2 - o

i=1

+ B3 - log(P+ 1)+ B4 - H*Z + B5 - N+log(e+1)
@)
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Adding 1 avoids undefined value is zero.

E: Personal radiation exposure in terms of electric field
strength, V/m.

a : Constant term, representing baseline electric field
strength.

log(fi +1): Each frequency will have its own transformed
feature column in the dataset

0}9'5: Square root of the standard deviation of frequency,
reflecting the influence of frequency fluctuations on field
strength.

log(P+1): Logarithm of population density, smoothing the
impact of population density, P/km2.

HO-23: Average building height raised to the power of 0.25,
in order to reduce the influence of building height, m.

N: Number of base stations

€ : Error term, accounting for random or unmeasured
factors influencing the electric field strength.

Some influencing factors follow Gaussian distribution,
while others exhibit a linear relationship. While certain
factors have well defined mathematical equations, oth-
ers require data driven approaches to establish the rela-
tionship between electric field strength and influencing
variables. Some micro-environments consist of multiple
environmental types, while others are more uniform. Given
that most features are numerical, Fully Connected Neu-
ral Networks (FCNN) and eXtreme Gradient Boosting
(XGBoost) are chosen as the primary machine learning
models for analysis. In addition, after applying a logarithmic
transformation, the influencing factors exhibit a linear
relationship with the electric field intensity. Then, linear
regression (LR) is also selected to predict the radiation
exposure.

LR is a statistical model that computes a linear weighted
sum of the input features, mapping the result to a probability
using the Sigmoid function. Additionally, XG Boost an
ensemble learning algorithm based on gradient boosting,
is employed for handling tabular data. It utilizes multiple
decision trees to optimize the residuals of each iteration
and gradually improve the model performance. In this study,
the square error is used as the objective function, with a
learning rate of 0.1. The model is trained using 100 decision
tresses, each with a maximum depth of 5, to iteratively refine
predictions and minimize loss.

FCNN is a type of feed forward neural network with
hierarchical structure. As presented in FIGURE 35, the
FCNN consists of three main components: the input
layer, the hidden layer and the output layer. This study
used machine learning to predict the RMS and maximum
Electric field strength values. To achieve this, the model
considered key influencing factors that affect EMF which
are frequency range, population density, average height
of building, number of base station and distance to base
station. Therefore, the input layer has 5 input parameters,
and the output layer has 2 predicted values. The FCNN
designed in this study has 4 hidden layers, each layer applies
nonlinear relationships using Rectified Linear Unit (ReLU)

106496

activation functions, while preventing overfitting through
regularization.

Input Parameters

Hidden Layer

//A\\v’.‘w“\/"\

Output Parameters

Frequency range, f (Hz)

Max value of personal

Population density, P (P/km?) ‘\vv 7 @, \\0” ‘ radiation exposure (V/m)
Average height of building, H (m) 4":‘7 ’y’v'\:% ﬁ“f ""

"I‘ RMS value of personal
‘ ' radiation exposure (V/m)

i o\\

A\\/»«

FIGURE 5. The structure of FCNN.

Number of Base station, N

Micro-environment

The first hidden layer is a fully connected dense layer
comprising 256 neurons, employing the ReLU activation
function. This layer serves as the initial projection of the
input feature space into a higher-dimensional representation.
To mitigate overfitting, L2 regularization (with a coeffi-
cient of 0.01) is applied to constrain the magnitude of
the weights and encourage weight sparsity. The second
layer continues the hierarchical abstraction of features,
it retains 128 neurons to model meaningful intermediate
representations. ReLLU helps preserve non-linearity, while
L2 regularization maintains model robustness. The third
dense layer contains 64 neurons, continuing the progressive
reduction in dimensionality. With ReLU activation and L2
regularization, this layer continues to compress the feature
representation, distilling information into a more compact
and abstract form, only the most important learned patterns
are retained and passed forward. The final hidden layer
consists of 32 neurons with ReLU activation. Unlike the
preceding dense layers, this layer does not incorporate
explicit regularization, thereby allowing the network to fully
utilize these last representations without constraint, fine-
tuning the output mapping.

In this study, 80% of the dataset are allocated for
training and the remaining 20% for testing. Initially,the
phenomenon of underfitting occurred when applied FCNN
to simulate in the indoor environment and applied LR to
simulate scenarios in urban and suburban areas. This is
because when the data set is single, FCNN cannot learn
the patterns in the data, so improved the learning from
0.001 to 0.01 to accelerate convergence and promote deeper
feature learning. In contrast, the Logistic Regression (LR)
model demonstrated greater robustness to extreme values,
enabling it to handle outliers more effectively within the
data. Therefore, an outlier mitigation step was first applied in
urban and suburban samples, to reduce their impact on model
training. After correction, the prediction results of all models
are overfitting. Then using Rectified Linear Unit (ReLU)
activation functions, while preventing overfitting through
regularization. Finally, compared the predictive performance
of the three models in different environmental scenarios.

D. METRICS FOR EVALUATION
Total Emission Ratio (TER) is calculated to assess RF-
EMF exposure emission compliance in accordance with the
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limits specified in the ICNIRP/ FCC guidelines standards.
It compares the actual measured RF-EMF levels to the
allowed emission limits across a specified frequency range
to the allowed emission limits across a specified frequency

range.
5800MHz A 2
TER= > ( : ) <1 ®)

E . .
i>97.5MHz \ Hmi

E;: The measured electric field strength at frequency i.

Elim,i: The limit of electric field strength for compliance at
frequency i.

Specific exposure limits from major standards organiza-
tions which have been calculated in Chapter 2:

ICNIRP: 27.7 V/m (frequency range 30 MHz -400 MHz)

27 V/m - 60.4 V/M (frequency range 400 MHz-
2 GHz)
61.4 V/m (frequency range 2 GHz - 6 GHz)
FCC: 27.5 V/m (frequency range 30MHz -300MHz)
27.5 V/im -61.4 V/m (300MHz - 1.5 GHz)
61.4 V/m (frequency range 1.5 GHz - 6 GHz)

TER value should <= 1. If TER > 1, it means that
the maximum exposure limit is exceeded, indicating non-
compliance. The smaller the TER value, the lower the level of
electromagnetic radiation, the more in line with international
standards.

Compare the predicted value with the measured value.
Root Mean Square Error (RMSE) is calculated to quantify
the deviation between the predicted value and the real
value, which reflects the size of the model prediction
error.

RMSE = 9

yi: The i th true value of the data.
y;: The i th predicted value of the data.

The closer the value of RMSE is to 0, the higher the
prediction accuracy of the model.

Coefficient of Determination (R?) is determined to quan-
tify the degree of variation of the independent variable to the
dependent variable.

X0
> i = y)?

yi: The i th true value of the data.
y;: The i th predicted value of the data. y : The average of true
value.

IfR? = 1, it indicates the model perfectly explains the data.

If R? value is closer to 1, it indicates the model better
explains the variation of the dependent variable, which means
the better the model can fit the data.

If R?> = 0, it indicates the model does not explain any
variation in the data.

R?=1 (10

VOLUME 13, 2025

If R? < 0, it indicates the model performs worse than
simply predicting the mean value for all observations,
indicating a poor fit.

IV. RESULTS AND DISCUSSION

A. MEASURED RF-EMF EXPOSURES

The results of some outdoor and indoor environmental
measurements are shown in Figure 6, where the walking paths
are overlaid with measured electric field strength values along
the route.

FIGURE 6. Measured data shown on map.

Display the maximum RMS of Electric Field Strength in
each micro-environment. The results are presented in bar
chart:
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Max RMS of Electric Ficld Strength (V/m)
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FIGURE 7. Max RMS value of electric field strength.
Display the maximum Electric Field Strength in each

micro-environment. The results are presented in bar
chart:

Maximum value of Electric Field Strength (V/m)
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FIGURE 8. Maximum value of electric field strength.

As can be observed from Figure 7 and Figure 8, the
measured data are all smaller than the ICNIRP and FCC ’s
public exposure limits. In addition, the Electric Field Strength
of indoor micro-environment is much lower than that of
indoor micro-environment.

B. PREDICTED RF-EMF EXPOSURES

The predicted RF-EMF exposure levels are discussed
in accordance with each predication ML models below.
The figures of predicted RF-EMF exposures results
(Figure 9- Figure 20 ) are presented in APPENDIX B.

1) FULLY CONNECTED NEURAL NETWORK (FCNN)

The comparison between the true value and the predicted
value in urban environment is shown in Figure 9. The
maximum predicted RMS value of Electric Field Strength is
7.0917 V/m, the maximum predicted value of Electric Field
Strength is 28.2077 V/m. The RMSE value of RMS is 0.1975,
and the R? value of RMS is 0.9821. The RMSE value of MAX
is 1.1863, and the R? value of MAX is 0.9521.

As can be observed from Figure 9, the RMS values of the
electric field strength range from O to approximately 7 V/m,
whereas the maximum values of the electric field strength
range from O to approximately 28 V/m, exhibiting larger
fluctuations, which explains why the RMSE of the maximum
values is larger than that of the RMS values. The R? values
exceeding 0.9 indicate that the model can explain more than
90% of the variance in the data. This suggests that the FCNN
demonstrates strong predictive performance in estimating
electric field strength in urban areas.
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FIGURE 9. Comparison of true and predicted values of FCNN in urban
environment.

For suburban environments (shown in Figure 10), the
maximum predicted RMS value of Electric Field Strength is
4.5111 V/m, the maximum predicted value of Electric Field
Strength is 23.2864 V/m. The RMSE value of RMS is 0.1054,
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Comparison of True RMS and Predicted RMS.
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FIGURE 10. Comparison of true and predicted values of FCNN in
suburban environment.

and the R? value of RMS is 0.9770. The RMSE value of MAX
is 1.0473, and the R? value of MAX is 0.8659.

Compared with the urban area, the range of electric field
strength is narrower, the overall error is reduced, leading to a
lower RMSE value. The value of R? are 0.977 and 0.8659,
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FIGURE 11. Comparison of true and predicted values of FCNN in park

environment.

indicating that FCNN also performs well in predicting the
electric field strength in suburban areas.

For park environment (shown in Figure 11), the max-
imum predicted RMS value of Electric Field Strength is
2.2332 V/m, the maximum predicted value of Electric Field
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Strength is 11.1278 V/m. The RMSE value of RMS is 0.1693,
and the R? value of RMS is 0.9215. The RMSE value of MAX
is 0.4748, and the R? value of MAX is 0.9418.
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FIGURE 13. Comparison of true and predicted values of LR in urban
environment.

Compared with urban and suburban areas, in the park
environment, electromagnetic sources are relatively sparse,
and the area is expansive, resulting in fewer extreme values
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FIGURE 14. Comparison of true and predicted values of LR in suburban

environment.

in the measured electric field strength. Consequently, the
RMSE of the maximum values is comparatively lower, only

0.4787 V/m.

For indoor environment (shown in Figure 12), the max-
imum predicted RMS value of Electric Field Strength is
0.4161 V/m, the maximum predicted value of Electric Field

VOLUME 13, 2025

Comparison of True RMS and Predicted RMS

30
—&— True RMS
== Predicted RMS
25
20
E
%15
o
=
H
10
05
00
0 100 200 300 400 500 600 700
Sample Index
Comparison of True MAX and Predicted MAX
~&~ True MAX
o ~%- Predicted MAX
8
e 6
=
s
X
g
z
4
2
0
0 100 200 300 400 500 600 700
Sample Index
RMS: True vs Predicted
30
o RMS Predictions. p
=== Ideal fit
25 et o
" o
Pl
b4 .
20 -
ol ]
P 0
'] i
H - .
3 15 e
2 g0 | 0
o,
g .‘\'0' A
&
- D
10 > *
05
00
00 05 10 15 20 25 30
True RMS
MAX: True vs Predicted
o MAX Predictions -
107 --- deal fit o
55 0
8 Lk
. -
"o 0 ]
k) o
H 7
H » o
& 0 Pl [
g <
9 o o
1 o »> . @
< 4 o B '}
¢ A e e
o 4 2
',," o0
) o 0 L]
2 o rA‘ © !
s
Jobe 000 o
g % .
° .
ol
0 b,
0 2 4 6 8 10
True MAX

FIGURE 15. Comparison of true and predicted values of LR in park

environment.

Strength is 4.1045 V/m. The RMSE value of RMS is 0.0082,
and the R? value of RMS is 0.9268. The RMSE value of MAX
is 0.3986, and the R? value of MAX is 0.7956.
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FIGURE 16. Comparison of true and predicted values of LR in indoor
environment.

As can be observed from Figure 12, the electric field
strength in the indoor micro-environment is more stable,
the RMS values of the electric field strength range from
0.3 to 0.5 V/m, whereas the maximum values of the electric
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FIGURE 17. Comparison of true and predicted values of XG Boost in
urban environment.

field strength range from 0.5 to 3.5 V/m. This results in a
smaller RMSE value, particularly for the RMS values, where
the RMSE is only 0.0082. In addition, the R? of maximum
Electric Field Strength decreases to 0.7956, indicating that
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FCNN is more suitable for analyzing multiple types of data
sets.

2) LINEAR REGRESSION (LR)

For urban environment, the maximum predicted RMS value
of Electric Field Strength is 10.0192 V/m, the maximum
predicted value of Electric Field Strength is 51.0385V/m. The
RMSE value of RMS is 0.4007, and the R? value of RMS is
0.9261. The RMSE value of MAX is 2.6968, and the R value
of MAX is 0.7522.

As can be observed from Figure 13, the RMS values of
the electric field strength range from 0 to 10 V/m, whereas
the maximum values of the electric field strength range
from O to approximately 50 V/m. Since LR can not handle
extreme values well, RMSE have particularly large values,
twice that of FCNN. The R?value also indicates that LR lacks
the fitting capability exhibited by the FCNN with extreme
values.

For suburban environments, the maximum predicted RMS
value of Electric Field Strength is 6.8987 V/m, the maximum
predicted value of Electric Field Strength is 34.6681 V/m.
The RMSE value of RMS is 0.2208, and the R? value of RMS
is 0.9044. The RMSE value of MAX is 2.2205, and the R?
value of MAX is 0.4182.

As can be observed from Figure 14, the RMS values of
the electric field strength range from O to 7 V/m, whereas
the maximum values of the electric field strength range from
0 to approximately 35 V/m. And at the extreme value, the
predicted value of LR is much greater than the actual value.
This is because suburbs have seven different types of micro-
environments, LR lacks the flexibility to effectively capture
interaction and nonlinear patterns in these diverse micro-
environments. This sensitivity to extreme values explains
why the RMSE of LR is significantly higher than that of
the FCNN. The R?value of maximum Electric Field Strength
is just 0.4182, indicating that LR lacks the fitting capability
exhibited by the FCNN in handling multiple types of data sets
with extreme values.

For park environment, the maximum predicted RMS value
of Electric Field Strength is 2.4960 V/m, the maximum
predicted value of Electric Field Strength is 8.2967 V/m. The
RMSE value of RMS is 0.0868, and the R? value of RMS is
0.9793. The RMSE value of MAX is 0.7991, and the R value
of MAX is 0.8352.

As can be observed from Figure 15, the RMS values
of the electric field strength range from 0 to 3 V/m,
whereas the maximum values of the electric field strength
range from 0 to 10 V/m. Due to the park’s limited
environmental variability, comprising only three distinct
micro-environments with fewer extreme values, the RMSE
and R? values of LR are close to those of FCNN.

For indoor environment, the maximum predicted RMS
value of Electric Field Strength is 0.4945 V/m, the maximum
predicted value of Electric Field Strength is 4.8734 V/m. The
RMSE value of RMS is 0.0014, and the R? value of RMS is
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FIGURE 18. Comparison of true and predicted values of XG Boost in
suburban environment.

0.9980. The RMSE value of MAX is 0.2016, and the R? value
of MAX is 0.9477.

In the indoor environment, a single micro-environment is
present, and the electric field strength is stable. The prediction
performance of LR is inversely better than that of FCNN,
indicating that LR is suitable for processing a single data set.
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FIGURE 20. Comparison of true and predicted values of XG Boost in
FIGURE 19. Comparison of true and predicted values of XG Boost in park indoor environment.
environment.

3) EXTREME GRADIENT BOOSTING (XG Boost)

For urban environment (shown in Figure 17), the maxi- Strength is 25.2023 V/m. The RMSE value of RMS is 0.2239,
mum predicted RMS value of Electric Field Strength is and the R? value of RMS is 0.9769. The RMSE value of MAX
6.7936 V/m, the maximum predicted value of Electric Field is 1.3846, and the R? value of MAX is 0.9347.
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As can be observed from figures, the range of RMS
values of the electric field strength is similar to FCNN.
But the RMSE of XG Boost is slightly higher than that
of FCNN, which indicating a marginally larger prediction
error. Likewise, the R%of XG Boost is close to that of FCNN
but slightly lower, suggesting a slightly weaker fit. Overall,
the prediction performance of XG is comparable to FCNN,
however, FCNN outperforms XG in handling extreme values.

For suburban environment (shown in Figure 18), the
maximum predicted RMS value of Electric Field Strength is
3.2303 V/m, the maximum predicted value of Electric Field
Strength is 13.2112 V/m. The RMSE value of RMS is 0.1246,
and the R? value of RMS is 0.9678. The RMSE value of MAX
1s 0.9891, and the R2 value of MAX is 0.8804.

The RMSE of RMS value of the XG Boost model is slightly
higher than that of FCNN, the RMSE of maximum value of
the XG Boost model is slightly lower than that of FCNN, the
R? of RMS value of the XG Boost model is slightly lower than
that of FCNN, The R? of maximum value of the XG Boost
model is slightly higher than that of FCNN. This is because
the extreme values in suburban areas are not as pronounced
as those in urban areas, so the predictive performance of the
two models is comparable.

For park environment (shown in Figure 19), the max-
imum predicted RMS value of Electric Field Strength is
2.8024 V/m, the maximum predicted value of Electric Field
Strength is 8.8171 V/m. The RMSE value of RMS is 0.0673,
and the R? value of RMS is 0.9876. The RMSE value of MAX
is 0.4278, and the R? value of MAX is 0.9528.

The RMSE of XG Boost is similar to that of FCNN but
slightly lower, indicating a marginally improved predictive
accuracy. Similarly, the R?valueof XG Boost is close to
that of FCNN but slightly higher, suggesting that XG
Boost captures variance in the data more effectively. This
observation indicates that XG outperforms FCNN in the
absence of extreme values.

For indoor environment (shown in Figure 20), the max-
imum predicted RMS value of Electric Field Strength is
0.4764 V/m, the maximum predicted value of Electric Field
Strength is 3.6748 V/m. The RMSE value of RMS is 0.0084,
and the R? value of RMS is 0.9228. The RMSE value of MAX
is 0.1860, and the R? value of MAX is 0.9555.

In the indoor environment, the R2value of LR is signifi-
cantly higher than that of XG Boost. This can be attributed
to the stability of the RMS values of the indoor electric
field strength. As a result, LR is suitable for modeling a
single, relatively simple data set, XG Boost is more robust
and effective when dealing with multiple datasets that contain
minimal or no extreme values, FCNN is best in handling
multiple data sets with extreme values.

C. MODEL PERFORMANCE ANALYSIS

1) TOTAL EMISSION RATIO (TER)

The TER calculations of RMS are as follows.
The TER calculations of MAX are as follows.
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TABLE 9. TER of RMS.

TER RMS
Micro Measureme FCNN LR XG
environment nt value
Urban 1.847E-03 1.631E-03 1.758E-03 1.608E-03
Suburban 3.369E-04 3.560E-04 3.713E-04 3.223E-04
Park 2.384E-04 1.264E-04 1.696E-04 1.745E-04
Indoor 4.710E-05 4.593E-05 4.694E-05 4.651E-05
TABLE 10. TER of MAX.
TER MAX
Micro Measureme FCNN IR XG
environment nt value
Urban 2.191E-02 1.737E-02 2.036E-02 1.746E-02
Suburban 5.395E-03 6.355E-03 8.437E-03 4.750E-03
Park 2.787E-03 2.517E-03 1.802E-03 1.942E-03
Indoor 1.354E-03 1.331E-03 1.361E-03 1.252E-03

All TER values are much less than 1, indicating that they
are in line with international standards.

2) ROOT MEAN SQUARE ERROR (RMSE)

Then evaluate the performance of the model by analyzing the
RMSE. The comparison of RMSE for different ML are as
follows:

TABLE 11. RMSE of RMS.

RMSE RMS
Micro-environment FCNN LR XG
Urban 0.198 0.401 0.224
Suburban 0.105 0.198 0.125
Park 0.169 0.087 0.067
Indoor 0.008 0.001 0.008
RMSE of RMS

BFCNN@LR @ XG
0450
0.401
0350

0300

0.198 | 0.198

0200 0.169

0150 { | 0.125
0.105
0087
0.100 TOET
0,050 l
0.000 i |
urban suburban park

FIGURE 21. RMSE of RMS.

0250 0224
|

0.008 g9 0008

indoor

Since the MAX value of Electric Field Strength in outdoor
environment is easily disturbed by external factors, the RMSE
of these three models in urban and suburban areas are large.

By comparison, LR performs worse than other models in
urban, suburban and park areas, because the RMSE of LR
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TABLE 12. RMSE of MAX.

RMSE MAX
Micro-environment FCNN LR XG
Urban 1.186 2.697 1.385
Suburban 1.047 2.933 0.989
Park 0.475 0.799 0.428
Indoor 0.399 0.202 0.186
RMSE of MAX
0.500 w E J475 r 0428 0399 :
Ty A | . ; | E —

FIGURE 22. RMSE of MAX.

increases significantly to 2.6968 and 2.9325, respectively,
and the error amplitude is more than double or triple that
of other methods. The types of micro-environments and the
samples are large in urban, suburban and park areas, while
indoors just choose one micro-environment. This indicates
that LR is suitable for analyzing a single type of data set.
When analyzing multiple types of data sets, FCNN and XG
Boost are more appropriate than LR.

In addition, while the performance of FCNN and XG Boost
is close, FCNN performs better in both urban and suburban
areas, possibly due to the presence of extreme values in urban
and suburban areas. This indicates that FCNN can fit the
extreme value data processing well.

In summary, LR has better prediction results under single
and simple data sets, while XG Boost and FCNN have
stronger analysis capabilities for multiple types of data sets.
When the data is stable, XG Boost ’s prediction is better than
FCNN ’s. However, when there are extreme values in the data,
FCNN predicts better.

3) COEFFICIENT OF DETERMINATION (R?)
Finally, evaluate the performance of the model by analyzing
the R2. The comparison of R? for different ML are as follows:

TABLE 13. R2 of RMS.

R? RMS
Micro-environment FCNN LR XG
Urban 0.982 0.926 0.977
Suburban 0.977 0.919 0.968
Park 0.922 0.979 0.988
Indoor 0.927 0.998 0.923
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TABLE 14. R? of MAX.

R? MAX
Micro-environment FCNN LR XG
urban 0.952 0.752 0.935
suburban 0.866 0.418 0.880
park 0.942 0.835 0.953
indoor 0.796 0.948 0.956

R2 of RMS

EFCNNBLR EXG

0.998
0988
0979

0968 |

2 0923
0919 0z

000

0.880

0860 ‘ ‘
urban suburban puk indoor

FIGURE 23. R2 of RMS.

TABLE 15. Maximum MAX value of electric field strength.

Max Value (V/m)
Micro-environment Measure FCNN LR XG
ment
urban 56.737 28.208 51.039 25.203
suburban 27.234 23.286 34.668 13.211
park 20.381 11.128 8.297 8.817
indoor 4.693 3.359 4.642 3.675

The results presented by R? are more intuitive, and the
conclusions are the same as RMSE. LR predicts worse in the
presence of extreme values and analyzing large and complex
data. The predictive performance of FCNN and XG Boost is
close, but FCNN ’s prediction is better when have extreme
values in the data.

D. DATA ANALYSIS

Since all three machine learning models achieve a high degree
of fit across the four micro-environments, all the measured
data and predicted value are selected for analysis. Select the
TER of RMS value and MAX value of electric field strength
in all environments for analysis.

The TER of RMS values of electric field strength are
presented in Table 9. As shown in table, the electric field
strength values in all types of micro-environments are much
smaller than the ICNIRP and FCC ’s public exposure limits.

According to the types of micro-environment analysis. The
Electric Field Strength of indoor micro-environment is much
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TABLE 16.
Micro-environment [n=17]
Urban, n=6
Walking path Google Map Link Kml File Link
KLCC area A 20-min walk from Kuala Lumpur Convention Center (via Jalan | https://maps.app.goo.gl/YgfgbS1M | https:/drive.google.com/file/d/1n7j
Pinang to Persiaran Petronas) to Petronas Twin Towers and back, | QaEYoyYv6 TLvMUOU1kLInwuksF1GUxJc8D
1.3 kms right hand sidewalk - see Map) R4hi/view?usp=sharing
Bukit bintan A 20-min walk from Bukit Bintang bus stop to Pavilion Kuala | https://maps.app.goo.gl/4RrwlW1 https:/drive.google.com/file/d/174
g Lumpur, 168, JIn Bukit Bintang (via JIn Sultan Ismail->Jalan Raja | 5z7aAr25h9 b0J2R8DxVBIprlbcb6Y0qqbBTm
Chulan) and back, 1.4 kms right hand sidewalk - see Map) od6l/view?usp=sharing
Central Market A 20-min from Hotel Geo bus stop (opposite of Central Market) | https://maps.app.goo.gl/xvphXkCp | https://drive.google.com/file/d/19
(outdoor up to Jalan Sultan parking (via see map) and back, 1.3 kms right | VrEafXH38 MMOQtgsYB6yLiKhitUoeuGKO6W
area/streets) hand sidewalk - see Map) XnhUibB/view?usp=sharing
A 26-min walk from KL97 Wisma Selangor Dredging (Opp) to . https://drive.google.com/file/d/1Jr0
JIn Tun Razak JIn Tun Razak road and back, 1.8 kms right hand sidewalk - see %tﬂgs[}/én:ga{p S(ng p.500. gl BsDLT7Z Ph__Rc05¢3_B7-gvko-
TT2UEcXpG8 - -
Map) 1000fsXTfq/view?usp=sharing
A 24-min walk from Lrt Bangsar train station to KL1143 Bangsar | https://maps.app.goo.gl/TAocCASU | https:/drive.google.com/file/d/1Cd
Bangsar Park (Selatan) bus station and back, 1.7 kms right hand sidewalk - | 2AhWmHVAL6 9k0j2gSpNDb24KWQ_XhKblO9u
see Map) 760G /view?usp=sharing
Petaling Jaya (PJ) A 20-min walk from PJ Palms Sport Centre to PJ Sentral Tower | https://maps.app.goo.gl/INB5JUal | https://drive.google.com/file/d/15Q
g Jay (via Lorong Sultan->Persiaran Barat) and back, 1.5 kms right | cQcbfBTi7 BIVvGIkArd4nbXZudWiDFrgkj40
hand sidewalk - see Map) pdRh/view?usp=sharing

TABLE 16. (Continued.)

Micro-environment [n=17]

Recreational Park

Entrance to the other side of the (big) lake and back 1.2 kms right
hand sidewalk - see Map)

2mwDJvIw6

Park, n=3
Walking path Google Map Link Kml File Link
/?1 20-Ir]1(1n waﬁk th}l;ough KLfC}fI pari fro_m KhLCC Tnl en}fli (start of https://maps.app.goo.g/kt3EKaDd htftDs://dnve.google.com/ﬁle/d/ 158
KLCC Park the park) to the ot er end of t © parl using the given pat 1ZHmLsab9 Ff-
and back, 1.4 kms right hand sidewalk - see Map) S4HILSq07 FpU0X0JyDYmS8EWnQKz0Z0G
0a6_/view?usp=sharing
Bukit Jalil A 22-min walk starting from Bukit Jalil Recreational Park North hitps:/maps.app.g00.gl/9NQVIPC3 https://drive.google.com/file/d/1 XL

HIngr2N8vTVMPSCCyA37 G7Ec
kIFvb/view?usp=sharing

Putrajaya Wetlands

A 26-min walk from the Lookout Tower to
DEWAN SEMINAR PEJABAT NURSERI TAMAN WETLAND

https://maps.app.goo.gl/a2Qjmmly

https:/drive.google.com/file/d/1q2

Park PUTRAJAYA (Government office) and back, 2.2 km right hand EXaSIUZ87 sqrthAb9gllEth]_ETt70CeeYssc
. X5-/view?usp=sharing
sidewalk - see Map)
Indoor, n=1

Walking path

Google Map Link

Kml File Link

Astetica Residence

Astetica Residence

https://maps.app.goo.gl/dhQv4L9C

https:/drive.google.com/file/d/120

v3eLXdgQ9?g_st=com.google.ma
ps.preview.copy

XaMOu6A8df1 KwklpEMjhkLo8H
3aEEQ/view?usp=sharing

lower than that of indoor micro-environment. This is because
indoor environmental materials use concrete, brick and
metal, which can absorb or deflect electromagnetic waves,
shielding external electromagnetic sources effectively [28].
Moreover, indoor electromagnetic fields have limited sources
and are usually limited to electronic devices, such as Wi-
Fi routers, computers, cell phones, and other household
appliances. In contrast, outdoor areas especially in urban
environments, are often located near high-power sources.
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In addition, the Electric Field Strength is particularly strong
in more prosperous areas such as KLCC area. In remote
areas, especially those with only three to five floors of
buildings such as PJ Palms Sport Centre, the Electric Field
Strength value is weak. For the park environment, with
no buildings but very dense vegetation, the Electric Field
Strength value is even lower. This is because the height
and density of the building affect the propagation and
reflection of electromagnetic waves [29]. Vegetation density
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TABLE 16. (Continued.)

Micro-environment [n=17]

Suburban, n=7

Walking path Google Map Link Kml File Link
. . A 22-min walk from MRT Cyberjaya City Centre (PY40) to X https:/drive.google.com/file/d/1Xh
Cyberjaya City PRPN (Persiaran APEC) and back, 1.7 kms right hand sidewalk - https‘.//mgp s.pp.g00.gl/nyCVGSx rCATZjaNm7yYKS5hzb0k5loir-
Centre 9fh8jkCvB9 - —
see Map) 277Ax/view?usp=sharing
https://drive.google.com/file/d/1gg
Wisma Shell A 22-min walk starting from in front of McDonald's Cyber 5 DT | https://maps.app.goo.gl/6xDVYcR | Cdx5Di53RkAGdI-
to Wisma Shell Bus stop and back, 1.5 kms right hand sidewalk sJCN726X86 x40owixbOMEwV Ttp/view?usp=sha
rin;
A 24-min walk starting from Cyberjaya Transport Terminal (Stop
- ID: SP75)/ front of DPULZE Shopping Centre to MMU Entrance X https://drive.google.com/file/d/1qY
Dpulze Shopping | 5° "1). SP86) and back, 1. kms right hand sidewalk - see | MUPS/Maps.app.goo. gl YMXu3A | 1 ‘hECOCNADS3B_SXhh-
Center mveuEEel TQ7 < — .
Map) OtZPufofd/view?usp=sharing
Selaneor Cyber A 26-min walk starting from in front of RSKU residence Idaman | https://maps.app.goo.gl/iDx3WBH | https:/drive.google.com/file/d/1Ex
¢ Vg(il yoe Selangorku to Brainy Bunch International School and back, 1.9 | f87FTrXLD9 8FoX8 whnOJwaPREkHrutjzwHh
alley kms right hand sidewalk - see Map) w73f/view?usp=sharing
Cvberiava Hospital A 24-min walk from Cyberjaya Hospital bus stop to SK | https://maps.app.goo.gl/SGtydUSm | https:/drive.google.com/file/d/1U1
yoen ;’rea P Cyberjaya 1 Bus stop (opposite of Tamarind Square) and back, | tr3bfEpS6 GmrM4jf9eh05v0oRYvk1PcqL{Rp
1.6 kms right hand sidewalk - see Map) iry/view?usp=sharing
https://www.google.com/maps/dir/
2.909802.101.6650104/2.9077097
101.6626193/@2.9092498.101.661 s
Cyber Heights Start from Seri Puteri School Bus stop to Jalan Cyber Sutera and | 7772.494m/data=!3m1!1e3!4m9!4 https://drive.google.com/file/d/luF
; KYeMamM{UTSLVRIOcF_ggxch
Villa area go back. m8!1m5!3m4!1m2!1d101.6629088 DwiUxH/view?usp—sharing
Jusp= g
12d2.9091299!350x3 1 cdb7a9b5d5b
ea5:0x315a8e5bd7b60ala!lm0!3e
27%entry=ttu
; https://www.google.com/maps/dir/
Z\bOzl?t'?;“nggr;"&f&fga"&Sa;‘:r‘ggfaf‘éfvtet%tzfn;°“:§ 2.8870409.101.6181665/2.88659.1 | https:/drive. google.comyfile/d/10]
Gamuda Cove area . . P 01.6102672/@?2.887069,101.60976 | DVSxa30bh7jaHgaj4xMRQzvyGd
Gamuda Cove Experience Gallery) and back, 1.8 kms right hand = : o
. 45.1608m/data=!3m1!1e3!4m2!4m | F3pg/view?usp=sharing
sidewalk - see Map) -
1!3e2?hl=en&entry=ttu
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FIGURE 24. R2 of MAX.

will attenuate electromagnetic waves and thus affect field
strength [33].

Displaying the measured data and predicted values of
the maximum MAX values of Electric Field Strength in
different types of micro-environments, the comparison results
are presented in the bar chart.

The measured data and predicted values are all less than
61.4 V/m, but the maximum exposure in urban areas with
dense population and numerous base stations is very close
to the exposure limit.
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FIGURE 25. Maximum MAX value of electric field strength.

V. CONCLUSION

LR has better prediction results under single and simple
data sets, while XG Boost and FCNN have stronger analysis
capabilities for multiple types of data sets. In addition, FCNN
predicts best in the presence of extreme values and analyzing
large and complex data.

By comparing and analyzing the measured data and
predicted values across different micro-environments, it is
observed that the highest levels of personal radiation exposure
typically occur in outdoor urban areas, which is characterized
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by high population density, high concentration of base
stations, and close proximity to these stations. In contrast,
park areas with dense vegetation exhibit significantly lower
personal radiation exposure. The dense trees act as natural
attenuators, absorbing and scattering the electromagnetic
waves, which reduces their intensity. Indoor environments
generally exhibit lower electromagnetic field strengths com-
pared to outdoor environments. This can be attributed to
structural shielding provided by building materials and fewer
high-power sources.

Typically, Electric Field Strength is much lower than the
international exposure limits, which is similar to the most
research results [2], [6], [13], [14], [16]. However, in areas
with dense population and base stations, the maximum value
of Electric Field Strength would increase at some point, even
close to the exposure limit.

Future work entails comprehensive analysis based on road
GPS data and signal sources. Especially in the outdoor
environment, with multiple signal sources, and the changing
distance from the signal sources when moving, complicating
the assessment of radiation exposure to EMF. Furthermore,
since all the micro-environments for the measurement are
selected in common environments in daily life. Future work
can choose the site of special cases, such as workplaces that
need to handle or come into contact with electromagnetic
field equipment, or at concerts where there are large crowds
and communication delays.

APPENDIX A
DETAILS OF MICRO-ENVIRONMENTS
See Table 16.

APPENDIX B

PREDICTED RF-EMF EXPOSURES RESULTS

A. FULLY CONNECTED NEURAL NETWORK (FCNN)
See Figs. 9-12.

B. LINEAR REGRESSION (LR)
See Figs. 13-16.

C. EXTREME GRADIENT BOOSTING (XG Boost)
See Figs. 17-20.

ACKNOWLEDGMENT
The authors would like to acknowledge Dr. Chhavi Raj Bhatt
for providing measurement equipment and guidance.

REFERENCES

[1] C. Sage and E. Burgio, “Electromagnetic fields, pulsed radiofrequency
radiation, and epigenetics: How wireless technologies may affect child-
hood development,” Child Develop., vol. 89, no. 1, pp. 129-136, Jan. 2018.

[2] M. Milutinov, J. Bjelica, D. Kljajic, N. Djuric, S. Djuric, and N. Pasquino,
“Verification measurements of EMF near kindergarten as an increased
sensitivity area,” in Proc. IEEE Int. Symp. Meas. Netw. (M&N), Rome,
Italy, Jul. 2024, pp. 1-6.

[3] C. R. Bhatt, S. Henderson, M. Sanagou, C. Brzozek, A. Thielens,
G. Benke, and S. Loughran, “Micro-environmental personal radio-
frequency electromagnetic field exposures in Melbourne: A longitudinal
trend analysis,” Environ. Res., vol. 251, Jun. 2024, Art. no. 118629.

VOLUME 13, 2025

[4]

[5]

[6]

[71

[8

—

[9]

[10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

[18]

[19]

[20]

(21]

(22]

(23]

(24]

E. Korkmaz, S. Aerts, R. Coesoij, C. R. Bhatt, M. Velghe, L. Colussi,
D. Land, N. Petroulakis, M. Spirito, and J. Bolte, ““A comprehensive review
of 5G NR RF-EMF exposure assessment technologies: Fundamentals,
advancements, challenges, niches, and implications,” Environ. Res.,
vol. 260, Nov. 2024, Art. no. 119524.

I. C. O. N.-I. R. Protection, “Guidelines for limiting exposure to
electromagnetic fields (100 kHz to 300 GHz),” Health Phys., vol. 118,
no. 5, pp. 483-524, Mar. 2020.

C. R. Bhatt, M. J. Abramson, and G. Benke, “Wi-Fi radiation exposures
to children in kindergartens and schools—Results should lessen parental
concerns,” Austral. New Zealand J. Public Health, vol. 41, no. 6,
pp. 647-648, Jul. 2017.

R. A. Baan, Y. Grosse, B. Secretan, F. E. Ghissassi, V. Bouvard,
L. Benbrahim-Tallaa, N. Guha, F. Islami, L. Galichet, and K. Straif,
“Carcinogenicity of radiofrequency electromagnetic fields,” Lancet
Oncol., vol. 12, no. 7, pp. 624-626, Jun. 2011.

B. M. Zeleke, C. R. Bhatt, C. Brzozek, M. J. Abramson, F. Freudenstein,
R. J. Croft, P. Wiedemann, and G. Benke, ‘“Radiofrequency electromag-
netic field exposure and risk perception: A pilot experimental study,”
Environ. Res., vol. 170, pp. 493-499, Mar. 2019.

S. K. Das, A. K. Mukhopadhyay, and S. K. Sinha, “Radiofrequency
radiation from nearby mobile phone base stations—A case report,”
Electromagn. Biol. Med., vol. 38, no. 1, pp. 1-5, 2019.

X. Zhang, Y. Wang, and H. Liu, “Multi-sensor assisted WiFi signal
fingerprinting indoor positioning technology,” J. Softw., vol. 30, no. 11,
pp. 3357-3372, Nov. 2019.

Malaysia 5G-NR, 4G-LTE Frequency Spectrum Bands, 3G-WCDMA,
2G-GSM, FDD, TDD, FRI, FR2 mmWave Mobile Networks, Spectr.
Tracker, Feb. 2025.

Standard Radio System Plan: Requirements for Digital Terrestrial
Television (DTT) Service Operating in the Frequency Band of 470
MHz to 694 MHz, document SRSP-BS-DTT-470, Malaysian Commun.
Multimedia Commission (MCMC), Jan. 2023.

E. Hamiti, M. Ibrani, L. Ahma, R. Halili, D. Berisha, and V. Shala, “Assess-
ment of personal exposure to wireless communication technologies in
different microenvironments,” in Proc. 9th Int. Conf. Next Gener. Mobile
Appl., Services Technol., Sep. 2015, pp. 188-192.

T. S. Joseph, S. Verloock, M. Goeminne, L. Vermeeren, D. Verloigne,
and L. Martens, “Comparison of personal radio frequency electromagnetic
field exposure in different urban areas across Europe,” Environ. Res.,
vol. 181, Jan. 2020, Art. no. 108956.

E. Eyceyurt, Y. Egi, and J. Zec, “Machine-learning-based uplink
throughput prediction from physical layer measurements,” Electronics,
vol. 11, no. 8, p. 1227, Apr. 2022.

Z. E. Albayrak, C. Kurnaz, T. Karadag, and A. A. Cheema, “Comprehen-
sive analysis of magnetic flux density and RF-EMF exposure in electric
buses: A case study from Samsun, Turkey,” Sensors, vol. 24, no. 17,
p. 5634, Aug. 2024.

S. Bilson, T. Hong Loh, F. Héliot, and A. Thompson, *“Physics-informed
machine learning modelling of RF-EMF exposure in massive MIMO
systems,” IEEE Access, vol. 12, pp. 69410-69422, 2024.

Y. Zhang, X. Wang, and Z. Chen, “Deep learning-based fast full-wave
electromagnetic simulation,” IEEE Trans. Antennas Propag.,vol.72,no. 5,
pp. 1234-1245, May 2024.

A. Al-Jumaily, A. Sali, M. Riyadh, S. Q. Wali, L. Li, and A. F. Osman,
“Machine learning modeling for radiofrequency electromagnetic fields
(RF-EMF) signals from mmWave 5G signals,” IEEE Access, vol. 11,
pp. 79648-79658, 2023.

Environmental Health Criteria 232: Radiofrequency Fields, World Health
Org., 2016.

I. C.N.-L. R. Protection, “ICNIRP statement on the ‘Guidelines for limiting
exposure to time-varying electric, magnetic and electromagnetic fields (up
to 300 GHz),”” Health Phys., vol. 97, no. 3, pp. 257-258, 2009.
Radiation Protection Series S-1: Exposure Limits for Radiofrequency
Fields, 100 KHz to 300 GHz, Austral. Radiat. Protection Nucl. Saf. Agency,
2021.

Prediction and Measurement of RF-EMF Exposure From Base Station,
document MCMC MTSFB TC G032:2021, Malaysian Commun. Multi-
media Commission (MCMC), Nov. 2021.

F. B. Michael and E. Andrea, “Precautionary measures and national
guidelines for electromagnetic field exposure in Italy and Switzerland,”
J. Environ. Health, vol. 80, no. 4, pp. 34-40, 2018.

106509



IEEE Access

P. Ruijie et al.: Evaluation of Personal Radiation Exposure From Wireless Signals

[25] Evaluating Compliance With FCC Guidelines for Human Exposure to
Radiofrequency Electromagnetic Fields, Federal Commun. Commission,
1997.

[26] “Biological effects and exposure criteria for radiofrequency electromag-
netic fields,” Nat. Council Radiat. Protection Meas., Bethesda, MD, USA,
Tech. Rep. 86, 1986.

[27] N. Moraitis, I. Popescu, and K. S. Nikita, “Frequency selective EMF
measurements and exposure assessment in indoor office environments,” in
Proc. 14th Eur. Conf. Antennas Propag. (EuCAP), Copenhagen, Denmark,
Mar. 2020, pp. 1-5.

[28] Y. Li, Y. Pang, B. Qu, J. Zheng, and Z. Xu, “Optically transparent
metasurface lens for wireless communication efficiency enhancement,”
Acta Phys. Sinica, vol. 73, no. 14, 2024, Art. no. 144104.

[29] “Personal distributed exposimeters for radio frequency electromagnetic
field exposure assessments: A test study in a cradle-to-cradle office
building,” Building Environ., vol. 124, pp. 151-160, Jul. 2017.

[30] L. Chiaraviglio, G. Bianchi, N. Blefari-Melazzi, and M. Fiore, “5G in the
wild: On the impact of 5G base stations on the exposure to electromagnetic
radiation,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), Antwerp,
Belgium, May 2020, pp. 1-7.

[31] L. Chen, A. Elzanaty, M. A. Kishk, L. Chiaraviglio, and M.-S. Alouini,
“Joint uplink and downlink EMF exposure: Performance analysis and
design insights,” [EEE Trans. Wireless Commun., vol. 22, no. 10,
pp. 6474-6488, Oct. 2023.

[32] M. Gustafsson, C. Sohl, and G. Kristensson, “Physical limitations on
antennas of arbitrary shape,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci.,
vol. 463, no. 2086, pp. 2589-2607, Oct. 2007.

[33] J. Smith and M. Brown, “Investigation of electromagnetic field attenuation
by urban vegetation,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 3,
pp. 456459, Mar. 2019.

[34] M. Attaran, “The impact of 5G on the evolution of intelligent automation
and industry digitization,” J. Ambient Intell. Humanized Comput., vol. 14,
no. 5, pp. 5977-5993, May 2023.

PAN RUUIIE was born in China, in 2000.
He received the Bachelor of Engineering degree in
process equipment and control engineering from
Northeast Petroleum University, China, in July
2020. He is currently pursuing the master’s
degree in communication engineering with the
Department of Computer and Communications
Systems Engineering, Universiti Putra Malaysia
(UPM). He completed the research project with
the help of his supervisor, Prof. Aduwati Sali.
In addition, he has participated in many training related to 5G advanced,
6G, EMF, radiation, and sustainability.

ADUWATI SALI (Senior Member, IEEE) received

the B.Eng. degree in electrical electronics engi-

neering (communications) from the University of

- Edinburgh, U.K., in 1999, the M.Sc. degree in

communications and network engineering from

A the Universiti Putra Malaysia (UPM), Malaysia,

| in April 2002, and the Ph.D. degree in mobile

and satellite communications from the University

L of Surrey, UK., in July 2009. She was an

Assistant Manager with Telekom Malaysia Bhd,

from 1999 to 2000. She was a Deputy Director with the UPM Research

Management Centre (RMC), where she was responsible for research

planning and knowledge management, from 2016 to 2019. She has been a

Professor with the Department of Computer and Communication Systems,

Faculty of Engineering, UPM, since February 2019. She was a recipient

of the 2018 Top Research Scientists Malaysia (TRSM) Award from the

Academy of Sciences Malaysia (ASM). She is involved with IEEE as

the Chair of ComSoc/VTS Malaysia, from 2017 to 2018, and as a

Young Professional (YP), in 2015. She is also involved with the Young

Scientists Network-Academy of Sciences Malaysia (YSN-ASM), as the

Chair, in 2018; and the Science Policy, as the Co-Chair, in 2017. She is also

a Chartered Engineer (C.Eng.) registered under U.K. Engineering Council

and a Professional Engineer (P.Eng.) under the Board of Engineers Malaysia
(BEM).

106510

LU LI was born in China. He received the Ph.D.
degree in wireless communications and networks
engineering from the Universiti Putra Malaysia.
a & He is currently an Associate Professor with the
| B : . .
v School of Microelectronics and Data Science,
—_— Anhui University of Technology. He is serving
- as an Executive Committee Member for the

IEEE Malaysia ComSoc/VTS Joint Chapter; and
“ a Researcher with the Wireless and Photonic Net-

work Research Centre of Excellence (WiPNET),
Universiti Putra Malaysia. Moreover, he is a Professional Technologist
in telecommunication and broadcasting technology awarded by Malaysia
Board of Technologists (MBOT). His research interests include wireless
and mobile communication, optical sensors, biomedical sensors, channel
estimation and propagation technology of mmWave, IoT systems, industrial
applications, peatland forests, fire prediction, and machine learning. He was
a recipient of some international honors, including, the Best Dissertation
Award presented by the IEEE Malaysia ComSoc/VTS Joint Chapter,
in 2022; the Gold Awards in Malaysia Technology Expo (MTE), in 2023;
and the 2022 Innovation Awards at Sepang District and Selangor State
(AINS2022) levels for the IoT-based system for peatland management
to avoid transboundary haze situation in ASEAN region. He is also
a collaborator for projects under international funding bodies, namely
the NICT Japan-ASEAN IVO, Asia—Pacific Telecommunity (APT), the
SEARCA University Consortium (UC) Seed Fund, and the National Natural
Science Foundation of China (NSFC) for Collaborative Research Grant.
Additionally, he has been invited to serve as a reviewer for many international
journals indexed by Scopus.

MUHAMMAD ZAMIR MOHYEDIN received
the Bachelor of Science (Hons.) and Master
of Science degrees in physics and the Doctor
of Philosophy degree in science from the Uni-
versiti Teknologi MARA (UiTM), Shah Alam,
Selangor Malaysia, in 2017, 2020, and 2023,
@ respectively. He was a Research Assistant with
UiTM, from 2017 to 2020. Then, he was a Doctoral
‘ ? Researcher from UiTM, from 2020 to 2023. He is
; currently a Postdoctoral Research Fellow with the
Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia
(UPM), Serdang, Selangor, Malaysia. He is also a prolific author that
has published nine books particularly in physics and science related. His
work, Genesis: Kosmologi and Dunia Kuantum (Patriots Asia, 2020) was
awarded as 50 Best Malaysian Titles for International Rights 2020/21.
His other work, The Human’s Complex (Patriots Asia, 2018) has been
translated into English and Korean. His research interests include medical
physics, radiation detection and measurement, bioelectromagnetic, optical
imaging, density functional theory (DFT), and materials synthesis and
characterizations. He has been a member of Malaysian Institute of Physics
(IFM) and Malaysian Solid-State Science and Society (MASS), since 2020.
He was a recipient of the Research Excellence Award from UiTM, in 2023,
for his doctoral project. He was also a recipient of the Short-Term Mission
(STM) Fellowship (BioEM), in 2025. As an active science communicator
through his social media, he has been invited by various local universities,
institutions, and government agencies to give talks about science and
technology. He is a regular contributor to media outlets, such as Selangorkini
(Media Selangor), Dewan Kosmik (DBP), and The Patriots.

SANGIN QAHTAN was born in Kurdistan, Iraq,
in 1997. She received the bachelor’s degree in
electrical and computer engineering from Duhok
University in Kurdistan, Iraq, in 2018, and the
M.S. degree from the Department of Computer and
Communication Systems Engineering, Faculty of
Engineering, Universiti Putra Malaysia (UPM),
Seri Kembangan, Malaysia, in 2021. Her research
interests include maximum RF-EMF exposure in
the 5G C-band and 5G mm Wave band.

VOLUME 13, 2025



