

UNIVERSITI PUTRA MALAYSIA

COMPUTATIONAL ANALYSIS OF INCOMPRESSIBLE VISCOUS FLOW OVER SINGLE AND MULTI-ELEMENT AIRFOILS

OMER ALI EL-SAYED

FK 2003 11

COMPUTATIONAL ANALYSIS OF INCOMPRESSIBLE VISCOUS FLOW OVER SINGLE AND MULTI-ELEMENT AIRFOILS

By

OMERALIEL-SAYED

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

March 2003

DEDICATION

TO

My parents, Carmen, Karim, Ali and Rayan For all their love and understanding

Abstract of thesis presented to senate of Universiti Putra Malaysia in fulfillment of the requirement to the degree of Master of Science

COMPUTATIONAL ANALYSIS OF INCOMPRESSIBLE VISCOUS FLOW

OVER SINGLE AND MULTI-ELEMENT AIRFOILS

By

OMER ALI EL-SAYED

March 2003

Chairman: Dr. Ashraf Ali Omar

Faculty: Engineering

The flow-field around a multi-element airfoil with leading-edge slat and

trailing-edge flap in landing configuration was performed as well as the prediction of

the time dependent flow over a NACA 0012 airfoil.

The two dimensional incompressible Navier-Stokes equations with a

numerical method based on the pseudo-compressibility approach was developed to

simulate viscous turbulent flow around single and multi-element airfoils. The

algorithm uses upwind-biased scheme of third order accuracy for the calculation of

the inviscid fluxes, while a second order central differencing is used for viscous

fluxes, the equations are solved using Lower-Upper Symmetric Gauss Seidel (LU-

SGS) scheme. The grids around multi-element airfoil are efficiently generated using

a multi-block structure technique.

iii

The Baldwin-Lomax algebraic turbulence model is used to consider the effect of turbulence. Computed results for the studied cases were compared with experimental data in terms of surface pressure and lift coefficients which show reasonable agreement.

Key Words: Multi-Element Airfoil, Pseudo-Compressibility, Confluent Boundary

Layer, Flow Separation, Baldwin-Lomax Turbulence Model

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Master Sains

ANALISIS PERKOMPUTERAN UNTUK ALIRAN LIKAT TIDAK MAMPAT MENGELILINGI AEROFOIL TUNGGAL DAN BERBILANG ELEMEN

Oleh

OMER ALI EL-SAYED

Mac 2003

Pengerusi: Dr. Ashraf Ali Omar

Fakulti: Kejuruteraan

Kapal terbang pengangkut menggunakan sistem julang tinggi untuk

memperolehi persembahan julangan yang maksima ketika pendaratan dan pecahan

julangan kepada seretan yang optimum ketika fasa pelepasan. Lapagan aliran

mengelilingi aerofoil berbilang elemen yang dilengkapi dengan bidai bahagian depan

dan kibas bahagian belakang dalam konfigurasi pendaratan akan dinilai. Dalam pada

itu, simulasi aliran bersandarkan masa mengelilingi "NACA 0012" aerofoil juga

disiasat.

Persamaan "Navier-Stokes" tidak mampat dua dimensi dengan kaedah

berangka berdasarkan cara kemampatan palsu akan dihasilkan untuk simulasi

berangka bagi aliran likat gelora mengelilingi aerofoil tunggal dan berbilang elemen.

Algoritma yang digunakan untuk perkiraan fluks tidak likat adalah berlandaskan

kaedah berbentuk "upwind-biased" dengan tiga kali ketepatan. Sementara itu,

"central-differencing" dengan dua kali ketepatan akan digunakan untuk fluks

likatnya. Akhirnya, keseluruhan persamaan akan diselesaikan dengan meggunakan

kaedah Lower-Upper Symmetric Gauss Seidel (LU-SGS). Selain itu, grid untuk airfoil berbilang elemen dihasilkan dengan menggunakan teknik struktur berbilang blok.

Secara praktiks, padang aliran likat bagi aerofoil berbilang elemen adalah kompleks di mana alirannya beralih menjadi gelora. Dalam penyelidikan ini, model "Baldwin-Lomax algebraic turbulence" digunakan untuk menilai kesan-kesan fenomena gelora. Keputusan simulasi bagi kes-kes yang dikaji, dibandingkan dengan data eksperimen dari aspek tekanan di permukaan dan pekali julangan di mana satu persetujuan yang baik diperolehi.

ACKNOWLEDGMENTS

Every praises is due to the Almighty Allah alone, the Merciful and peace be upon his prophet who is forever a torch of guidance and knowledge for humanity as a whole. First, I would like to thank Allah for giving me this opportunity and patience to carry out this research.

I would like to express my greatest gratitude and deep appreciation to my advisor, Dr. Ashraf Ali Omar for being so generous with his time and constructive criticism, his invaluable aid, and useful suggestions throughout the study. Thanks and appreciation is due to Associate Professor Dr. Waqar Asrar for his genuinely intelligent guidance and useful criticism. I must gratefully acknowledge the help and critical interest of Professor Dr. ShahNor Basri. Nevertheless, I should mention with great pride and gratitude the encouragement, support and guidance of my supervisory committee who followed with great interest and understanding the research from its beginning to the end. I strongly, believe that without their help and zeal, it would have been difficult to accomplish this task.

I would also like to thank the examination committee chairman Associate Professor Dr. Megat Mohamad Hamdan for his comments and suggestions to reassure the success of the study. I'm most grateful to Sudan University of Science and Technology for their co-operation and financial support conceded to my study. I'm also indebted to University Putra Malaysia (UPM) for granting me the admission and providing me with the necessary facilities to carry out this research. Great appreciation is also extended to all my colleagues and friends especially Mr. Mahmood K. Mawlood who has been wonderful in sharing his scientific knowledge and to all those who contributed directly and indirectly to the success of this study.

However, acknowledgements will be incomplete if it had not been for my parents who have devoted their life and efforts to us, who have showered on us their love and moral support unconditionally, and doubtless prayed everyday for our success and prosperity. Thanks also are extended to my brothers and sisters for their help and mutual understanding. Special thanks are extended to my loving wife Carmen, and adorable kids Karim and Ali for being my family and best friends in Malaysia. I owe them my love and gratitude for their patience, understanding, support and continuous encouragement especially in times of hardship and difficulties. Last but not the least, I take great delight to seize this opportunity to express my thankfulness for those I haven't mentioned, their precious co-operative and guidance had made the period of my study at UPM an unforgettable chapter in my life.

I certify that an Examination Committee met on 20th March 2003 to conduct the final examination of Omer Ali Elsayed on his Master of Science thesis entitled "Computational Analysis of Incompressible Viscous Flow Over Single and Multi-Element Airfoils" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be award the relevant degree. Members of the Examination Committee are as follows:

Megat Mohamad Hamdan, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ashraf Ali Omar, Ph.D.

Faculty of Engineering Universiti Putra Malaysia (Member)

Waqar Asrar, Ph.D.

Associate Professor Faculty of Engineering International Islamic University Malaysia (Member)

ShahNor Basri, Ph.D.

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2/4/03

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the supervisory committee are as follows:

Ashraf Ali Omar, Ph.D.

Faculty of Engineering Universiti Putra Malaysia (Chairman)

Waqar Asrar, Ph.D.

Associate Professor Faculty of Engineering International Islamic University Malaysia (Member)

ShahNor Basri, Ph.D.

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS Ph.D.
Professor/Dean

School of Graduate Studies Universtiti Putra Malaysia

Date: 12 JUN 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly, acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Omer Ali Elsayed

Date: 7/4/2003

TABLE OF CONTENTS

DEDICATABSTRATACKNOWN APPROVECLARTABLE COLIST OF TENSES	CT K WLEDGE AL ATION OF CONT TABLE FIGURES	ENTS S	Page ii iii v vii ix xi xii xv xvi xvi
СНАРТЕ	ER		
1	INTE	RODUCTION	1
	1.1	Overview	1
	1.2	Multi-element Airfoil	2
		1.2.1 Leading-edge Slat	2
		1.2.2 Trailing-edge Flap	3
	1.3	Multi-element Airfoil Problems	3
		1.3.1 Physical Aspects	4
		1.3.2 Confluent Boundary layer	5
		1.3.3 Massive Flow Separation	6
		1.3.4 Gap Effects	6
	1.4	Objectives	8
	1.5	Importance of This Study	8
	1.6	Thesis Layout	9
2	LITE	RETURE REVIEW	12
	2.1	Introduction	12
	2.2	Experimental Work	12
	2.3	Existing Numerical Methods	13
		2.3.1 Coupled Attached Flow Methods	13
		2.3.2 Coupled Separated flow methods	14
		2.3.3 Navier-Stokes Methods	14
		2.3.4 Inverse Design Methods	16
	2.4	Incompressible Versus Compressible	20
	2.5	Incompressible Navier-Stokes	20
		2.5.1 Solution Methods of Navier-Stokes	
		Equations	21
		2.5.2 Factorization and Relaxation	24
	2.6	Physical Brief History of Turbulence Modeling	25
		2.6.1 Algebraic Model	26
		2.6.2 One- Equation Model	27
		2.6.3 Two-Equations Model	27
		2.6.4 Second-Order Closure Model	28
	2.7	Turbulence Molding for Multi-Element Airfoils	28
	2.8	Grid Generation	30
		2.8.1 Unstructured Grid	31

	3.9	2.8.2 Structured Grids Closure	32 34
3	TWO	-DIMENSIONAL NAVIER-STOKES EQUATIONS	35
J	3.1	Governing Equation	35
	3.2	Non-Dimensional Form of the Governing Equation	36
	3.3	Transformation of Governing Equation	36
	3.4	Pseudo-compressibility Method	38
	3.5	Closure	41
4	SPA	CE DISCRETIZATION AND IMPLICIT SCHEME	42
	4.1	Introduction	42
	4.2	Numerical Algorithms	43
		4.2.1 Inviscid Flux Differencing	43
		4.2.2 Differencing of Viscous Flux Terms	45
	4.3	Implicit Scheme	47
		4.3.1 Pseudo-time Discetization	47
	4.4	LU-SGS Scheme	48
	4.5	Turbulence Modeling	50
		4.4.1 Baldwin-Lomax Turbulence Model	52
	4.6	Initial and Boundary Condition	53
		4.6.1 Wall Boundary	54
		4.6.2 Inflow and Outflow Boundary	55
		4.6.3 Line of Periodicity	56
		4.6.4 Line of Wake Cut	56
	4.7	Pseudo-Time Step	57
	4.8	Closure	58
5	FLO'	W AROUND AIRFOIL	60
	5.1	NACA 0012 Airfoil	60
	5.2	Grid Generation	60
	5.3	Results and Discussion	61
		5.3.1 Time History of Lift and Drag	61
		5.3.2 Lift and Drag Coefficient	62
		5.3.3 Pressure Distributions	63
		5.3.4 Stream Lines Pattern	64
	5.4	Closure	65
6		W AROUND MULTI-ELEMENT AIRFOIL	83
	6.1	Introduction	83
	6.2	Basic Calculation Model	84
	6.3	Grid Generation	85
	6.4	Results and Discussion	86
		6.4.1 Lift and Drag Coefficients	87
		6.4.2 Pressure Distributions	88
		6.4.3 Stream Lines Pattern	89
		6.4.4 Velocity Profile	90
	6.5	Comparison of Experimental and Computational	
		Results	91
	66	CFD Contribution in Design	02

7	CONCLUSIONS AND RECOMMENDATIONS	5
	FOR FURTHER RESEARCH	110
	7.1 Conclusions	110
	7.2 Recommendations for Further Work	111
	REFERENCES	112
	APPENDICES	125
	A Multi-Element Coordinates	125
	VITA	128

LIST OF TABLES

Table		Page
5.1	Comparison of the Numerical Solution with Experimental Data	65
6.1	Slat Coordinates Normalized by Chord Length	125
6.2	Flap Coordinates Normalized by Chord Length	126
6.3	Wing Coordinates Normalized by Chord Length	127

LIST OF FIGURES

Figure 1.1	Model Geometry and Nomenclature (Configuration(a),	Page 10
1.2	Nomenclature(b) Illustration of multi-Element Airfoil Problems	11
4.1	The Line of Periodicity of an O-Grid and Line of Wake-Cut for a C-Grid	59
5.1	Far View O-type Grid System (63x163)	66
5.2	Closer View of O-type Grid Generation around NACA 0012 Airfoil	67
5.3	Far View C-type Grid System (63x280)	68
5.4	Close View of C-type Grid Generation a round NACA 0012 Airfoil	69
5.5	Convergence History of C and O Type Grids at 4° and 10° angles of attack ($\alpha = 4^{\circ}$ (a), $\alpha = 10^{\circ}$ (b)	7 0
5.6	Time History Variation of Lift and Drag Coefficient of NACA 0012 Airfoil (Lift (a), Drag(b)	71
5.7	Lift and Drag Coefficients versus Angles of Attack at Re =1.6×10 ⁵ (C_l (a), C_d (b)	72
5.8	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p_{∞}) and Velocity Stream Lines Over NACA 0012 Airfoil at Re=1.6×10 ⁵ and -4° Angle of Attack.	73
5.9	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p_{∞}) and Velocity Stream Lines Over NACA 0012 Airfoil at Re=1.6×10 ⁵ and 0° Angle of Attack.	74
5.10	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p_{∞}) and Velocity Stream Lines Over NACA 0012 Airfoil at Re=1.6×10 ⁵ and 4° Angle of Attack.	75
5.11	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p_{∞}) and Velocity Stream Lines Over NACA 0012 Airfoil at Re=1.6×10 ⁵ and 8° Angle of Attack.	76
5.12	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p _∞) and Velocity Stream Lines Over NACA 0012 Airfoil	77

5.13	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p_{∞}) and Velocity Stream Lines Over NACA 0012 Airfoil	78
	at Re=1.6×10 ⁵ and 13° Angle of Attack.	70
5.14	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p _∞) and Velocity Stream Lines Over NACA 0012 Airfoil	79
	at Re=1.6×10 ⁵ and 15° Angle of Attack.	19
5.15	Chord Wise, Pressure Distribution (C_p) , Pressure Contours	
	(p/p _∞) and Velocity Stream Lines Over NACA 0012 Airfoil	0.0
	at Re=1.6×10 ⁵ and 18° Angle of Attack.	80
5.16	Chord Wise Pressure Contour (p/p _∞), NACA 0012 Airfoil at	
	Re= 7×10^5 and Varies Angles of Attack. ($\alpha = -4^\circ$ (a), $\alpha =$	
	0°(b), $\alpha = 4$ °(c), $\alpha = 8$ °(d), $\alpha = 10$ °(e), $\alpha = 13$ °(f), $\alpha = 13$ °(92
	$15^{\circ}(g), \alpha = 18^{\circ}(h)$	82
6.1	Far View 19C×15C C-type grid	94
0.1	rai view 190 ×150 C-type grid	74
6.2	Closer View of Grids around Three Element Airfoil	95
6.3	Convergence History	96
6.4	Lift and Drag Coefficients $(C_l(a), C_d(b))$	97
6.5	Distribution of Surface-pressure Coefficient on Three-element	
	Airfoil with $\alpha = 0^{\circ}$ and $Re = 9 \times 10^{6}$	98
6.6	Distribution of Surface programs Coefficient on Three element	
0.0	Distribution of Surface-pressure Coefficient on Three-element Airfoil with $\alpha = 8.109^{\circ}$ and $Re = 9 \times 10^{6}$	99
6.7	Distribution of Surface-pressure Coefficient on Three-element	100
	Airfoil with $\alpha = 16.3^{\circ}$ and $Re = 9 \times 10^{6}$	100
6.8	Distribution of Surface-pressure Coefficient on Three-element	
	Airfoil with $\alpha = 23.393^{\circ}$ and $Re = 9 \times 10^{6}$	101
6.9	Pressure Contours and Velocity Streamlines Traces Over	
	Multi-Element Airfoil at $\alpha = 0^{\circ}$ (pressure(a), velocity(b)	102
6.10	Pressure Contours and Velocity Streamlines Traces Over	1.00
	Multi-Element Airfoil at $\alpha = 8.109^{\circ}$ (pressure(a), velocity(b)	103
6.11	Pressure Contours and Velocity Streamlines Traces Over	
3.11	Multi-Element Airfoil at $\alpha = 16.3^{\circ}$ (pressure(a), velocity(b)	104
	<u> </u>	
6.12	Pressure Contours and Velocity Streamlines Traces Over	

	Multi-Element Airfoil at $\alpha = 23.393^{\circ}$ (pressure(a), velocity(b)	105
6.13	Pressure Contours Over Multi-Element at $\alpha = 0$ ° and 8.109 °	106
6.14	Pressure Contours Over Multi-Element Airfoil $\alpha = 16.30$ ° and 23.393°	107
6.15	Velocity Vectors around Multi-Element Airfoil	108
6.16	Velocity Profile around Multi-Element Airfoil	
	($\delta s = 30^{\circ} \delta f = 30^{\circ} \alpha = 8.109^{\circ} \text{ and } \text{Re} = 9 \times 10^{6}$)	109

NOMENCLATURE

A, B, C Jacobian matrix of convective flux vectors

ADI Alternating Direction Implicit

C Chord of the Airfoil

CFL Courant-Friedrichs - Lewy number

 C_i Lift coefficient

C_p Pressure Coefficient

 C_{ν} Side force coefficient

D Numerical dissipation term

D⁺ Backward difference operator

D Forward difference operator

E,F Inviscid flux vectors

 E_{v} , F_{v} Viscous flux vectors

I Identity matrix

J Jacobian

LU-SGS Lower-Upper Symmetrical-Gauss-Seidel

M Mach number

P Pressure

Q Vector of primitive variables

R Residual

 R_e Reynolds number

 $\Delta \tau$ Pseudo-time step

u, v, w Velocity

U, V, W Contra-variant velocity components

x,y Cartesian coordinate

Greek symbols

 α Angle of attack

β Pseudo-compressibility parameter

 ξ , η Generalized curvilinear coordinate

κ Constant

 λ Eigenvalue

 ρ Density

au Shear stress

υ Kinematic Viscosity

Subscripts

i, j Indices of body fitted coordinate system

lam. Laminar

max. Maximum

turbo. Turbulent

 ∞ Free stream condition

Note: other symbols are defined in the text.

CHAPTER 1

INTRODUCTION

1.1 Overview

Many technologies must be successfully integrated in the design of the next generation advanced subsonic transport. Among these are wing design, propulsion integration, design methodology and advanced high-lift systems. As subsonic transport designs get larger an issue such as airport tempo and noise abatement procedures become more important, the design of efficient high-lift systems becomes increasingly more important for improving the take-off and landing phase of the overall airplane mission. Additionally, improvements made in the design of the cruise wings also impact the design of the high-lift system. Recently developed wing design technology allows designers to develop more efficient wings than those that exist on current subsonic transports. The performance benefits gained by this technology can be used to perform trade studies to improve the overall aircraft system. One way designers exploit these benefits is to reduce the size of the wing (which can help reduce the cost of the aircraft). This reduced wing area means the high-lift system must work even harder to achieve the necessary levels of lift to meet takeoff and landing requirements. More efficient high-lift systems would allow designers to take advantage of these new cruise wing designs. Therefore, the understanding of and ability to analyze these multi element high-lift systems is a problem that must be solved in order to allow the aircraft designer to develop a high-lift system which meets the required performance levels while still designing a wing which is easily integrated into the airplane configuration.

1.2 Multi-element Airfoil

When an aircraft is landing or taking-off, high values of lift coefficient are required in order to maintain flight at the desired low speeds. It would be quite simple to design an airfoil with the much higher lift coefficient, for example by using much more camber than is commonly the case. Unfortunately, this would also greatly increase the drag of the airfoil, not only at high incidence (low speed), when extra drag is not necessarily a disadvantage, but also at low incidence (high speed), when it certainly is. The problem is solved by incorporating auxiliary devices which can be used to give increases in maximum lift coefficient when required at low speed operation, but which can be rendered ineffective at higher speed. These auxiliary devices fall broadly into two classes

- ❖ Those which alter the geometry of the airfoil(slat and flaps)
- ❖ Those which control the behavior of the boundary layer (boundary layer blowing, boundary layer suction ...etc.)

1.2.1 Leading-edge Slat

To appreciate qualitatively the effect of upstream element (the slat) on the immediate down stream element (the main airfoil) the former can be modeled by vortex. When one considers the component of velocity induced by vortex in the direction of the local tangent to the airfoil contour in the vicinity of the leading edge, the slat (vortex) acts to reduce the velocity along the edge of the boundary layer on the upper surface and has the opposite effects on the lower surface. Thus the effect of the slat is to reduce the

severity of the adverse pressure gradient on the main airfoil and the consequent reduction of the pressure on the upper surface is counter balanced by the rise in pressure on the lower surface. For the well designed slat/main airfoil combination it can be arranged that the latter effect predominates resulting in slight rise in lift coefficient. Leading edge slat Configuration and nomenclature for a three-element airfoil are shown in figure 1.1.

1.2.2 Trailing-edge Flap

Trailing edge flap control the behavior of the boundary layer by allowing the passage of air flow through the carefully designed gap from the high pressure region below the wing to the low pressure region above it. Thus energy is added to the boundary layer on the upper surface, and any tendency of separation of the flow is reduced. In other respects trailing edge flap alter the geometry of the aerofoil by deflecting the air stream downwards to give an increase in the effective camber of the wing as well as sliding backwards which in turns increases the area of the airfoil. Thus the lift increases whenever this is required and returns to the neutral position when this lift increment is not needed.

1.3 Multi-element Airfoil Problems

An accurate calculation of the flow over multi-element airfoils designed for use on transport airplanes is presently an unsolved problem, even though much progress has been made by code developers in industry and research centers. This may come as a surprise, since the flow is two dimensional and free-stream Mach numbers are low,

typically ranging from 0.1 to 0.4. Reynolds numbers of interest, based on velocity of an undisturbed uniform free-stream and airfoil reference chord, are usually between 1.2 to 40 million.

1.3.1 Physical Aspect

Butter and Williams (1980) studied the physics of multi-elements and showed the following list of flow features which are not found in cruise airfoils as in figure 1.2. The flow region surrounding multi-elements slotted airfoils is multiply connected, which complicate the topological laws governing viscous separated flows and even makes the calculation of inviscid flow a difficult task.

- Limited region of transonic flow may appear on the upper surface of the leading edge of highly loaded flapped airfoils, even though the free stream Reynolds number is low.
- Wakes of upstream airfoil elements often merge with boundary layers on the surfaces of down stream elements. The resulting turbulent shear layer is referred to as a confluent boundary layer.
- ❖ The region of viscous flow above the surface of trailing-edge flap is relatively thick, particularly in landing configurations, often resulting in flow separation even near normal operating conditions(i.e., well before maximum lift is attained).
- Stream line curvature and its effect on turbulent flow development are significant.

