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ABSTRACT The success of Machine Learning (ML) models in healthcare relies heavily on the quality of
data used. High-quality data are crucial for improving the predictive capabilities and the overall performance
of ML systems. Despite this, research on data quality in healthcare and ML remains limited, with varying
definitions of issues and dimensions across contexts. This study introduces a structured, expert-driven
framework for prioritizing data quality dimensions critical to ML performance in healthcare. In contrast
to performance evaluation studies involving machine learning algorithms or classifiers, this research does
not encompass the training or comparison of predictive models. It addresses a key gap in ML data control by
integrating ISO/IEC 25012 with Priestley’s classification and using the Analytic Hierarchy Process (AHP) to
evaluate 15 dimensions based on expert judgment. The findings identify Completeness (21.25%), Accuracy
(15.53%), Consistency (14.31%), Currentness (14.82%), and Precision (13.82%) as the most influential
dimensions for ML healthcare outcomes. A One-at-a-Time (OAT) sensitivity analysis with ±17.6% pertur-
bation confirms the robustness of prioritization despite expert input variability. Key contributions include: 1)
a tailored framework for ML healthcare data; 2) AHP-based dimension prioritization; 3) validation through
sensitivity testing; 4) insights into data quality’s impact on ML fairness and transparency; and 5) practical
guidance for data governance and resource allocation. Future work will apply this framework to clinical
datasets to validate its effectiveness in enhancing ML model performance and generalizability.

INDEX TERMS Data quality, machine learning, healthcare, data dimensions, predictive models, analytic
hierarchy process, sensitivity analysis.

I. INTRODUCTION
Technological advancements and the growing availability
of extensive datasets have propelled significant progress in
Machine Learning (ML). This rapid evolution has notably
impacted healthcare, offering unprecedented opportunities
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for innovation in clinical decision-making, patient manage-
ment, and disease prevention. Despite these advancements,
the success of ML models largely depends on the quality of
data employed for training and evaluation. High-quality data
are essential for developing robust models, while poor data
can significantly impair model performance. This reliance on
data quality is succinctly captured by the saying, ‘‘garbage in,
garbage out.’’ [1].
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In the healthcare domain, the use of ML systems is rapidly
increasing, with Electronic Health Record (EHR) databases
providing numerous opportunities for secondary application
of clinical data [2], [3], [4]. Such secondary applications
span educational initiatives, clinical research, quality assur-
ance, public health surveillance, resource allocation, and
various commercial activities [5], [6]. Recent research has
focused on aggregating EHR data and applying Artificial
Intelligence (AI) techniques to create models that support
decision-making, foster medical innovations, and achieve
diverse objectives [7], [8].

ML models are now common in biomedical research and
clinical practice. They support risk modeling, screening,
diagnosis, therapy-response prediction, prognosis, and inten-
sive care units (ICUs) mortality prediction [9], [10], [11].
However, the quality of training data affects the reliabil-
ity and performance of the models. Data deficiencies, such
as inaccuracies, incompleteness, and biases, can result in
flawed ML predictions, directly leading to harmful clinical
outcomes. Therefore, identifying and prioritizing the most
impactful data quality dimensions is essential to enhancing
ML reliability and protecting patient safety [12]. The success
of ML systems in healthcare relies heavily on the quality of
EHRs, which are crucial for enhancing clinical decisions and
improving patient care.

Despite extensive research on healthcare data quality,
a comprehensive understanding of the associated issues
remains elusive [13]. Although significant progress has been
made in applying ML to healthcare systems, a notable gap
persists in studies addressing diverse dimensions of data qual-
ity [14]. This gap makes it difficult to identify and resolve
data-quality challenges, highlighting the need for a struc-
tured approach to prioritize the most important dimensions.
Furthermore, inconsistencies in terminology across studies
exacerbate these challenges, complicating comparisons and
discussions of data quality dimensions and impeding the
resolution of specific issues [15], [16], [17], [18]. Resolving
these inconsistencies is essential for establishing a shared
vocabulary and developing effective strategies to improve
data quality in ML-driven healthcare.

Another challenge is the absence of a standard framework
to rank data-quality dimensions, which hampers healthcare
organizations’ ability to enhance ML outcomes. Previous
research often addresses single dimensions or provides broad
advice without identifying which dimensions are most impor-
tant for healthcare ML. This fragmented and incomplete
understanding highlights the urgent need for developing a
well-structured framework.We therefore introduce an expert-
driven, validated prioritization framework to guide resources
toward the most impactful areas. Such a framework would
help identify which data quality issues require immediate
attention and resources, supporting better decision-making
and more effective management of data quality challenges.
This research is guided by the following primary research
question:

• Which data quality dimensions should be priori-
tized to enhance the performance and reliability of
ML-driven healthcare systems?

To support this inquiry, the study explores the following
sub-questions:

• ‘‘How can the ISO/IEC 25012 data quality model be
effectively adapted and restructured to address the spe-
cific needs of ML applications in healthcare?’’

• ‘‘How can the AHP be used to prioritize these data
quality dimensions based on expert input systematical?’’

• ‘‘How reliable is the prioritization when evaluated using
a context-driven sensitivity analysis method based on
expert judgment variability?’’

These questions collectively delineate the scope of
this research and substantiate the chosen methodological
approach. They facilitate the development of a rigorous pri-
oritization framework specialized for ML-driven healthcare,
harmonizing technical performance requirements with sys-
tematic, expert-driven assessment. Eventually, this approach
will help focus on each data quality dimension directly and
organize its related issues. This ensures a more coherent, tar-
geted, and scientifically grounded initiative to enhance data
quality, thereby improving ML performance in vital fields
like healthcare systems.

Prior AHP/MCDM studies in healthcare usually focus on
choosing technologies or features, not data-quality dimen-
sions [70], [73], [78]. Likewise, research using AHP and
fuzzy AHP for data quality evaluation has mainly been
carried out in non-healthcare contexts, such as metadata
assessment in open data portals [75] or public sector data
analysis [77].
This study adopts the ISO/IEC 25012 standard [19], part of

the system and software quality requirements and evaluation
(SQuaRE) series of international standards, to standardize
terminology and systematically address associated issues.
This standard defines 15 data quality dimensions and is orga-
nized into three categories. Building on insights from Priest-
ley’s research on the data quality requirements for ML [20].
We restructured these 15 dimensions into four categories
(Intrinsic, Contextual, Representational, and Accessibility),
more aligned with ML applications, enabling greater clarity
and practical relevance. This reclassification improves align-
ment with ML-driven healthcare systems. Using the Analytic
Hierarchy Process (AHP), we structured these dimensions
and categories hierarchically: the top level prioritizes the
dimensions, the second level contains the categories, and
the third level lists the dimensions, facilitating systematic
evaluation and ranking of data quality challenges in ML.

The AHP-based approach highlights and prioritizes the
data quality dimensions for ML-driven healthcare systems.
This process establishes new benchmarks by minimizing
bias and laying the foundation for reliable ML applications.
To validate the stability of this prioritization, we conducted a
one-at-a-time (OAT) sensitivity analysis, a method frequently
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utilized to evaluate stability and reliability in Multi-criteria
Decision-making (MCDM) frameworks [21]. This study
applies a±17.6% perturbation to dimension weights, derived
from expert-derived pairwise comparison matrices based on
the standard deviation of aggregated group judgments at the
category level.

While this research is limited to theoretical validation
using expert input, our future studies will empirically apply
and deeply evaluate these prioritized dimensions on a real
healthcare dataset. Such implementation is expected to reveal
the direct influence of improved data quality on the predic-
tive model’s performance of ML-driven healthcare systems.
Incorporating systematic evaluations into regulatory approval
processes could accelerate the approval of ML technologies
and build trust in healthcare innovations.

This paper does not propose new ML algorithms nor
evaluate model performance metrics. Instead, it concen-
trates on prioritizing data quality dimensions through
decision-analytic techniques and experts’ inputs. Empirical
validation is beyond the scope of this study and is designated
for future research.

The remainder of this paper is organized as follows.
Section II highlights the novelty and key contributions of
this study. Section III provides preliminary knowledge and
defines the core data quality concepts. Section IV reviews
the related literature and background, establishes the research
context, and identifies gaps in existing studies. Section V
explains the methodology, including the adoption of ISO/IEC
25012 standards, re-categorization of data quality dimen-
sions, and application of the AHP. Section VI presents
the discussion and results, focusing on the prioritization
of dimensions and their implications for ML performance.
Section VII addresses contributions, limitations, and direc-
tions for future research. Finally, Section VIII concludes the
paper.

II. STUDY NOVELTY AND KEY CONTRIBUTIONS
This study establishes a systematic framework for prioritizing
data quality dimensions in ML-driven healthcare systems.
It addresses a critical gap caused by lacking a structured,
ML-specific model for evaluating data quality. By inte-
grating the ISO/IEC 25012 standard, a data quality model,
with Priestley’s categorization of ML-relevant data quality
dimensions, this study provides an adaptive model to address
the challenges and demands inherent in ML-driven health-
care environments. The ISO/IEC 25012 standard, initially
developed for traditional software systems, was strategi-
cally restructured into four ML-relevant categories (Intrinsic,
Contextual, Representational, and Accessibility) to enhance
clarity and alignment with healthcare ML requirements.

Expert evaluations conducted through detailed pairwise
comparisons by 14 experienced domain specialists in ML,
data quality, and healthcare systems substantially enhanced
the framework’s comprehensiveness and practical relevance.
The AHP provided methodological rigor and precision in
ranking and prioritizing the 15 identified dimensions. Addi-

tionally, the robustness of the AHP-based prioritization was
rigorously validated through a sensitivity analysis employing
the OAT perturbation technique, involving ±17.6% adjust-
ments derived from expert judgments.

The outcomes revealed a distinct prioritization bound-
ary, marked by a significant 9.7% gap between the fifth-
and sixth-ranked dimensions, Precision and Efficiency. This
gap demonstrates strong expert consensus around the top
five dimensions: Completeness, Accuracy, Consistency, Cur-
rentness, and Precision. These five dimensions consistently
maintained their positions among the top ranks across all
120 sensitivity analysis scenarios, reflecting high stability
and resilience to variations in expert input.

Meanwhile, the middle-level dimensions exhibited moder-
ate ranking changes but did not exceed the fifth rank, while
the lowest-level dimensions remained entirely unchanged
across all scenarios. This differentiated behavior reinforces
the reliability of the proposed prioritization and supports a
tiered approach to improving data quality.

These findings provide empirical justification for focused
investment in the top-priority dimensions and high-
light the framework’s robustness as a generalizable and
decision-supportive tool. Furthermore, this study con-
tributes a validated reference point for future ML-driven
healthcare systems seeking reliable, interpretable, and
performance-focused data quality interventions by isolating
sensitivity-tested, high-impact dimensions.

Key contributions include:

• Establishing the first structured and expert-validated
prioritization framework for ML-driven healthcare data
quality needs.

• Developing an adaptive framework that explicitly aligns
data quality dimensions with the requirements of
ML-driven healthcare systems.

• Clarifying and standardizing terminology facilitates
consistent and meaningful comparisons across studies,
enabling more effective data quality evaluations.

• Providing actionable insights for healthcare organiza-
tions to enhance data quality and directly improve ML
model accuracy, reliability, and interpretability.

• Establishing a methodology for addressing multifaceted
data quality issues, bridging theoretical gaps, validating
the stability of prioritized dimensions, and offering prac-
tical guidelines for future implementation.

• Introducing a sensitivity-confirmed prioritization thresh-
old that distinguishes the top five critical data quality
dimensions, ensuring strategic focus for resource allo-
cation in healthcare ML applications.

• Demonstrating the robustness of AHP-based prioriti-
zation under expert uncertainty using a validated OAT
perturbation method, supporting reproducibility and
reliability in real-world settings.

This research lays the foundation for future studies, setting
a benchmark for data quality evaluation in ML applications
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and paving the way for more hardy and efficient healthcare
solutions.

III. PRELIMINARY KNOWLEDGE
This section clarifies the essential data quality concepts vital
for understanding their impact on the performance of ML
models in sensitive areas such as healthcare. It lays the con-
ceptual groundwork for the development and prioritization
framework presented in this study and supports the reader in
contextualizing the methodological decisions.

• Data Quality: It refers to the data state defined by var-
ious attributes that assess its suitability for operational
use, decision-making, and strategic planning. According
toWang and Strong [17], data quality is characterized by
‘‘fitness for use,’’ highlighting the importance of eval-
uating data against its intended purpose to ensure that
it meets specific application needs. High data quality
is essential in healthcare settings, where incorrect or
incomplete data can lead to life-critical decision errors.

• Data Quality Dimensions: These specific and measur-
able characteristics define the quality of data, such as
accuracy, consistency, and other relevant dimensions.
These dimensions break down data quality into action-
able components, enabling the precise identification of
areas that require improvement to enhance data per-
formance [22]. These serve as evaluation criteria to
determine if the data is sufficient for use.

• Data Quality Categories: Data quality can be catego-
rized to illustrate how data dimensions are managed,
handled, and utilized. These categories encompass vari-
ous aspects of data quality assessment and improvement,
reflecting the different ways in which data can be struc-
tured and maintained [23]. Effective data management
involves assessing data content’s relevance to user needs
and expectations.

• Data Quality Issues: Issues regarding data arise when
they fail to meet standards set by relevant dimensions
or categories. Common problems include inaccuracies,
missing values, inconsistent formatting, and outdated
information [24]. Such issues can introduce noise, bias,
or inefficiency into ML models, severely limiting their
predictive performance and reliability. Addressing these
issues is crucial for improving the data quality, thereby
enhancing the accuracy and effectiveness of models
and analyses based on data [25]. Addressing data qual-
ity challenges is vital for maintaining model reliability
and ensuring accurate analytical results. Recent reviews
have emphasized the significant impact of data issues,
such as missing data and imputation strategies, high-
lighting the broader implications of data completeness
and quality on predictive model performance [26].

To establish a solid foundation for improving data quality
in ML-driven healthcare systems, this study operationalized
these concepts through a structured literature review and
applied the AHP to evaluate the relative importance of each

dimension. This study enables future targeted improvements
in data management strategies by proposing a framework
grounded in established standards and validated through
expert judgment. Addressing these fundamental principles is
a prerequisite to enhancing the performance, interpretability,
and safety of ML models deployed in real-world healthcare
environments.

IV. LITERATURE REVIEW AND BACKGROUND
This section covers the core concepts, recent developments,
and key methodological trends at the intersection of ML and
healthcare. It situates the current research within the broader
academic discourse by analyzing a diverse body of literature
that explores data quality dimensions, ML model reliability,
and decision-making frameworks. While prior studies have
offered valuable insights, many have tackled data quality in
a fragmented or narrowly focused manner, often addressing
isolated issues or specific ML applications without providing
a unified prioritization strategy.

This study employs a structured, holistic approach to
address fragmentation by integrating the AHP. This provides
a way to rank data quality dimensions, highlighting critical
attributes to improve ML performance in healthcare. Unlike
previous methods lacking quantifiable prioritization, it offers
a transparent, expert-driven evaluation.

This review synthesizes prior work’s key conceptual
challenges and themes, merging theory with practice. It sum-
marizes established findings and offers a cohesive framework
for enhancing ML outcomes through targeted data quality
improvements. Combining rigor with relevance, it builds on
existing literature while addressing critical gaps.

A. MACHINE LEARNING IN HEALTHCARE
The adoption of ML in healthcare has emerged as a ground-
breaking development that harnesses advanced computa-
tional capabilities and extensive datasets to transformmedical
practices. Early predictive models, such as the Framingham
risk score introduced in 1967, set the stage for sophisticated
algorithms used today [27]. Furthermore, AI plays a pivotal
role in medical imaging, assisting in diagnostics and empha-
sizing its essential contribution to contemporary healthcare.

ML applications also extend to EHRs, where they pro-
duce valuable insights that improve patient risk-scoring
systems, forecast disease onset, and optimize hospital oper-
ations [28]. As these systems process increasing volumes
of data, their algorithms evolve, resulting in continuous
improvement in healthcare applications. Building on this
progress, recent studies have introduced methods to maintain
and enhance the quality of medical drug data by leveraging
clustering techniques within a data lake environment. This
approach optimizes data utility for medical decision-making
by offering alternative drug recommendations for patient
needs [29], [30]. Alzyadat et al. [31] highlight clustering tech-
niques to uncover hidden relationships in structured datasets,
facilitating more efficient decision-making processes. Inte-
grating k-means clustering with data pre-processing methods

158060 VOLUME 13, 2025



A. M. Al-Hgaish et al.: Robust Prioritization Framework of Data Quality Dimensions

improved the interpretability and stability of drug-related
datasets and advanced healthcare analytics.

ML addresses toxicity-related challenges in drug deliv-
ery systems by proposing a GAN-augmented CNN model
capable of generating synthetic microscopic images to train
toxicity classification systems. This innovation was designed
to identify toxic nanocarriers during controlled and targeted
drug delivery, effectively addressing the limitations posed by
scarce experimental datasets [32].

Recent advances in healthcare decision-making have
utilized sophisticated decision-making frameworks. For
instance, Akhtar et al. developed a novel IoT-basedmethodol-
ogy using fractional fuzzy Hamacher aggregation operators,
enhancing the precision and reliability of healthcare selection
processes through aggregation techniques [33]. This trend
highlights the increasing complexity and precision required
in healthcare-related decision support systems.

AI models achieved over 91% accuracy in diagnosing
lung diseases from chest X-rays using preprocessing, seg-
mentation (LinkNet), and CNN classifiers like DenseNet201,
demonstrating ML’s potential for quick, dependable respira-
tory screening [34]. Similarly, Al-Yousef et al. enhanced early
breast cancer detection with a fusion ofMFFNN, LDA, SVM,
and KNN via majority voting, improving diagnostic accu-
racy in BI-RADS mammography systems [35]. AI and ML
have improved predictions for health emergencies, disease
conditions, and immune responses. Despite some skepticism
regarding their practical applications and interpretations, the
use ofML in healthcare is rapidly expanding [36]. The advent
of platforms such as PyTorch, DeepLearning4J, TensorFlow,
and Keras has facilitated the development and application
of these algorithms, making them increasingly accessible
for various clinical purposes [37]. ML’s capabilities extend
beyond diagnostic support and enhance decision-making pro-
cesses. AI applications have improved case triage, image
scanning and segmentation, and disease risk prediction [38],
[39], [40]. In addition, AI techniques uncover complex rela-
tionships within medical data that are challenging to express
using traditional methods [41].
Hybrid algorithms have demonstrated remarkable effi-

cacy in improving disease prediction. A multilayered hybrid
algorithm (MLHA) combining supervised and unsupervised
learning techniques, such as SVM, random forest, and k-
means clustering, integrated with XGBoost in a two-layer
architecture, achieved superior accuracy in Type II dia-
betes classification. This demonstrates the potential of hybrid
ML systems to address complex medical-prediction chal-
lenges [42].
ML contributes to clinical decision making while reinforc-

ing the principles of evidence-based medicine. By identifying
hidden risk factors and gaps in healthcare, ML improves the
precision of risk scores and assists the healthcare sector in
managing risks more effectively [43], [44]. This technology
enables the integration and analysis of larger datasets and
supports decision-making processes with minimal human
intervention. However, the application of ML in healthcare

presents several challenges. A major hurdle is the availability
of high-quality training and testing data sets. Accurate and
reproducible ML predictions depend on large and reliable
datasets. Healthcare data often suffer from issues such as
incompleteness, heterogeneity, and an imbalance between
data richness and sample sizes, which complicate the devel-
opment and interpretation of ML models. These challenges
must be addressed carefully because of the sensitive nature
of healthcare data [28]. As ML continues to advance in
the healthcare sector, it promises more rapid diagnosis and
improved patient care. However, the field must overcome the
complexities related to data quality and algorithmic reliability
to fully harness ML’s potential for ML in healthcare, which
is partly addressed in this research.

B. DATA QUALITY IN ML-DRIVEN HEALTHCARE SYSTEMS
The quality of training data is vital for the efficiency, accu-
racy, and complexity of ML-driven healthcare tasks. Poor
data quality can cause faulty conclusions and reduce AI
effectiveness, which relies on large datasets for model devel-
opment. ML has the potential to greatly improve patient care
by enhancing diagnostics, optimizing treatments, and stream-
lining administrative tasks [45]. However, despite improving
MLmodels, a significant gap exists in enhancing data quality.
A thorough understanding of the dataset is essential for its
effective utilization; insufficient comprehension can lead to
inaccurate analyses and unreliable decision-making. Recent
research highlights the negative impact of biased data on
research outcomes. Biases in EHR data can distort ML and
AI models, resulting in skewed results that adversely affect
patient care [46], [47]. Such biases can lead to incorrect
risk assessments or treatment recommendations [48], [49],
perpetuating systemic disparities in healthcare at individual
and population levels. Addressing these biases requires a
structured framework that focuses on data quality, which is
critical for ML-driven healthcare systems [50], [51]. Bias
in EHR data highlights broader data quality issues that can
arise from errors in data entry, documentation inaccuracies,
problems with EHR software, or barriers to accessing care.
EHR data often encompasses a wide range of elements,
including laboratory results, vital signs, demographics, medi-
cations, and medical history [52], [53]. Healthcare data often
exhibit a range of challenges, including heterogeneity, tem-
poral variations, spatial variations, sparsity, incompleteness,
noise, irregularities, and inaccuracies [54].

One prevalent issue in clinical research is missing data,
which occurs when variable values are not recorded for every
subject. Common strategies for handlingmissing data include
complete-case analysis, in which missing data records are
excluded from the analysis, and mean imputation, in which
the average of the available data substitutes missing values.
However, these techniques can introduce biases [55]. Missing
data can be categorized into three types: ‘‘missing completely
at random,’’ where the probability of missing data is unre-
lated to any measured or unmeasured variables; ‘‘missing at
random,’’ where the likelihood of missing data is related to

VOLUME 13, 2025 158061



A. M. Al-Hgaish et al.: Robust Prioritization Framework of Data Quality Dimensions

observed variables but not to the missing values themselves;
and ‘‘not missing at random,’’ where the probability of miss-
ing data is related to the unobserved value itself [56].
The growing complexity of healthcare datasets, fueled by

advancements in memory and computing power, presents
additional challenges. Datasets often become imbalanced
because of the prevalence of rare events among numerous
cases in the majority class, compounded by the multiclass
nature of clinical problems and various diagnosis codes. Inter-
disease heterogeneity further complicates dataset analysis.
This bias towards the majority class can adversely impact
ML training models, potentially leading to suboptimal care
for patients in minority classes [57].

Moreover, outliers in the healthcare data pose significant
challenges. ML algorithms designed to detect unusual physi-
ological readings can facilitate rapid emergency intervention
and provide new insights into health conditions. For instance,
Edin [58] assessed five ML algorithms, including two unsu-
pervised and three supervised techniques, for their ability to
identify anomalies in heart-rate data.

The diversity of healthcare data stems from the complex
and varied nature of the information generated by medical
services and research activities. The continuous evolution of
medical terminology, the extensive volume of data produced
through automated processes, and the need for thorough data
analysis to support decision-making emphasize the critical
role of effective health system computerization and knowl-
edge management [59].

Data quality encompasses multiple concepts, including
accuracy, validity, reliability, completeness, readability, time-
liness, accessibility, and confidentiality [15], [60]. It can
be compromised at various stages, such as data collection,
coding, and standardization, and is affected by a range of
technical, organizational, behavioral, and environmental fac-
tors [61]. Problems such as manual processes, data diversity,
duplication, and data collection and processing errors can
render health data inadequate for researchers, administra-
tors, and healthcare professionals [62]. Maintaining high data
quality is vital for supporting informed decision-making,
enhancing service delivery, and producing reliable health
status evidence, improving patient care [63]. Inadequate data
quality can adversely affect continuity of care [64], patient
safety [65], and research outcomes [66].

C. DIMENSIONS AND CATEGORIES OF DATA QUALITY IN
ML-DRIVEN HEALTHCARE
This study utilized the ISO/IEC 25012 standard from
the SQuaRE series to address data quality challenges in
ML applications within healthcare. This internationally
recognized standard offers a comprehensive framework
and detailed quality dimensions, including Accuracy
(ACCY), Credibility(CRD), Traceability (TRC), Com-
pleteness (CMP), Currentness (CUR), Efficiency (EFF),
Understandability (UND), Consistency (CON), Precision
(PRC), Recoverability (RCV), Availability (AVL), Portability

(PORT), Accessibility (ACCS), Confidentiality (CONF), and
Compliance (COMP) [19]. This standard provides a model
for assessing the data quality in various technological con-
texts.

The ISO/IEC 25012 model was chosen because of its
broad acceptance and proven effectiveness in standardizing
data quality dimensions, which are crucial for the success
of ML models in various healthcare applications. Poor data
quality can severely impact ML system performance, leading
to inaccurate predictions and suboptimal clinical decisions
[67], [68].

Despite advancements in ML technologies, there is a
notable gap in comprehensive studies that address data qual-
ity dimensions. The variability in terminology across existing
studies complicates the comparisons and understanding of
these dimensions, leading to confusion and inconsistencies in
their applications [15], [16], [17], [18] Employing ISO/IEC
25012, this study aims to clarify these terminologies and
provide a standardized framework for effectively prioritizing
critical data quality dimensions.

To refine our approach further, we integrated Priestley’s
classification [20], which categorizes data into four distinct
categories: Intrinsic (INT), Contextual (CTX), Representa-
tional (REP), and Accessibility (ACC). This classification is
relevant to the complexities of ML applications in healthcare
in terms of handling data quality issues.

• Intrinsic: This category focuses on data accuracy, origin,
and cleanliness, emphasizing the true value, traceability,
and error-free state of data. This is essential for ML
applications where data lineage and auditability are cru-
cial for interpreting and verifying ML outcomes.

• Contextual: Pertains to the relevance and appropriate-
ness of data for its intended use in specific healthcare
ML tasks. It examines whether the data is suitable, com-
plete, timely, or relevant.

• Representational: This area focuses on how data are
presented, ensuring clarity, interpretability, and stan-
dardization across different systems.

• Accessibility: This encompasses the ease of data access
and use underpinned by security and legal frameworks
to ensure data protection and privacy compliance.

The incorporation of the ISO/IEC 25012 standard, along
with the adapted classification from Priestley, enables a thor-
ough evaluation of the data quality dimensions that are crucial
for the effective operation of ML systems in healthcare. This
approach, combined with AHP, allows for methodological
assessment and prioritization of the importance of these
dimensions. Table 1 presents the categories of data quality
dimensions distributed across the 15 ISO/IEC 25012 dimen-
sions.

D. THE ANALYTIC HIERARCHY PROCESS (AHP)
Developed by Thomas L. Saaty in the 1970s, AHP is a
systematic mathematical framework for solving complex
decision-making problems [69] It functions by organizing

158062 VOLUME 13, 2025



A. M. Al-Hgaish et al.: Robust Prioritization Framework of Data Quality Dimensions

TABLE 1. Categorization and description of data quality dimensions
adapted for ML-driven healthcare systems.

decisions into a hierarchical structure of goals, criteria, sub-
criteria, and alternatives. AHP’s power lies in its pairwise
comparison method, which converts qualitative judgments
into quantitative values, thereby streamlining the decision-
making process.

Recently, the AHP has been increasingly recognized for its
significance in healthcare, where complex decision-making
processes are multifaceted. This assists decision-makers
in prioritizing health policies and allocating resources to

manage healthcare services effectively [70], [71], [72]. Fur-
thermore, the selection of ML algorithms, a critical aspect of
advancing healthcare technologies, has also benefited from
the structured decision-making provided by AHP [73].

The relevance of AHP extends to the realm of ML in
healthcare, particularly in optimizing algorithms and model
selection. By applying AHP, researchers can prioritize vari-
ous features and parameters in ML models, ensuring that the
most significant predictors of health outcomes are consid-
ered [74]. This is particularly useful in scenarios where the
dimensions of data quality must be assessed and ranked to
improve the performance of the predictive models.

The applicability of AHP extends beyond healthcare,
impacting various sectors such as the semiconductor industry
and public sector data intelligence. Research has utilized
AHP, including its variants such as fuzzy AHP, to evaluate
metadata quality in open data portals, assess data quality
dimensions in the semiconductor sector, and identify suc-
cess factors for implementing data intelligence in the public
sector. These diverse applications emphasize AHP’s adapt-
ability in handling uncertain and imprecise data and its ability
to enhance decision-making by prioritizing crucial elements
such as project management, information systems, and data
quality [75], [76], [77].
Moreover, AHP has proven valuable in strategic prioriti-

zation across AI-related fields. For example, a recent study
used AHP to identify and rank critical factors in AI-driven
drug discovery, demonstrating its effectiveness in handling
complex multi-criteria decisions involving algorithm perfor-
mance, interpretability, and data quality [78]. These studies
reflect the increasing adoption and methodological rigor of
structured MCDM techniques like AHP in decision-intensive
areas such as healthcare and ML.

E. SENSITIVITY ANALYSIS IN PRIORITIZATION
FRAMEWORKS
Sensitivity analysis validates decision-making frameworks
like AHP by assessing how small input changes affect cri-
teria rankings, such as expert comparisons. This procedure is
integral in high-risk applications like ML-driven healthcare,
where decision accuracy directly impacts clinical outcomes.

In high-risk environments like healthcare, even minor
weight changes assigned by experts can alter the prioritized
criteria, which may affect the accuracy of predictive models.
Research has shown that minor adjustments in the weights of
top-level categories can influence the ultimate criteria rank-
ing [79], [80], [81]. These findings confirm that sensitivity
analysis is essential for ensuring the reliability of prioritiza-
tion outcomes, particularly when frameworks are built upon
expert input, which may naturally vary due to subjective
perspectives or domain-specific knowledge.

Recent studies emphasize the necessity of sensitivity test-
ing in fuzzy and MCDM models. For instance, Alballa et
al. [82] incorporated sensitivity analysis into an enhanced
CODAS method to assess the model’s stability under various
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weight scenarios, demonstrating its effectiveness in loca-
tion decision-making. Similarly, Rahim et al. [83] utilized a
quasi-rung orthopair fuzzy COPRAS model and conducted
weight variation analysis to validate the outcomes of supplier
selection. These contributions highlight sensitivity analysis
as a crucial validation step in prioritization frameworks,
highlighting its significance in confirming the reliability and
consistency of results across different domains.

In line with these established practices, recent advances in
methodological research [84], [85], [86] have recommended
the use of the OAT perturbation method as a preferred and
effective sensitivity analysis technique within the context of
AHP. This method involves an organized process where one
weight input is individually modified at a time, while simulta-
neously adjusting the other weights proportionally to ensure
that the sum of weights remains unchanged. This process
allows researchers to assess how isolated changes in a single
input affect rankings. This structured perturbation enhances
transparency by revealing the decision process under different
uncertainties, aiding in model validation and testing.

These studies demonstrate that integrating sensitivity anal-
ysis is the best practice and a crucial step in modern
prioritization methods. It enhances severity through system-
atic assessment of result stability and reliability. Moreover,
it improves transparency in expert-driven decisions, assisting
stakeholders in understanding the impact of weights and
assumptions. Eventually, this practice promotes more trust-
worthy and practical solutions, especially in critical fields like
healthcare, logistics, and intelligent systems, where precision
and transparency are crucial.

V. METHODOLOGY
This study employed the AHPmethodology to rank and prior-
itize data quality dimensions critical to ML-driven healthcare
systems. The process began with identifying and structur-
ing relevant data quality dimensions based on the ISO/IEC
25012 standard, ensuring a comprehensive and interna-
tionally recognized foundation. Subsequently, the selected
dimensions were reorganized into application-specific cat-
egories tailored to meet the needs of ML applications in
healthcare. Finally, AHP was used to gather expert input,
assess consistency, compute local and global weights, and
produce a final prioritized ranking of dimensions based on
their evaluated significance.

To confirm the robustness of these rankings and mitigate
potential bias from expert subjectivity, a sensitivity analysis
was conducted using the OAT perturbation method. This
approach evaluated the stability of dimension rankings under
±17.6% variations in category-level weights, validating the
reliability of the prioritization framework under realistic
uncertainty.

Figure 1 presents an overview of the proposed methodol-
ogy flowchart that encapsulates the key stages and processes
involved in achieving the research objectives. The stages are
organized as follows:

FIGURE 1. Flowchart of the AHP-driven data quality dimension
prioritization methodology and sensitivity validation.

A. FOUNDATION AND CONTEXTUAL ANALYSIS
1) LITERATURE REVIEW
An in-depth examination of existing studies, data quality
dimensions, and models was conducted to identify suitable
data quality dimensions for ML-driven healthcare systems.
This process involved analyzing recent research efforts to
understand how AHP and sensitivity analysis have been uti-
lized in prioritization tasks across various fields, including
healthcare, AI systems, supplier selection scenarios, etc. The
review aimed to identify methodological gaps and limitations
in current practices. Furthermore, it emphasized the signifi-
cance and relevance of the approach taken in this study by
illustrating how similar techniques have been applied and the
challenges encountered in various contexts. This thorough
examination provided a strong foundation for the study’s
methodology and highlighted the current research on data
quality prioritization in complex systems.

2) SELECTION OF ISO/IEC 25012
This study selected data quality dimensions based on the
ISO/IEC 25012 model, which provides a comprehensive
framework for evaluating data quality. Since a specific
model for data quality in ML applications has not yet been
developed, ISO/IEC 25012 is a foundational reference for
identifying and prioritizing the essential dimensions affecting
ML-driven models in healthcare settings. All 15 dimensions
of ISO/IEC 25012 were retained to ensure comprehensive
coverage of the domain. These dimensions formed the basis
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for a structured expert evaluation and subsequent prioritiza-
tion using AHP.

3) RE-CATEGORIZATION OF DATA QUALITY DIMENSIONS
This study focuses on the structured organization of data
quality dimensions into pertinent categories. The founda-
tional work by Priestley et al. [20] We identified four main
categories of data quality requirements suitable for ML
applications and customized these categories to address the
demands of ML-driven healthcare systems: intrinsic, contex-
tual, representational, and accessibility.

This re-categorization was instrumental in establishing the
hierarchical structure needed by the AHP technique and
enabled subsequent testing through category-based pertur-
bations. This adaptation is important because it enhances
effective data management and utilization, particularly in
predictive tasks. Furthermore, it serves as a functional bridge
between traditional data quality standards and the evolving
needs of ML systems. Figure 2 displays these categories
and their corresponding dimensions, offering a systematic
approach to structuring data quality dimensions.

FIGURE 2. Categories of data quality dimensions.

B. ANALYTIC HIERARCHY PROCESS (AHP) FRAMEWORK
DEVELOPMENT AND DIMENSION EVALUATION
In these stages, we employed the AHP to prioritize and
rank the importance of data quality dimensions. The pri-
mary objective was to establish a validated and expert-driven
ranking that reflects the dimensions’ relative importance in
ML-driven healthcare applications. Figure 3 depicts the AHP
methodological steps, which are elaborated in the following
subsections.

FIGURE 3. Steps of the AHP methodology.

1) HIERARCHY DEVELOPMENT AND PROBLEM STRUCTURE
This step involves constructing an appropriate hierarchical
structure for the AHP, which includes defining the objectives,

TABLE 2. The scale of importance for pair-wise comparisons [87].

criteria, and sub-criteria. In this study, AHP methodology
was employed to prioritize and rank the data quality dimen-
sions. Consequently, the hierarchy created features, such as
the overarching objective, various categories (criteria), and
specific dimensions (sub-criteria).

The primary goal of employing AHP is to prioritize and
rank the data quality dimensions relevant to ML-driven
healthcare systems. Within this structure, the top level repre-
sents the main goal, the second level includes the categories,
and the third level lists the individual data quality dimensions.
The hierarchical arrangement used in this study is illustrated
in Figure 4.

FIGURE 4. Structure of the AHP hierarchy for prioritizing data quality
dimensions in ML-driven healthcare systems.

2) AHP QUESTIONNAIRE DEVELOPMENT
In this step, academic experts conducted pairwise compar-
isons between categories and dimensions of ML applications
in healthcare settings. To assign the pair-wise comparison
values, a nine-point scale ranging from ‘‘1. This is equally
important’’ to ‘‘9. This is extremely important,’’ as shown in
Table 2.

This study developed a questionnaire utilizing Saaty’s
nine-point scale [87] to facilitate pairwise comparison
assessments. The questionnaire was divided into five sec-
tions: the first addressed pairwise comparisons between
categories, whereas the remaining four focused on pair-
wise comparisons and evaluations among different dimen-
sions. Appendix presents the AHP questionnaire used in
the study.
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TABLE 3. Expert panel profile and affiliation.

3) DECISION-MAKERS JUDGMENT
The questionnaire was distributed to experts from diverse
academic institutions to collect their perspectives on the
importance of data quality dimensions in ML applications
and healthcare. Among the recipients, 14 experts with expe-
rience in ML, data science, and healthcare systems provided
comprehensive responses. This collective expertise ensures
a well-rounded evaluation of data quality dimensions, con-
sidering all relevant aspects of the data quality challenges
in ML-driven healthcare systems. Given that AHP is not a
statistical technique, it does not require a statistically signif-
icant sample size, as adopted from [88]. AHP is designed
to concentrate on the decision-making process rather than
the demographic representativeness of the respondents [89].
Shrestha et al. [90] noted that AHP does not require large
sample sizes, because it targets knowledgeable individuals in
the relevant area. Table 3 outlines the detailed professional
profiles, institutional affiliations, and areas of specializa-
tion of the experts who participated in the evaluation. Their
diverse geographical representation and multidisciplinary
backgrounds, including data quality, ML, and health infor-
matics, enhance the robustness and generalizability of the
findings.

4) DEVELOPING THE PAIRWISE COMPARISON MATRICES
Using the expert feedback gathered through the question-
naire, pairwise comparison matrices were developed for the
categories and dimensions. In these matrices, comparisons
between two categories or dimensions are represented using

integer values according to Saaty’s nine-point scale (see
Table 2). When a category or dimension in a row i is deemed
more significant than the one in column j, a corresponding
integer value aij is assigned based on the level of importance.
Its reciprocal, aji =

1
aij
, is placed in the symmetric position,

reflecting inverse importance.When two categories or dimen-
sions have equal importance, both aij and aji are assigned
a value of 1. Moreover, all diagonal elements (aii) are also
set to 1, as each category or dimension is equally important
when compared to itself. Thus, each pairwise comparison
matrix is a positive reciprocal matrix. The general structure
of a pairwise comparison matrix A =

[
aij
]
is represented as

follows:

A =
[
aij
]

=


1 a12 · · · a1m
a21 1 · · · a2m
...

...
. . .

...

am1 am2 · · · 1



=


1 a12 · · · a1m

1/a12 1 · · · a2m
...

...
. . .

...

1/a1m 1/a2m · · · 1


where:
A is the pairwise comparison matrix.
m represents the number of categories or dimensions being

compared.
aij is the relative importance value of dimension or cate-

gory i overdimension or category j, as judged by experts.
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TABLE 4. Random indexes for random matrices [87].

aji is the reciprocal of aij and represents the inverse impor-
tance.

This reciprocal relationship is formally expressed as:

aji = 1/
aij; i, j = 1, 2, · · ·m. (1)

5) CONSISTENCY OF PAIRWISE COMPARISON MATRICES
Evaluating the consistency of expert judgments is critical
to ensuring reliable prioritization. Saaty [87] developed a
consistency measure known as the Consistency Index (CI),
which quantifies the logical coherence of pairwise compari-
son matrices larger than 2 × 2.

The CI is calculated using the following equation:

CI =
λmax − n
n− 1

(2)

where:
λmax is the largest eigenvalue of the pairwise comparison

matrix, representing the degree of internal consistency.
n denotes the size of the comparison matrix (i.e., the num-

ber of categories or dimensions evaluated).
To standardize consistency evaluation, the Consistency

Ratio (CR) is subsequently calculated by comparing the com-
puted CI to a corresponding Random Index (RI). The RI is
an average CI derived from randomly generated reciprocal
matrices of similar size, defined as:

CR =
CI

RI (n)
(3)

where:
CR is the Consistency Ratio, which indicates the overall

consistency of the judgments.
RI (n) is the Random Index, varying according to matrix

size, as listed in Table 4.
According to Saaty [87], a matrix with a Consistency

Ratio of 0.10 or less is considered acceptable. Matrices with
CR > 0.10 indicate inconsistent judgments, necessitating
a reevaluation by experts. In this study, the consistency of
expert-generated matrices was thoroughly checked, yielding
CR values ranging from 0.00040 to 0.0102. This demon-
strates a high degree of internal coherence and confirms the
reliability and credibility of the expert judgments.

6) DEVELOPING THE GROUP JUDGMENT MATRICES
Combining consensus judgments from the individual evalua-
tions provided by experts requires a combination of pairwise
comparison matrices. AHP offers two principal methods
for deriving a group matrix: the first involves aggregating
individual judgments, and the second focuses on aggre-
gating individual priorities [91]. In this study, we opted

for the first method, which compiles a pairwise compari-
son matrix for each expert to construct a group-judgment
matrix. This aggregation was achieved by using the geometric
mean method [87]. The geometric mean aggregation method
reduces potential biases by incorporating every expert’s input
equally. This aggregation is mathematically represented by
Equation (4):

[aij] =

(
N∏
k=1

a(k)
ij

) 1
N

(4)

where:
aij is the aggregated group judgment for the comparison

between elements i and j.
a(k)
ij represents the individual judgment of expert k regard-

ing the importance of element i over element j.
N denotes the total number of experts who provided judg-

ments.

7) CALCULATION OF LOCAL WEIGHTS
Following the construction of the group judgment matri-
ces, the next step involved determining local weights for
categories and dimensions. Local weights quantify the rel-
ative importance of each category or dimension within its
immediate grouping. The local weights were derived through
a normalization process, forming a normalized matrix N ,
ensuring values’ comparability within each matrix column.
The normalization of a matrix N was performed using
Equation (5):

N =
[
Nij
]
;
[
Nij
]

=
aij∑m
i=1 aij

(5)

where:
N is the normalized matrix.
N ij represents the normalized value corresponding to the

pairwise comparison between element i and element j.
aij denotes the aggregated judgment value from the group

judgment matrix.
m indicates the number of elements (categories or dimen-

sions) being evaluated.
The local weights were subsequently calculated by tak-

ing the arithmetic average of the normalized values in each
matrix row. This method reflects the proportionate contribu-
tion of each element within its category or dimension set.
Equation (6) illustrates the calculation of these local weights:

wi =

∑m
j=1 Nij
m

(6)

where:
wi is the local weight of element i, representing its relative

priority within its category.
N ij are elements of the normalized matrix N .
m again, refers to the number of elements within the com-

parison matrix.
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8) CALCULATION OF GLOBAL WEIGHTS AND DIMENSIONS
RANKING
Global weights signify the overall significance of each
dimension within the entire hierarchy. Although the local
weight of each category naturally reflects its global weight,
the global weights of individual dimensions are obtained by
combining their local weights with those of their parent cat-
egories. This hierarchical combination is formally expressed
in Equation (7):

GWD = LWD× LWC (7)

where:
GWD is the global weight of a given dimension, represent-

ing its priority across the full hierarchy.
LWD denotes the local weight of the dimension, as com-

puted previously.
LWC signifies the local weight of the category to which

the dimension belongs.
Computed global weights enable ranking the dimensions

comprehensively, identifying the most critical dimensions for
targeted improvements in ML-driven healthcare data quality.

C. EVALUATING THE STABILITY OF AHP RESULTS USING
SENSITIVITY ANALYSIS
The reliability of rankings derived from AHP is paramount
for the strength of the prioritization framework presented in
this research. A consistency check was conducted first on the
pairwise comparison matrices utilizing Saaty’s consistency
ratio (CR). This process guaranteed that all expert evaluations
remained internally consistent and logically sound, with CR
values staying below the recommended threshold of 0.10,
thus validating the credibility of the expert assessments.

However, consistency alone does not entirely guaran-
tee stability under realistic variations. Therefore, to further
reinforce the validity and stability of these results, we con-
ducted an additional sensitivity analysis using the OAT
perturbation method. Sensitivity analysis assesses how slight
modifications in expert input or judgment weights might
influence the final dimension rankings, thereby offering
essential validation for the strength and applicability of the
findings.

This test provides empirical support for the stability of
dimension prioritization by evaluating whether realistic fluc-
tuations of this scale could meaningfully alter the rankings.
This step is essential for confirming that prioritized dimen-
sions remain stable, reliable, and practically significant, even
amid expected and reasonable variations in expert evalua-
tions, thereby enhancing insights and further solidifying the
practical value and reliability of the proposed prioritization
framework. Figure 5 illustrates the methodological workflow
of the sensitivity analysis in this study, highlighting the key
stages in assessing the AHP outcomes from establishing
the baseline to perturbation scenarios, recalculating global
weights, re-ranking dimensions, and the process concludes
with a final evaluation of sensitivity.

FIGURE 5. Workflow of the one-at-a-time sensitivity analysis.

1) RATIONALE FOR SENSITIVITY ANALYSIS
The sensitivity analysis function evaluates MCDM methods
by examining the reliability of results derived from tech-
niques such as AHP.

This study’s importance lies in prioritizing data quality in
ML-driven healthcare applications. This focus is essential for
directing resource allocation, influencing research pathways,
and setting future goals to refine and improve predictive mod-
els used in healthcare data analysis. Even minor changes in
the weights assigned to various categories can lead to signifi-
cant shifts in the rankings of these dimensions. Consequently,
conducting a thorough sensitivity analysis is of paramount
importance. It guarantees that established priorities remain
consistent, trustworthy, and credible, regardless of reasonable
variations in expert judgments. Given the present emphasis
on ML within healthcare research, this process addresses
a significant gap in the field, as reliable prioritization can
influence model development and enhance the effectiveness
of clinical decision-making.

2) SENSITIVITY ANALYSIS DESIGN AND TECHNIQUE
This analysis applies a ±17.6% perturbation, derived from
the standard deviation of aggregated expert judgments at
the category level. This particular value effectively encapsu-
lates the variability and uncertainty present in expert inputs.
Given that previous studies recommend perturbations ranging
from 5% to 20% for sensitivity testing [80], [81], [92], [93],
[94], a perturbation of 17.6% strikes an appropriate bal-
ance between practical relevance and methodological rigor,
thereby enhancing the ecological validity of stability checks.
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This methodology varies one category at a time and rescales
the others to keep the total at 1.0.

3) PERTURBATION AND COMPUTATIONAL PROCEDURES
In each scenario, we changed one category by ±17.6%.
The perturbed weight of a designated category, denoted as
W perturbed
m perturbed, is computed utilizing Equation (8) in

the following manner:

W perturbed
m = W

original
m ∓ (0.176 ×W oriiginal

m ) (8)

where:
Wperturbed

m is the adjusted (perturbed)weight of the selected
category m.
Woriginal

m is the original AHP-derived weight of the cate-
gory m.

±0.176 (17.6%) is the perturbation factor based on the
standard deviation of expert judgments.

Subsequently, the weights of the remaining categories were
recalculated proportionally to ensure that the total weight
remains at 1.0. This recalculation employed Equation (9):

W adjusted
i =

(
1 −W perturbed

m

)
×

W original
i

1 −W original
m

(9)

where:
Wadjusted

i is the recalculated weight of an unaffected cate-
gory i.
Woriginal

i is the original weight of the unaffected category
i.
Woriginal

m andWperturbed
m are defined as in Equation (8).

Subsequent to the modification of category-level weights,
the global weights for each dimension were re-evaluated
utilizing Equation (10), thereby preserving the structural
coherence of the AHP hierarchy:

GW dimension = LW dimension × CW perturbed
category (10)

where:
GWdimension is the newly recalculated global weight of

each dimension.
LWdimension is the dimension’s local weight within its

respective category.
CWperturbed

category is the perturbed or adjusted category-level
weight obtained from Equations (8) and (9).

4) IMPLEMENTATION AND ANALYSIS STEPS
The sensitivity analysis in this study was conducted utilizing
Python programming to ensure accuracy, transparency, and
reproducibility. The following computational steps succinctly
summarize the procedure for conducting the sensitivity anal-
ysis:

• Baseline Establishment: Set the original AHP global
weights as the basis for comparison.

• Perturbation Scenarios: Adjust each category’s weight
independently by ±17.6% (see Equation 8).

• Weight Normalization: Adjust the weights of unaffected
categories proportionally (see Equation 9) to maintain a
total weight of 1.0.

• Global Weights Recalculation: Integrate the perturbed
category weights into the local dimension weights
(see Equation 10) to recalculate the global dimension
weights.

• Ranking Comparison: Re-rank the dimensions based
on the recalculated global weights and compare these
rankings to the original rankings, thereby assessing sen-
sitivity and robustness.

The incorporation of consistency checks and OAT sen-
sitivity analysis ensures the methodological integrity of
the AHP-based prioritization framework proposed in this
study. The consistency ratio confirms the logical coherence
of expert judgments. In contrast, the sensitivity analysis,
utilizing a justified perturbation of ±17.6% derived from
the variability in expert inputs, validates the stability and
resilience of the resultant rankings. This dual-validation strat-
egy reinforces confidence in the prioritization of data quality
dimensions. It enhances the solidity and applicability of
the proposed framework in real-world ML-driven healthcare
environments. Having established a definite methodological
foundation, the subsequent section presents and discusses the
empirical results of this study.

VI. DISCUSSION AND RESULTS
This study handles the importance of prioritizing data quality
dimensions in ML-driven healthcare systems by utilizing
AHP, a structured decision-making approach, to evaluate and
rank the various dimensions of data quality. Furthermore,
the study includes a comprehensive sensitivity analysis to
examine how variations in prioritization influence the overall
decision-making process and outcomes, thereby ensuring a
robust and reliable assessment of the importance of data
quality in this context.

A. AHP-DERIVED PRIORITIZATION OF DATA QUALITY
DIMENSIONS
The study established a hierarchical model structured across
three separate levels aimed at prioritizing the data quality
dimensions paramount toML-driven healthcare systems. The
top level defined the overarching objective of prioritizing data
quality dimensions, the second level comprised dimension
categories (Intrinsic, Contextual, Representational, Accessi-
bility), and the third level examined individual data quality
dimensions.

To gather comprehensive and diverse expert perspectives,
a structured questionnaire was disseminated to specialists
from various academic institutions, thereby ensuring broad
representation across disciplines relevant to ML, healthcare
informatics, and data science. Fourteen specialists pro-
vided complete evaluations of each category and dimension
related to the study’s primary objective. These responses
enabled the formulation of pairwise comparison matrices in
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TABLE 5. Weights and ranks for data quality categories and dimensions.

accordance with the standard AHP procedure as illustrated
in Equation (1). Subsequently, the consistency ratio (CR)
for these matrices was rigorously evaluated utilizing Equa-
tions (2) and (3), thus ensuring logical coherence in the
judgments rendered by the experts.

Upon verifying the internal consistency of each expert’s
responses, Equation (4) was employed to generate aggregated
group judgement matrices for all categories and dimensions.
All resulting matrices exhibited satisfactory consistency lev-
els (CR values below the 0.10 threshold), thus confirming
the reliability and internal coherence of the aggregated expert
assessments. In order to calculate accurate local and global
weights, these group judgement matrices were normalized
using Equation (5), while Equations (6) and (7) were applied
to determine their respective local and global weights.

Figure 6 offers a quick overview of the weights across the
fifteen dimensions, emphasizing the dominance of Complete-
ness, Accuracy, Consistency, Currentness, and Precision.
Table 5 summarizes the calculated weights and final rank-
ings, illustrating the relative significance of each data quality
category and dimension based on experts’ cumulative assess-
ments. Moreover, Tables 6 through 9 include comprehensive
results of the consistency evaluations and group judgment
matrices for each hierarchical category and dimension.

The analysis first identified the Contextual category as
the most influential, representing about 38.7% of the overall
category weights. This stresses a consensus among experts
regarding the paramount role of contextual dimensions in
impacting the performance of ML-driven healthcare systems.
The Representational category followed closely as the sec-
ond most influential, with a total weight of 33.0%. Intrinsic

FIGURE 6. Radar plot showing global weights of data quality dimensions
in ML-driven healthcare systems.

TABLE 6. Consistency test and group judgment matrix for categories.

ranked third at 20.8%, with Accuracy as its key dimen-
sion, reflecting the urgent need for error-free data. Finally,
Accessibility had the lowest aggregate weight at 7.5%, indi-
cating that dimensions within this category (Confidentiality,
Compliance, Portability, Accessibility, and Availability) are
strategically important but have a less immediate impact on
ML performance. However, these dimensions are crucial for
maintaining compliance and ethical standards, thereby fos-
tering robust and equitable ML implementations in the long
term.

As shown in Table 6, the group judgment matrix for
these categories satisfied the consistency requirements, with
a Consistency Ratio (CR) of 0.0102, which is well below
the accepted threshold of 0.10. This low CR confirms the
internal consistency and reliability of the aggregated expert
judgments.

To improve interpretability, the category-level pairwise
comparisons are visualized as a heatmap in Figure 7.

According to the results, the weights within the contextual
category indicated that completeness had the highest priority,
with a local weight of 54.1%. This was followed by current-
ness, which had a local weight of 36%, and efficiency, which
had a local weight of 9.9%.
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FIGURE 7. Figure 6. Pairwise comparison matrix (Categories) heatmap.

TABLE 7. Consistency test and group judgment matrix for contextual
dimensions.

Table 7 provides further evidence supporting the consis-
tency of the dimension evaluations within the Contextual
category, showing a consistency ratio (CR) of 0.00609. This
CR value is significantly below the standard threshold of 0.1,
reaffirming strong coherence and logical consistency among
expert judgments in this category.

These results highlight that experts agree that complete-
ness is essential for covering all necessary aspects needed to
achieve reliable and effectiveML predictions. The substantial
emphasis on currency underlines the need for continuously
updating and maintaining data relevance, which is crucial
in fast-paced clinical environments. While the lower focus
on efficiency is recognized as beneficial, it suggests that
efficiency depends on the context and is fairly less critical for
immediate model performance, thus reflecting the experts’
agreement on prioritizing fundamentally impactful dimen-
sions.

In the representational category, the findings indicated that
consistency had the highest priority with a local weight of
43.2%. This was followed by precision, which had a local
weight of 40.8%. recoverability and understandability with
local weights of 8.5% and 7.6%, respectively, received less
focus than consistency and precision.

Table 8 demonstrates that the group judgment matrix for
the representational category complies with consistency stan-
dards, achieving a consistency ratio (CR = 0.00040, which is
below 0.1).

These results highlight the pivotal role of consistency,
emphasizing its importance in ensuring that data remains

TABLE 8. Consistency test and group judgment matrix for
representational dimensions.

TABLE 9. Consistency test and group judgment matrix for intrinsic
dimensions.

uniform and reliable across various systems and contexts.
Precision is similarly valued, emphasizing the need for
accurate and error-free data. This prioritization suggests
that ensuring data uniformity and accuracy is essential for
practical ML applications, with recoverability and under-
standability as supportive dimensions.

The results for the intrinsic category revealed that accuracy
was of utmost importance and priority, with a local weight
of 74.7% (as shown in Table 5). Credibility and traceability
followed with lower local weights of 12.1% and 13.1%,
respectively. The group judgment matrix pertaining to the
intrinsic dimensions, as illustrated in Table 9, has satisfied
the AHP consistency check, resulting in a consistency ratio
(CR) of 0.00850, which is beneath the 0.1 threshold. This
notably low CR affirms the consensus among experts and
supports the reliability of the pairwise comparisons con-
ducted within this category. The focus on accuracy aligns
with clinical expectations, where error-free data is essential
for generating reliable predictions, guiding interventions, and
ensuring patient safety. While credibility and traceability are
valued, they have been given a lower priority, suggesting that
although the trustworthiness of sources and the ability to audit
data changes are important, they are secondary to the primary
requirement of data accuracy.

In the accessibility category, the expert panel designated
confidentiality as the most significant dimension, obtaining
a local weight of 25.3% (as illustrated in Table 5). Compli-
ance was ranked next with a weight of 22.4%, followed by
accessibility with 18.4%, availability at 20.5%, and porta-
bility at 13.4%. These findings reflect a clear consensus
among experts regarding prioritizing data protection and
legal adherence over infrastructural or convenience-related
considerations. The group judgment matrix of the Acces-
sibility category (refer to Table 10) has demonstrated full
adherence to AHP consistency standards, culminating in an
exceptionally low consistency ratio (CR = 0.00062). This
consistency reinforces the reliability of expert judgments and
the internal coherence within this category, which, although
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TABLE 10. Consistency test and group judgment matrix for accessibility
dimensions.

lower-weighted, remains of ethical and operational signifi-
cance.

The paramount importance of confidentiality accentuates
its essential function in safeguarding sensitive patient data,
particularly within the framework of ML systems that uti-
lize vast datasets, which present potential privacy risks.
This emphasis is consistent with international regulations
such as the Health Insurance Portability and Accountability
Act (HIPAA) and the General Data Protection Regulation
(GDPR), which mandate rigorous protections in managing
health data. Furthermore, the considerable emphasis placed
on compliance highlights the necessity of ensuring that
ML-driven systems operate within institutional and legal
parameters, thereby mitigating risk and enhancing ethical
accountability.

Despite being ranked lower, the remaining dimensions,
accessibility, availability, and portability, contribute to essen-
tial system-level functions such as ensuring authorized data
access, minimizing service disruptions, and facilitating data
integration across platforms. Their lower priority in this study
does not imply irrelevance; instead, it reflects their more sup-
portive and indirect influence on the immediate performance
of ML models, as perceived by experts.

The results indicate that, although accessibility infras-
tructure is paramount for preserving operational continuity,
protecting privacy and assuring regulatory compliance are
imperative in data governance for ML healthcare systems.
This emphasis affords healthcare practitioners and system
designers essential insights for the strategic allocation of
resources aimed at enhancing data quality, which, in turn,
fosters the ethical and secure implementation of AI.

Subsequent to computing local weights across all four cat-
egories, we evaluated and ranked the data quality dimensions
on a global scale. As shown earlier in Table 5 and illustrated
in Figure 8, global weights were determined by multiplying
the local weight of each dimension by the corresponding
weight of its category. This final ranking of the AHP results
synthesizes expert focus on dimension-level attributes and
their categorical importance.

AHP facilitated the systematic and rigorous prioritization
of fifteen critical data quality dimensions categorized under
four categories. Figure 9 below illustrates a heatmap resem-
bling a confusion matrix that visually summarizes the global
weights and rankings derived from the AHP analysis.

FIGURE 8. Global weights and rankings of data quality dimensions for
ML-driven healthcare systems.

These rankings are based on comprehensive expert
judgements and reflect the strategic importance of each
dimension in enhancing ML-driven healthcare systems. The
highest-ranked dimension was Completeness (20.9%) from
the Contextual category, emphasizing its vital role in captur-
ing all essential data elements necessary forML performance.
Close behind are Accuracy (15.5%) from the Intrinsic cat-
egory and Consistency (14.3%) from the Representational
category, highlighting the required need for precise and uni-
formly structured data.

FIGURE 9. AHP results confusion matrix-like heatmap.

The dominance of Completeness, Accuracy, Consistency,
Currentness, and Precision at the top of the rankings reflects
their explicit and measurable influence on the technical
performance and clinical reliability of ML models. These
dimensions directly address the stringent data requirements
of healthcare predictive modeling, where gaps, inaccuracies,
inconsistent formats, outdated records, or insufficient granu-
larity can immediately undermine diagnostic accuracy, risk
stratification, and treatment planning. Their high weights
indicate that experts intentionally prioritized dimensions
capable of reducing algorithmic bias, improving generaliz-
ability, and improving performance exactness.
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In contrast, dimensions within the Accessibility category,
such as Confidentiality (1.9%) and Compliance (1.7%),
received lower global weights, reflecting their indirect yet
fundamental roles in ensuring ethical, compliant, and secure
ML deployment. Besides, Portability, while operationally
important, was de-emphasized because it affects system
implementation more than predictive performance accuracy.
This ranking pattern shows a pragmatic prioritization strategy
where experts focused on dimensions that have the most
immediate and significant impact on algorithmic outputs in
real-world clinical settings.

B. EVALUATING THE STABILITY OF AHP PRIORITIZATION
USING SENSITIVITY ANALYSIS
To verify the robustness and generalizability of the AHP-
derived rankings, a sensitivity analysis was performed utiliz-
ing the OAT perturbation method. An adjustment of ±17.6%
was applied to the weights of each top-level category, a rate
ascertained from the standard deviation of expert inputs. This
perturbation is consistent with practices established in the
MCDM literature and reflects realistic variability in expert
judgment.

The principal objective of this analysis was to assess
whether minor fluctuations in category weights would sub-
stantially disrupt the global prioritization of dimensions.
Considering the hierarchical nature of the AHP, modifica-
tions at the category level have the potential to propagate
throughout the system, particularly influencing dimensions
situated near ranking boundaries. Consequently, evaluating
the sensitivity of the prioritization model is imperative to
guarantee its practical reliability. Although sensitivity anal-
ysis is widely used in AHP studies, our unique contribution
lies in its domain-specific adaptation and data-driven per-
turbation design. First, the analysis is applied to a full set
of ISO/IEC 25012 data quality dimensions restructured for
ML-driven healthcare, which is rarely explored in previous
AHP research. Second, the perturbation factor (±17.6%) is
not chosen at random but is based on the standard devia-
tion of aggregated expert judgments at the category level,
ensuring the test reflects realistic variability in the target
domain. Third, the analysis is performed at categories and
then spread to dimension levels, allowing detection of sta-
bility patterns throughout the entire AHP hierarchy. This
integrated, context-aware approach offers a more rigorous
and practically relevant stability assessment than traditional
AHP sensitivity tests.

The results demonstrate that the top five dimensions
exhibited remarkable stability throughout all perturbation
scenarios, with none of the rankings falling below fifth place.
This substantiates that their prioritization is merely a prod-
uct of a singular weighting configuration and indicates a
persistent expert consensus. These dimensions maintained
their priority rankings across all eight perturbation sce-
narios. This is evidenced in Figure 10, where, even amid
substantial category-level weight fluctuations, no dimension
fell below the fifth position, and Completeness consistently

upheld the highest rank in all instances, except one (Con-
textual −17.6%), during which it momentarily descended to
the second position. This consistency level reinforces these
dimensions’ significance in facilitating effective ML out-
comes within healthcare applications.

FIGURE 10. Sensitivity analysis results for top-ranked dimensions.

Accuracy, while generally stable in the second rank,
showed a drop to the fourth position in scenarios where the
weight of the Intrinsic category was reduced, highlighting
its reliance on the specific weight of that category. Consis-
tency and Currentness demonstrated occasional fluctuations
between the third and fourth ranks, yet they remained among
the highest priorities throughout all simulations, reinforcing
their mutual significance. Precision consistently occupied the
fifth position in most scenarios, evidencing a strong consen-
sus among experts regarding its ranking.

As illustrated in Figure 11, the middle-ranked dimen-
sions, Efficiency, Recoverability, Traceability, Credibility,
and Understandability, exhibited moderate sensitivity. Effi-
ciency, positioned sixth, proved to be the most stable within
this classification, remaining unchanged across all pertur-
bations. Recoverability and Traceability alternated between
the seventh and eighth positions, contingent upon shifts
within the Intrinsic and Contextual categories. Credibility and
Understandability exhibited greater volatility, occasionally
relegating to the tenth position in response to heightened
emphasis on certain categories, indicating their secondary,
context-specific relevance. Although not consistently ranked
at the top, this cohort possesses contextual significance for
various ML applications, including auditability, real-time
recovery, and interpretability within clinical support systems.

Figure 12 presents the outcomes regarding the lowest-
ranked dimensions: Confidentiality, Compliance, Availabil-
ity, Accessibility, and Portability. These dimensions exhibited
complete stability across all perturbation scenarios, remain-
ing unchanged from their initial rankings. This observation
highlights the minimal weight assigned to the Accessibil-
ity category and the prevailing consensus among experts
regarding their indirect impact on the immediate performance
of ML models. Although these dimensions do not directly
influence predictive accuracy, they are vital for the legal, ethi-
cal, and operational frameworks, facilitating interoperability,
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FIGURE 11. Sensitivity analysis results for middle-ranked dimensions.

ensuring regulatory compliance, and providing secure access
to ML-driven healthcare systems.

FIGURE 12. Sensitivity analysis results for lowest-ranked dimensions.

The combined visualization in Figure 13 shows a clear
priority stratification: strong consensus and high stability
among top-ranked dimensions; moderate variability among
mid-level dimensions; and complete stability but lower criti-
cality in the lowest-ranked group.

FIGURE 13. Sensitivity analysis of all dimensions.

The sensitivity analysis results classified the fifteen data
quality dimensions into three levels based on their global
weights derived from theAHP. These levels are categorized as
top-ranked, middle-ranked, and lowest-ranked, as illustrated

in Figures 10, 11, and 12. The following will discuss these
dimensions obtained from AHP at each of these levels.

Top-Ranked Dimensions Discussion (1–5)

1) Completeness (Rank 1, Global Weight: 20.9%)
achieved the highest global weight, emphasizing its
paramount significance for effective ML implemen-
tation in the healthcare sector. Situated within the
Contextual category, which itself received the high-
est weight, this dimension highlights the necessity for
healthcare datasets to encompass all pertinent patient
variables. Incomplete records can compromise ML
model performance, potentially resulting in erroneous
clinical decisions and missed diagnoses.

2) Accuracy (Rank 2, Global Weight: 15.5%) ranked
second, emphasizes the criticality of aligning health-
care data with precise real-world observations. High-
quality, error-free data ensures reliable ML outputs and
cultivates trust in clinical decision-making. In contrast,
inaccuracies can lead to errors in diagnostic predictions
and therapeutic choices, adversely impacting patient
outcomes.

3) Consistency (Rank 3, Global Weight: 14.3%) high-
lights the necessity for uniform data representation
across healthcare platforms. Discrepancies in data,
such as varying coding standards or inconsistent
measurement techniques, may compromise the accu-
racy and interpretability of ML models, negatively
affecting clinical decisions derived from integrated
datasets. Sensitivity analysis revealed moderate rank
shifts between Consistency and Currentness, primarily
influenced bymodifications in the Contextual and Rep-
resentational categories. Nonetheless, Consistency was
consistently prioritized above fourth place, indicating
overall stability.

4) Currentness (Rank 4, Global Weight: 13.9%) is rated
fourth; it highlights the critical need for timely and
updated data within healthcare ML systems. Out-
dated information can undermine clinical efficacy,
particularly in acute care scenarios such as emer-
gency medicine or intensive care units, where real-time
decision-making is essential. The sensitivity analy-
sis indicated that Currentness occasionally exchanged
rankings with Consistency, illustrating their compa-
rable significance. Nevertheless, Currentness consis-
tently remained within the top-level ranks (third or
fourth), indicating its sustained importance across
diverse contexts.

5) Precision (Rank 5, Global Weight: 13.5%) reflects
the importance of capturing detailed, granular clinical
data. Highly precise data enhances ML models’ abil-
ity to discern subtle variations in patient conditions,
thereby refining risk predictions and treatment guide-
lines. Remarkably, Precision exhibited rank stability
throughout the majority of sensitive analysis scenarios,
only slightly altering its fifth rank under all perturbation
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conditions. Even when the Representational category,
its parent category, was adjusted, Precision’s relative
ranking remained unaffected. This stability emphasizes
consensus and directs efforts towards improving data
precision, which is especially vital in healthcare appli-
cations requiring detailed physiological measurements
and precise medication dosages.

Middle-Ranked Dimensions Discussion (6–10)

6) Efficiency (Rank 6, GlobalWeight: 3.8%) occupies the
sixth position, embodying the promptness and compu-
tational simplicity associated with data retrieval and
processing within ML systems. In critical healthcare
environments such as intensive care units or emer-
gency departments, access to dependable and swift
data is of utmost importance. Although not among the
top-ranked dimensions, the positioning of Efficiency
signifies its contextual significance in systems where
minimal latency and optimized performance are essen-
tial. Sensitivity analysis demonstrated that Efficiency
was uniquely stable, maintaining its sixth rank across
all perturbation scenarios within a ±17.6% category-
level variation. This consistent placement indicates a
strong consensus among experts regarding its vital
role in maintaining operational agility. Such stabil-
ity affirms the strategic importance of Efficiency for
real-time health monitoring and early-warning sys-
tems, where the timeliness of data ingestion has a direct
impact on patient outcomes.

7) Recoverability (Rank 7, GlobalWeight: 2.8%) denotes
the capacity to restore data integrity following loss
or corruption, thereby ensuring system resilience and
continuity. Its prioritization highlights the necessity
of establishing backup and recovery protocols, par-
ticularly within healthcare infrastructures susceptible
to hardware failures, cybersecurity threats, or data
management errors. The sensitivity analysis revealed
moderate positional fluctuations, with Recoverability
occasionally shifting between seventh and eighth ranks,
depending on the emphasis placed on the Intrinsic
or Contextual categories. This variation indicates a
situational but consistent acknowledgment of Recover-
ability’s significance in safeguarding the reliability of
data pipelines, which is essential for the performance
of ML systems.

8) Traceability (Rank 8, GlobalWeight: 2.7%) pertains to
the capacity to trace data lineage from its origin through
transformation to final application. Within healthcare
ML systems, this dimension facilitates auditability,
ensures compliance with legal mandates (e.g., HIPAA),
and enhances the interpretability of predictions, par-
ticularly in explainable artificial intelligence (XAI)
models. Sensitivity analyses indicated that Traceability
occasionally ascended to the seventh position, espe-
cially under reductions in weight within the Contextual
category. This adaptability signifies its growing sig-

nificance in scenarios where algorithmic transparency
is imperative. Such versatility corresponds with the
increasing demands for ethical ML, thereby reinforc-
ing Traceability’s importance in substantiating clinical
decisions and fostering stakeholder trust.

9) Credibility (Rank 9, Global Weight: 2.5%) measures
the perceived reliability of data as assessed by domain
experts and end users. In clinical settings, the accep-
tance of ML-generated recommendations relies not
only on model performance but also on the trustworthi-
ness of the underlying data. During sensitivity analysis,
Credibility sometimes fell to tenth place, particularly
when the weights of Intrinsic or Representational cate-
gories increased. These fluctuations indicate that, while
valuable, Credibility is regarded as a supporting dimen-
sion rather than a primary driver of ML effectiveness.
However, maintaining transparent documentation and
validation processes is essential for building trust in
AI-enabled healthcare delivery.

10) Understandability (Rank 10, Global Weight: 2.5%)
pertains to the ease with which clinicians, data scien-
tists, and IT practitioners can interpret data content. Its
significance is paramount for interface design, model
debugging, and patient communication, particularly
within decision support tools. Sensitivity tests indi-
cated that Understandability was the variable element
among the dimensions. This variability reflects its
dependence on the context of application, which is
crucial in systems involving human-in-the-loop inter-
actions, yet secondary in fully automated pipelines.
Nevertheless, its role in interpretability is consistent
with regulatory requirements for transparency and
highlights its importance in the ethical implementation
of ML in healthcare.

Lowest-Ranked Dimensions Discussion (11–15)

11) Confidentiality (Rank 11, Global Weight: 1.9%)
involves protecting patient data from unauthorized
access. While both ethically and legally essential,
experts perceive this aspect as having a less direct
impact on the operational performance of ML models.
In healthcare ML systems, confidentiality is predom-
inantly upheld through institutional data governance
policies and encryption protocols that operate indepen-
dently of model training pipelines. Sensitivity analysis
revealed notable stability for Confidentiality, as there
was no variation in its ranking across all perturbation
scenarios. This observation suggests a consistent expert
consensus regarding its supportive rather than central
role in data-driven modelling. These findings highlight
its strategic significance in system-level design, rather
than in enhancing algorithmic accuracy.

12) Compliance (Rank 12, Global Weight: 1.7%) involves
aligning data use with regulations. Its lower rank
indicates that experts see it more as a regulatory
requirement than a dimension that directly enhances
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ML performance. While it doesn’t affect prediction
accuracy or learning efficiency, ensuring compliance
is essential for deployment readiness and legal sustain-
ability in healthcare ML.

13) Availability (Rank 13, Global Weight: 1.5%) reflects
how easily and consistently data can be accessed.
In healthcare ML, it influences the timeliness of model
training and updates, particularly with large EHR or
cloud datasets. Its consistent ranking suggests that,
while fundamental, availability seldom affects core
model performance metrics such as precision, recall,
or F1 score.

14) Accessibility (Rank 14, Global Weight: 1.4%) mea-
sures how easily stakeholders, including clinicians,
researchers, and administrators, can efficiently access
and interpret data. Despite its critical organizational
significance, its ranking reflects a limited influence on
the technical aspects of model training and validation.

15) Portability (Rank 15, GlobalWeight: 1.0%), identified
as the dimension with the lowest ranking, pertains to
the transfer of datasets between various systems or
platforms. In the domain of ML, particularly within
federated or multi-institutional environments, it influ-
ences model retraining, data harmonization, and inte-
gration processes. Consistent evaluations indicate that
it presently holds limited immediate priority, reflecting
the prevailing expert consensus that, although sig-
nificant for the exchange of global health data, its
impact on the fundamental performance of ML within
single-institution frameworks is minimal. While future
advancements may enhance its significance, its current
limited operational relevance substantiates its desig-
nated position.

These results highlight the varied effects of different data
quality dimensions on the performance of ML-driven health-
care systems. The rankings and their underlying reasons
reflect the complex relationship between data quality char-
acteristics and the operational effectiveness of machine
learning models. This detailed understanding of all fifteen
dimensions supports focused resource allocation and guides
future research aimed at integrating ethical compliance and
infrastructure robustness into healthcare model development
processes. Building upon these findings, this study intro-
duces an innovative prioritization framework that uniquely
integrates ISO/IEC 25012 with a restructured categorization
designed to address the specific needs of ML applications.
Whereas prior MCDM studies often depended on generalized
or loosely adapted criteria in healthcare applications or on
the separate selection of ML algorithms or other applica-
tions, our approach is specifically developed to encompass
the multidimensional complexity of healthcare data quality
through structured expert input, while explicitly considering
the requirements of ML systems.

Furthermore, this study’s sensitivity analysis deviates from
conventional approaches that employ arbitrary incremental

perturbations such as ±5%, ±10%, or ±15% to evaluate
stability. Such uniform adjustments can introduce artificial
bias and may not accurately reflect real-world uncertainty.
Instead, the ±17.6% perturbation utilized in this investiga-
tion was empirically derived from the standard deviation of
aggregated expert assessments at the category level. This
approach, driven by variance, enhances realism and effec-
tively captures the influence of uncertainty on prioritization
outcomes, considering the hierarchical structure of the AHP,
wherein variations propagate throughout the model and
impact dimension-level rankings.

This integration of ISO-based reclassification, AHP priori-
tization, and statistically grounded sensitivity testing signifies
a significant progression from previous endeavors. It pro-
vides amore resilient, context-aware, and scalable framework
for aligning data quality strategies with the performance
improvement needs of ML-driven healthcare systems.

VII. CONTRIBUTIONS AND FUTURE DIRECTIONS
This study contributes to the advancement of prioritizing
essential data quality dimensions for effective ML-driven
healthcare applications. By utilizing the AHP to evaluate
and classify critical data quality dimensions, the research
enhances our understanding of their direct impacts on the per-
formance of ML models. This foundational work addresses
significant gaps in the existing literature, primarily by pro-
viding a structured and validated methodology. In contrast to
previous approaches that broadly address data quality without
detailed methodological rigor or comprehensive dimension
categorization, this study integrates expert-driven assessment
and systematic validation through sensitivity analysis, offer-
ing clear theoretical and methodological contributions. The
forthcoming subsections will elaborate on the theoretical,
practical implications, practical implementation, limitations,
and future directions of the findings.

A. THEORETICAL IMPLICATIONS
This research provides significant theoretical contributions
by identifying and prioritizing the dimensions of data quality
that are most critical for ML applications within healthcare
systems. Utilizing AHP, this offers a quantitative evaluation
of essential data quality dimensions, each assessed within a
structured hierarchy explicitly developed for healthcare ML
contexts.

A significant methodological contribution lies in the
rigorous validation of prioritization outcomes through sen-
sitivity analysis, employing the OAT perturbation method.
By introducing controlled perturbations derived from expert
judgment variability (±17.6%), the study confirms the sta-
bility and reliability of the prioritization results, thereby
enhancing the credibility and theoretical soundness of the
AHP methodology in healthcare ML contexts.

Ethical considerations are crucial in healthcare applica-
tions driven byML, especially when these systems depend on
data of varying quality. This study emphasizes the importance
of prioritizing data quality dimensions to ensure fairness

158076 VOLUME 13, 2025



A. M. Al-Hgaish et al.: Robust Prioritization Framework of Data Quality Dimensions

and transparency in clinical decision-making. For example,
dimensions such as accuracy, completeness, and traceability
help mitigate the risks of model bias, which can dispro-
portionately impact underrepresented or vulnerable patient
groups. By ensuring high data quality, we can reduce algorith-
mic discrimination and enhance the representativeness and
integrity of the input data.

Moreover, the diversity of stakeholders was an intentional
aspect of the expert-driven AHP process used in this study.
The panel included specialists from various academic and
healthcare institutions, which allowed for a comprehensive
understanding of data quality priorities. However, future
expansions of this work should involve a wider range of
stakeholders, such as clinical practitioners, more IT prac-
titioners, hospital administrators, and representatives from
patient advocacy groups. This inclusivity would enhance the
framework’s applicability and ensure that ethical concerns
are addressed across different healthcare settings. As ML
systems advance to support essential functions like diagnosis,
triage, and treatment recommendations, implementing ethi-
cal safeguards related to data quality becomes critical. This
study lays the groundwork for incorporating fairness-aware
data governance into ML workflows by pinpointing which
dimensions of data quality most affect algorithmic reliability
and trustworthiness.

Additionally, this research advances theoretical knowledge
by identifying and addressing existing research gaps as high-
lighted by recent foundational studies. While prior research
has often lacked structured prioritization frameworks, the
structured approach of this study directly fills this method-
ological void.

B. PRACTICAL IMPLICATIONS
This study offers valuable insights for enhancing ML out-
comes within real-world healthcare environments by iden-
tifying the most critical dimensions of data quality. Com-
pleteness is recognized as the highest priority, emphasizing
the necessity for comprehensive and continuous data capture
to ensure that ML models are developed using a repre-
sentative and unbiased patient population. Accuracy and
consistency are also accorded with significant importance,
indicating the need for reliable, error-free, and standardized
data across various sources to support credible model outputs.
These findings highlight the significance of data governance
practices, encompassing validation pipelines, standardization
protocols, and audit trails to preserve high-quality datasets.

In practical terms, healthcare institutions engaged in the
development of ML tools should adequately invest in inte-
grated data infrastructures that facilitate comprehensive,
accurate, and harmonized data collection across various
departments and systems. For instance, the implementation
of real-time data validation within ICU monitoring systems,
or the automated flagging of inconsistent entries in EHRs, can
substantially enhance ML readiness.

Although currentness has emerged as significant, its com-
paratively lower weight implies that timeliness must be

judiciously balanced with fundamental quality metrics. This
indicates that, although real-time updates hold considerable
value, they should not jeopardize the accuracy or complete-
ness of the data. Consequently, healthcare analytics teams
ought to concentrate on ensuring the freshness of data in
high-impact use cases, such as early-warning systems, while
simultaneously upholding the overall integrity of the data.

In contrast to prior studies that have approached data qual-
ity in abstract terms or within broader healthcare contexts,
this research explicitly concentrates on ML-driven systems.
This study presents a practical and ranked roadmap designed
to inform data management decisions. By delivering a val-
idated prioritization via the AHP and further substantiating
its robustness through sensitivity analysis, it establishes a
replicable and empirically grounded framework that can
be adapted by hospitals, health technology companies, and
policymakers who aim to implement effective ML-driven
interventions.

C. PRACTICAL IMPLEMENTATION OF THE FRAMEWORK
IN ML-DRIVEN HEALTHCARE
The research outlines five fundamental data quality dimen-
sions: Completeness, Accuracy, Consistency, Currentness,
and Precision, which can serve as direct guides in developing
and deploying ML-driven healthcare systems.

• Project Planning: Employ these top-ranked dimensions
to define data quality requirements at the outset, such as
establishing minimum thresholds for completeness and
implementing accuracy validation procedures, thereby
mitigating the risk of suboptimal model performance.
Additionally, identify detailed data issues associated
with each respective dimension.

• Data Curation: Direct data engineers in the processes
of cleaning, transformation, and integration workflows
by emphasizing curation rules pertinent to the prior-
itized dimensions, while considering the operational
constraints of each (e.g., harmonizing units to ensure
consistency, verifying timestamps to maintain current-
ness).

• Quality Assurance Pipelines: Establish continuous qual-
ity checks during both model development and deploy-
ment stages, utilizing dashboards and alert systems to
monitor parameters such as data completeness and accu-
racy.

Focusing on the most critical dimensions, ML healthcare
teams can effectively mitigate data-related risks, thereby
enhancing the reliability, safety, and overall trustworthiness
of deployed models.

D. LIMITATIONS AND FUTURE WORK
Despite the strength of its findings, this study acknowledges
various limitations and outlines directions for future research.

First, the application of the AHP presupposes indepen-
dence among dimensions, a condition that may not entirely
represent the intricate interactions inherent in real-world data
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TABLE 11. Questionnaire used for AHP-based prioritization of data quality dimensions.

ecosystems. For example, accuracy and consistency may
mutually reinforce one another; neglecting such relationships
could result in oversimplified conclusions. Future research
endeavors should investigate advanced MCDM techniques,
such as the Analytic Network Process (ANP) or fuzzy cogni-
tive mapping approaches, which can provide a more nuanced
understanding of how dimensions interact and influence the
performance of ML models.

Second, while the study adopts ISO/IEC 25012 as a
guiding standard, it recognizes that this standard was not
originally designed for ML-centric healthcare data, which
often involves heterogeneous formats, unstructured data, and
streaming inputs. To address this, future frameworks should
consider domain-specific expansions of existing standards

or develop bespoke data quality taxonomies for ML use
cases.

Third, a significant contribution of this research is its
establishment of a foundation for the empirical validation
of the proposed framework by identifying the most critical
dimensions. While the current study relies on expert-driven
AHP analysis and is supported by sensitivity testing, it has
not yet been empirically validated using actual healthcare
datasets. Future research should apply the prioritization
framework to real clinical data repositories, such as ICU
records or diagnostic datasets, to evaluate how improvements
in the top-ranked dimensions (e.g., Completeness, Accuracy,
Consistency) impactML performance metrics like AUC, sen-
sitivity, and specificity. Moreover, simulation studies could
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investigate how enhancements in lower-ranked dimensions
affect model interpretability and reliability in high-stakes
healthcare settings. By combining theoretical prioritization
with empirical findings, this approach will enhance the
framework’s generalizability and real-world applicability.

Another significant limitation pertains to the dependence
on expert evaluations, which may introduce subjective bias
resulting from the composition of the expert panel, their
professional backgrounds, or domain-specific perspectives.
Such biases could impact pairwise comparison judgments
and, consequently, the prioritization outcomes. While the
panel in this study was deliberately diverse in expertise
and affiliation, future research could further alleviate this
risk by expanding the number of participants, incorporating
stakeholders from diverse geographic regions, and employing
iterative consensus-buildingmethods such as the Delphi tech-
nique. Furthermore, hybrid approaches that combine expert
judgments with empirical weighting based on real-world
healthcare data could improve objectivity and reproducibility.

Finally, although expert perspectives were included, the
sample could benefit from greater diversity to include clin-
icians, data engineers, and patient advocates. This change
would strengthen the relevance of each dimension within
real clinical workflows and ensure that prioritization con-
siders ethical and usability factors, such as fairness and
interpretability. Future research should involve this prioritiza-
tion framework across different healthcare sectors, including
critical systems, oncology, cardiology, emergency care, and
others, to test how well the findings generalize and to adapt
the framework to specific context needs. Further, longitudinal
studies could examine how changes in certain data quality
metrics over time influence ML outcomes, helping to create
feedback loops for continuous quality improvement.

VIII. CONCLUSION
This study utilized the AHP to evaluate and prioritize the
dimensions of data quality that are crucial for the perfor-
mance of ML systems in healthcare. The importance of
dimensions such as completeness, consistency, currentness,
accuracy, and precision is vital for ensuring the effective
performance of ML models. This study presents a practical
framework aimed at improving data quality, which ultimately
enhances the reliability and predictive capabilities of ML
applications in healthcare. Additionally, the integration of
sensitivity analysis has confirmed the robustness of these pri-
oritized dimensions, increasing confidence in their stability
under various assumptions.

This research makes significant theoretical and practical
contributions by providing a structured and expert-driven pri-
oritization of data quality dimensions specifically designed
for ML in healthcare. This area has previously lacked empir-
ical frameworks. It also addresses the demand for practical
relevance by offering clear, actionable insights that healthcare
providers and data engineers can implement to enhance the
effectiveness of their systems. Further, the research considers
ethical issues and the diversity of stakeholders, emphasizing

the necessity for fair, transparent, and inclusive data quality
strategies.

Future research should further develop this work through
empirical validation using real-world datasets, refining the
framework to adapt to changing data standards, and explor-
ing the interdependencies among dimensions to enhance its
practical application.

APPENDIX
See Table 11.
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