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ABSTRACT Predictive maintenance, utilising anomalous sound classification, demonstrates a strong
potential to identify mechanical faults in industrial machinery. This research proposes a machine
learning-based framework for classifying anomalous sounds in industrial machines, with a particular focus
on CT scan machines and fan units. The study utilises both real-world data from CT scan machine
sound and the Malfunctioning Industrial Machine Investigation and Inspection (MIMII) dataset. It offers
a comprehensive analysis of sound signal processing techniques, synthetic data generation methods, feature
extraction processes, and classification using machine learning models to support predictive maintenance
applications. In this research, sound data from a CT scan machine was collected using an Internet of Things
(IoT) connected microphone located on the machine in a Klang Valley hospital. Due to the limited availability
of faulty condition data, synthetic anomalous data for both operational and non-operational conditions
were generated using a noise injection method. Features derived from Mel Frequency Cepstral Coefficients
(MFCCs) and Mel Spectrogram representations were employed to analyse the sound data. The dataset for CT
scan machine sounds is categorised into four distinct classes: anomalous operational sound (Aop), anomalous
non-operational sound (Anop), normal operational sound (Nop), and normal non-operational sound (Nnop).
In contrast, the MIMII dataset is classified into two categories: normal and abnormal. A Convolutional Neural
Network (CNN) model was used for a sound classification system, achieving training accuracies of 98.22%
with Mel spectrogram features and 98.12% with MFCC features. The results emphasise the possibility of
using CNN-based sound classification to effectively anticipate and maintain CT scan machines. This finding
also has the potential to be applied to predictive maintenance applications by detecting both normal and
anomalous operating sounds in industrial machinery.

INDEX TERMS Artificial intelligence, predictive maintenance, sound signal processing, industrial machine,
machine learning, Mel frequency cepstral coefficient, Mel spectrogram, convolutional neural network.

I. INTRODUCTION

In the modern era, the healthcare industry is heavily
dependent on various types of medical equipment to assist
in disease diagnosis, patient monitoring, and rehabilitation.
As one of the fastest-growing global sectors, healthcare
demands advanced and reliable medical technology [1], [2].
However, exposure to machine failures can pose safety risks
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and quality issues in the machinery industry [3]. The research
by [4] highlights the importance of maintaining medical
equipment in addressing issues such as significant damage
and prolonged downtime caused by long-standing problems.
Effective maintenance management is crucial to reducing
industrial device failures and addressing operational issues
related to medical equipment [5].

A notable example is the CT scan machine, which
employs advanced imaging technology to produce detailed
cross-sectional images of the body. The data acquisition
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system utilises an X-ray tube to measure radiation attenu-
ation as the X-rays pass through the patient, enabling the
production of accurate diagnostic images [6]. The X-ray tube
of CT equipment produces X-rays to generate images [7].
This process enables the generation of precise images for
diagnostic purposes, ensuring accurate and reliable medical
evaluations. However, studies in South African hospitals
indicate that CT machines often exceed recommended
usage limits, leading to frequent malfunctions as shown
in Figure 1 [8]. On average, a CT scanner experiences
at least 10 breakdowns per year, which underscores the
need for predictive maintenance (PdM) systems to reduce
maintenance costs and ensure patient safety [9].
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FIGURE 1. Number of times the CT scan machine breaks down per
year [8].

The reliability of industrial machinery is critical for
ensuring operational efficiency and minimising downtime in
modern production systems [10]. As equipment complex-
ity increases, predictive maintenance (PdM) has emerged
as a powerful approach, leveraging various data-driven
methods to anticipate equipment malfunctions before they
occur. Among these methods, sound classification has
gained prominence as a non-invasive and efficient tech-
nique for diagnosing the health of industrial machines by
analysing their acoustic signals. The Malfunctioning Indus-
trial Machine Investigation and Inspection (MIMII) dataset
is a well-known benchmark for evaluating sound-based
predictive maintenance systems for industrial machinery.
It contains diverse recordings of normal and abnormal sounds
from industrial machinery such as fans, valves, pumps, and
sliders, providing a rich resource for the development and
testing of machine learning models [11], [12]. In the research
by [13], sound classification enables the identification of
deviations from normal sound patterns, which often indicate
mechanical anomalies or faults. Deep learning approaches,
particularly Convolutional Neural Networks (CNNs), have
shown remarkable performance on the MIMII dataset. The
research by [14] explored the use of Continuous Wavelet
Transform (CWT) with a tailored CNN architecture for
anomaly detection in industrial machines.

An advanced approach involves employing an anomalous
sound classification, in which the sound emitted by the
machinery is monitored to identify abnormal patterns that
indicate potential failure [15], [16]. Integrating advanced
sound sensors with deep learning techniques can prevent
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premature equipment replacement and enhance maintenance
efficiency [17]. By replacing manual sound-based diagnostics
with automated systems, PAM improves accuracy and reduces
reliance on skilled technicians. In anomalous sound detection
architecture, the information of sound features is used to
train machine learning models to recognize normal operating
sounds and detect anomalies [18]. Existing studies on
predictive maintenance and anomalous detection often rely
on limited real anomalous data, leading to biased models and
reduced generalisability. To address this gap, this research
proposes a novel approach that develops anomalous sound
detection in CT scan machines by integrating synthetic data
generation, advanced feature extraction, and deep learning
techniques. This comprehensive methodology enhances the
classification performance of CT scan machine sounds
across four distinct dataset classes. The proposed method
incorporates synthetic anomalous sound generation using
noise injection, effectively creating a more balanced and
representative dataset for improved model training and
evaluation. The acoustic signals from the CT scan machine
were extracted using Mel Frequency Cepstral Coefficients
(MFCCs) and Mel spectrograms, which served as input
features for the models. The proposed approach leverages
Convolutional Neural Networks (CNNs) to effectively cap-
ture spatial patterns within Mel spectrograms and MFCC
features. The performance of the CNN classifier was vali-
dated using the MIMII dataset. This paper aims to contribute
to the development of robust and reliable PdAM systems
capable of minimizing equipment failures and optimising
industrial operations.

This study emphasizes several distinctive aspects that
distinguish it from previous work. First, the synthetic data
generation approach goes beyond conventional methods by
embedding actual broken machine acoustic signals into
real CT scan operational recordings, rather than simply
introducing white noise or artificial distortions. This tech-
nique ensures a higher degree of realism and preserves
domain-specific fault patterns that are critical for reliable
classification. Second, the integration of IoT-based sensor
systems in a medical environment adds further novelty.
Unlike generic industrial monitoring, the deployment in a
healthcare-critical context on CT scan machines introduces
challenges such as stringent acoustic isolation, precise data
acquisition, and safety-critical operational constraints. Lastly,
the study contributes to the field by applying sound-based
predictive maintenance to a rarely explored domain, medical
imaging equipment, demonstrating the practical feasibility
and potential of machine learning to improve reliability in
clinical diagnostics.

A. PREDICTIVE MAINTENANCE IN INDUSTRIAL
EQUIPMENT

The advent of Industry 4.0 has resulted in the extensive
use of intelligent systems, machine learning, and PdM
methodologies across several industries [19]. PdM has
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FIGURE 2. Real-time decision-making architecture of the system [26].

become an important approach in the modern machinery
industry to maintain the reliability and health performance
of a machine. Predictive maintenance involves continuous
monitoring of equipment performance and condition during
routine operations in order to minimise the probability of
a breakdown [20]. The complexity of machinery has led
to the development of predictive maintenance models that
evaluate the risk of industrial equipment failure based on
data analysis of daily usage and the machine’s service
life [20]. In [21], it was mentioned that the implementation
of PdM in the medical equipment industry can help to make
optimal decisions to ensure the equipment’s operation by
continuously monitoring its real-time performance using vast
data streams.

As the industry evolves, the integration of innovative
technologies, such as predictive maintenance using IoT
sensors and artificial intelligence (AI), becomes crucial in
ensuring the optimal performance of medical devices and
sustaining the overall quality of healthcare services [22],
[23]. The implementation of predictive maintenance has
recently been extended to medical equipment, underscoring
its critical role in the healthcare industry [24]. According
to the research in [25], the authors introduce an innovative
multivariate time-series classification approach that utilises
the status data obtained from the Internet of Medical Things
(IoMT) to forecast abnormalities in CT equipment. The
predictive maintenance system proposed by [26] is based
on a decision-making system that utilises tube scanning
time, electrical energy consumption, the number of arcs
per day and real-time IoT data, including oil temperature
sensors, and voltage sensors on CT equipment, to detect
equipment anomalies as shown in Figure 2. The proposed sys-
tem includes data collection, data pre-processing, language
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processing, feature extraction, and a classification model with
parameter selection.

B. DATA ANALYSIS AND RELIABILITY

Understanding the characteristics of the acoustic signals
emitted by a CT scan machine is fundamental for robust
sound-based predictive maintenance systems. Signal features
can be broadly classified into the time, frequency, and
time-frequency domains, each contributing unique analyti-
cal advantages. The time domain captures raw amplitude
variations over time, directly reflecting sound pressure
fluctuations. Although this provides an immediate depiction
of transient events, it suffers from high dimensionality
and susceptibility to environmental noise, reducing its
reliability for complex pattern recognition tasks unless
further processed [27]. The frequency domain, typically
represented using the Discrete Fourier Transform (DFT) or
power spectrum, provides information on the distribution
of spectral components such as harmonics and resonant
frequencies. This domain is particularly useful for identifying
stationary sound patterns characteristic of specific machine
states. Frequency analysis also allows the model to isolate
relevant frequency bands, improving reliability and reducing
sensitivity to ambient noise from the broadband [28].

The time-frequency domain, illustrated by Mel spectro-
grams and Mel Frequency Cepstral Coefficients (MFCCs),
synthesizes both temporal and spectral information. This dual
representation allows for the detection of transient changes
in the spectral content, which is especially important in
identifying operational state shifts in CT scan machinery.
MFCCs, derived from the Mel spectrum, compress this
information using perceptual filtering and decorrelation,
making them robust to background noise and dimensionality
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challenges [29], [30]. Studies have shown that Mel spectro-
grams and MFCCs outperform traditional time or frequency
domain features in audio classification, offering improved
robustness and generalization under varying acoustic condi-
tions [31]. Data preprocessing techniques such as denoising,
signal-to-noise ratio (SNR) enhancement, and dimensionality
reduction can lead to partial loss of original audio informa-
tion. Nevertheless, these operations are essential for boosting
the robustness, computational efficiency, and interpretability
of the model. Their primary function is to filter out irrelevant
noise, highlight discriminative features, and simplify the
input for more effective learning [32].

C. FEATURE EXTRACTION METHODS FOR SOUND SIGNAL
PROCESSING

Feature extraction on sound signals is employed to convert
and extract the sound data information into a format that
by the machine learning models can comprehend. Feature
extraction is an important process for the implementation of
classification, recognition, and prediction algorithms [33],
[34], [35]. Commonly used methods for feature extraction
includes wavelet analysis, chroma, cepstral domain features,
image-based features, and deep features [36]. For instance,
in [37] paper, a snoring sound classification system was
proposed using multi-feature extraction techniques like
short-time Fourier transform (STFT), root mean square
(RMS), spectral centroid, bandwidth, RollOff, zero-crossing
rate (ZCR), and Mel Frequency Cepstral Coefficients
(MFCC) achieving 99.7% accuracy with a CNN classifier.
Additionally, wavelet-based features and statistical tech-
niques have been extensively utilised in fault diagnosis for
CNC machine tools, while feature extraction methods such as
the Fast Fourier Transform (FFT) and wavelet transform have
been effectively applied in automotive fault diagnosis [38],
[39]. This process involves transforming of raw audio signals
into a set of measurable and informative parameters that
encapsulate the essential attributes of the sound. The studies
by [40] and [41] discussed the integration of MFCC and
Mel spectrogram feature extraction techniques applied in
industrial equipment sound analysis. For example, Figure 3
illustrates the image representation of Mel spectrogram
features used in pump fault detection within industrial
machinery.

FIGURE 3. Mel spectrogram of (a) normal and (b) abnormal sound [34].

D. SOUND CLASSIFICATION USING MACHINE LEARNING

Sound classification in machine learning involves the ability
to categorise different sounds and audio events within a
sound clip. It has a wide range of practical applications,
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such as identifying a song’s genre based on its beat or
rhythm, converting spoken language into text through speech
recognition, detecting emotions in a person’s voice, or distin-
guishing speakers based on unique vocal characteristics [42],
[43], [44]. Sound classification is a rapidly advancing field,
with developments in technology and machine learning
models driving its progress. The application of machine
learning to sound classification holds immense potential for
addressing practical challenges in real-world scenarios. For
instance, in [ 14] research, a novel CNN architecture utilising
continuous wavelet transform (CWT) for feature extraction
achieved a remarkable test accuracy of 99.53% on the MIMII
dataset, outperforming other benchmark CNN architectures
such as DenseNet, EfficientNet, and VGGNet. In another
study, a CNN architecture combined with Mel Frequency
Cepstral Coefficients (MFCCs) has been shown to reach a
classification accuracy of 99.77% in audio signal recognition,
further underscoring their efficacy in sound classification
tasks [45].

While traditional machine learning models such as Support
Vector Machines (SVM) and Random Forests have been
explored, they generally achieve lower accuracy compared
to deep learning approaches. This performance gap becomes
particularly pronounced when dealing with complex or high-
dimensional datasets, including those involving time-series
sensor data or unstructured inputs [46]. Specifically, SVM
and Random Forest both achieve approximately 81.32%
accuracy in motor sound classification [47], which is
often insufficient for applications requiring high precision.
In contrast, deep learning architectures such as Convolutional
Neural Networks (CNNs) and Gated Recurrent Units (GRUSs)
are capable of automatically extracting hierarchical and
temporal features from raw data, thereby enhancing accuracy
and robustness without requiring extensive manual feature
engineering. For example, a comparative study by [48]
demonstrated that GRU and CNN models significantly
outperformed traditional algorithms like Random Forest
and SVM in anomaly detection tasks for HVAC systems,
confirming the superior performance of deep learning in
complex real-world scenarios. The preference for deep
learning models, particularly CNNs, is further reinforced
by their ability to handle complex data representations,
adaptability to various datasets, and compatibility with
advanced feature extraction techniques. CNNs are also highly
scalable, making them suitable for a wide range of industrial
sound classification tasks, from detecting mechanical faults
to monitoring operational states in noisy environments [49].

Traditional machine learning models, particularly those
based on hidden Markov models (HMMs), exhibit significant
limitations in handling industrial acoustic data under variable
noise conditions, primarily due to their sensitivity to discrep-
ancies between training and testing environments. This sen-
sitivity leads to a marked decline in recognition performance
when faced with diverse acoustic conditions, as evidenced
by the challenges in noise reduction techniques like spectral
subtraction and HMM retraining [50]. Additionally, the
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FIGURE 4. Overall workflow of the sound classification system.

presence of noise can exacerbate issues such as under-fitting
and over-fitting, particularly in high-dimensional feature
spaces, complicating the extraction of relevant information
from noisy data [51]. Furthermore, the lack of robust datasets
for industrial sound analysis limits the development of
effective models, as demonstrated by the high sensitivity
of neural network-based systems to changes in recording
setups [52]. Ultimately, these limitations hinder the overall
system performance, necessitating advancements in model
robustness and feature selection to improve generalization
capabilities in noisy environments [53].

Other than that, rule-based systems often exhibit limita-
tions in accurately interpreting industrial acoustic signals
due to the ubiquitous background noise commonly found
in factory settings. This environmental noise can obscure
important auditory cues essential for reliable anomaly
detection. Conventional techniques, such as fixed thresh-
old mechanisms or basic filtering methods, are typically
inadequate in adapting to the dynamic and non-stationary
characteristics of industrial noise, resulting in elevated rates
of false alarms and missed fault detections [54]. In contrast,
data-driven approaches, particularly those employing deep
learning models such as Generative Adversarial Networks
(GANSs) and one-class Support Vector Machines (SVMs),
have demonstrated superior capabilities in reconstructing
and analyzing noisy audio signals, thereby enhancing the
accuracy of anomaly identification [55], [56]. Additionally,
the application of advanced filtering algorithms, includ-
ing Butterworth filters, has proven effective in isolating
high-frequency acoustic fluctuations that are frequently
masked by ambient noise. These challenges underscore the
critical need for robust sound analysis frameworks, as the
failure to accurately detect anomalies can lead to overlooked
equipment malfunctions, prolonged operational downtime,
and increased maintenance expenditures [57].

This paper provides a comprehensive analysis of predictive
maintenance, sound signal feature extraction, and machine
learning-based sound classification. It emphasises the impor-
tance of predictive maintenance in industrial equipment,
particularly in medical devices such as CT scan machines.
The predictive maintenance system for the CT scan machine
focuses on detecting anomalous sounds emitted from a
faulty fan. Additionally, it reviews various machine learning
approaches, highlighting the superiority of deep learning
models, particularly CNNs, in achieving high accuracy
for sound-based anomaly detection. The proposed CNN
model architecture was validated using the MIMII dataset.
The proposed method enhances classification performance
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across multiple dataset classes, contributing to more effective
predictive maintenance solutions in industrial and healthcare
settings.

Il. METHODOLOGY

The methodology employed in this study encompasses
several critical stages, as illustrated in Figure 4 which
contributes to the development of an effective predictive
maintenance system. This structured workflow exemplifies
a comprehensive and systematic approach by integrating
IoT technologies for real-time data acquisition, synthetic
data generation techniques to address the limitations of
faulty condition data, features extraction to represent sound
information and advanced machine learning algorithms for
sound classification. In the end, the sound will be classified
into four groups (normal operational sound, normal non-
operational sound, anomalous operational sound, anomalous
non-operational sound) for CT scan machine sounds, and two
groups (normal and abnormal) for the MIMII dataset.

A. DATA ACQUISITION

The process begins with the deployment of the Hikvision DS-
2FP2020, a high-sensitivity condenser microphone sensor
equipped with noise cancellation capabilities. This sensor
was securely mounted on the gantry of the CT scan machine
at a hospital located in Klang Valley, as shown in Figure 5.
The strategic placement and design of the microphone
effectively minimized environmental noise interference.
Moreover, the CT scan machine generates a high-intensity
operational sound, which naturally suppresses surrounding
background noises, thereby ensuring the capture of clear and
distinguishable acoustic signals for classification purposes.
The microphone was employed to record audio signals
under both operational and non-operational conditions. The
recorded data were subsequently transmitted to a centralized
dashboard, enabling real-time monitoring and continuous
data collection. The sound recordings of the CT scan machine
were captured at 5-minute intervals per sound file and
logged into the server every 10 minutes. Data collection
for normal operational and non-operational conditions com-
menced in February 2023. Conversely, the collection of
anomalous sound data, representing both operational and
non-operational states, began in October 2023, resulting in an
imbalanced dataset. To mitigate this imbalance, a supplemen-
tary online dataset of Broken Machine Sound (BMS) effects
was sourced from the PONDS website (www.pond5.com) and
used to generate synthetic anomalous data for subsequent
analysis.
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The operational and non-operational sounds are cross-
checked against a scanning log obtained from the hospital’s
radiography records. Every patient’s scan is recorded with
their patient ID, the start time, and the end time of the
scanning session. In this context, “‘operational” refers to the
CT scan machine actively performing scanning processes,
whereas ‘‘non-operational” denotes the machine being in
an idle state without any scanning activity. The anomalous
operational and non-operational sounds of the CT scan
machine can be further validated using maintenance reports
provided by the vendor, dated December 8, 2023, and
February 7, 2024. The collection of baseline sound data
during regular operation is critical, as it provides a reference
point for identifying and differentiating anomalous sounds.
Each class consists of 1,500 samples of CT scan machine
sound files, with a sampling rate of 44.1 kHz and a 32-bit
depth for each sound sample.

/ N

Microphone
sensor

FIGURE 5. Setup of the microphone sensor on the CT scan machine.

B. SYNTHETIC ANOMALOUS SOUND DATA GENERATION
Acquiring sufficient faulty data is a significant challenge due
to the high reliability of modern machines. To address this
limitation, this study employs a synthetic data generation
technique in which noise characteristics of malfunctioning
or defective machines are synthetically injected into normal
operational and non-operational sound recordings. Figure 6
shows the workflow for generating anomalous operational
(Aop) and anomalous non-operational (Anop) CT scan
machine sound. This is implemented using a Python-based
function, “mix_and_render,” designed to combine a primary
audio file with the BMS dataset stored in a specified folder
and render the resulting mixed output.

Audio mixing, as described by [58], [59] typically involves
summing the amplitudes of multiple audio signals at each
time step (sample) of the digital audio signal. In this project,
a simplified form of audio mixing is applied, as represented
in Equation (1), where M(t) denotes the mixed signal at time
(t), A(t) represents the amplitude of the first audio signal at
time (t) and B(t) denotes the amplitude of the second audio
signal at time (t). X

M(t) = A(t) + B(t) (1

This approach aims to simulate realistic anomalous sound
conditions that are infrequently encountered during normal
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operations but are essential for developing robust machine
learning models capable of early fault detection and failure
prediction.

Data collection for BMS
dataset from website

A 4

Resampling the BMS
dataset to 44.1kHz

4

Normalize the BMS
dataset

4

Mix and render the BMS with original data of
Nop and Nnop CT scan machine sound

b 4

Synthetic data generation for Aop and
Anop CT scan machine sound

FIGURE 6. Workflow of synthetic data generation.

Five types of sounds were selected, including a broken
fan sound, an industrial machine sound, a ventilator sound,
a ventilation fan sound, and a machine whistle sound.
These sounds simulate potential faults in CT scan machines,
reflecting diverse failure scenarios. The BMS dataset was
chosen because the CT scan machine gantry includes a
cooling system with a fan component. After data collection
from the BMS dataset, the BMS data is resampled from
48.0 kHz to 44.1 kHz to align with sound format of
the CT scan machine. Normalisation is then applied to
adjust the highest amplitude peak of the sound signals to a
target value (typically £1.0), ensuring consistent loudness
without introducing clipping. The normalized BMS sounds
are mixed and rendered with normal CT scan machine
sounds, overlaying the fault signatures onto operational and
non-operational sound data. The injected fault signals mimic
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the acoustic patterns commonly associated with specific
failures, such as bearing wear, motor failure, or misalignment.
These artificial anomalies diversify the dataset, enriching
it with a wide range of potential failure scenarios crucial
for training machine learning models for anomaly detection
and predictive maintenance. Synthetic anomalous sound data
are compared with real anomalous data to analyse and
visualise signal characteristics, improving the model’s ability
to identify and predict faults effectively.

Conventional synthetic data generation techniques in
audio-based anomaly detection often rely on injecting
white noise or artificial signal perturbations into clean
datasets to simulate environmental disturbances. Although
these methods have shown effectiveness in general purpose
environmental sound analysis, conventional synthetic data
generation techniques lack the specificity required to mimic
the nuanced acoustic characteristics of actual machine faults.
In contrast, this study introduces a domain-adapted approach
by integrating real broken-machine sounds into CT scan
operational recordings. This technique ensures that synthetic
anomalies closely resemble authentic fault conditions rather
than generic noise artifacts. The use of targeted fault
audio, such as fan failures and machine whistles, enriches
the dataset with contextually relevant variations, improving
the classifier’s ability to detect subtle and realistic fault
signatures. This methodology not only increases the diversity
of failure cases, but also enhances the model’s generalization
capability in high-reliability settings where faulty data
are scarce. In addition, this approach represents a novel
application of sound synthesis in the healthcare domain,
particularly for critical diagnostic equipment such as CT scan
machines, where early fault detection is essential for patient
safety and system uptime.

C. DATA PRE-PROCESSING AND SEGMENTATION

Ensuring the accuracy and reliability of sound-based machine
learning models requires comprehensive data pre-processing
and segmentation. These fundamental steps enhance the
quality, consistency, and structure of raw sound recordings,
making them suitable for the efficient extraction and clas-
sification of features. The preprocessing phase begins with
visualising recorded sound signals at a 32-bit resolution and
a 44.1 kHz sampling rate using Audacity software to ensure
high-quality audio representation. The sound data are then
segmented into distinct time frames corresponding to various
CT scan machine operational states, with each segment
annotated to indicate whether it represents normal or anoma-
lous conditions. Following [60],continuous audio recordings
are divided into 10-second frames extracted from 5-minute
recordings, facilitating an accurate classification of machine
state. Each segment is subjected to separate analysis, with
the frequency content, amplitude, and spectral characteristics
are extracted before feature extraction. For example, Figure 7
presents waveform plots of audio recordings obtained from
an industrial CT scan machine, and Figure 8 represents
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waveform plots of a fan sound from MIMII dataset. Both
waveforms display amplitude variations over a 10-second
duration, with the x axis representing time (in seconds)
and the y axis indicating amplitude (normalized between -
1.0 and 1.0). These visualizations are generated as part of
the preprocessing stage in sound-based anomaly detection
systems. These waveforms support data labeling and quality
assessment during the dataset preparation phase. Overall,
the image exemplifies how waveform visualization plays a
crucial role in the early stages of sound-based predictive
maintenance, aiding in fault detection and improving model
performance by ensuring that only meaningful sound patterns
are analyzed further.

Waveform of CT scan dataset sample. wav

Amplitude

Time (s)

FIGURE 7. Waveform of normal operational CT scan machine sound.

Waveform of MIMII dataset sample.wav

Amplitude

Time (s)

FIGURE 8. Waveform of normal operational fan sound of MIMII dataset.

D. FEATURE EXTRACTION USING MEL SPECTROGRAM
AND MFCC

The proposed methodology is implemented using two feature
extraction techniques, Mel Spectrogram and Mel-Frequency
Cepstral Coefficients (MFCC). These techniques are widely
used in audio signal processing to extract meaningful
features from sound data for classification and anomaly
detection. The Mel spectrogram serves as a crucial tool
for feature extraction, converting CT scan machine sound
signals into a time-frequency representation that captures
energy distribution across Mel-scaled frequency bands. The
feature extraction process begins with collecting raw sound,
which undergoes framing and windowing to minimise
discontinuities. The Short-Time Fourier Transform (STFT)
then converts the time-domain signal into a frequency-
domain spectrogram, visualising frequency variations over
time. A Mel filter bank is applied, mapping frequencies to the
Mel scale using Equation (2), where m represents the number
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of Mels units and f represents frequency in Hertz.

m = 2595log; (1 + fm) 2)
The resulting 128 x 128 Mel spectrogram represents
time on the x-axis, frequency on the y-axis, and colour
intensity corresponding to amplitude. In a Mel spectrogram,
colour intensity represents the loudness of a specific sound
frequency at any given time. Darker shades (purples/blues)
signify lower amplitude sounds, while brighter colours
(reds/oranges) indicate higher energy levels, with a decibel
scale ranging from -80 to O dB. Figure 9 illustrates the
Mel spectrograms for normal operational (Nop) and non-
operational (Nnop) CT scan machine sounds. The energy
distribution is more uniform, with fewer distinct bands,
indicating stable machine operation. Orange regions suggest
areas of higher energy, spread evenly across frequencies,
reflecting normal conditions without significant mechanical
changes. Conversely, Figure 10 presents Mel spectrograms
for anomalous operational (Aop) and non-operational (Anop)
sounds, showing distinct energy bands in the mid to high
frequencies (approximately 2000 Hz to 8000 Hz). These
concentrated bands suggest specific mechanical components
generating sounds at defined frequencies, indicative of
potential faults in the CT scan machine.

Mel Spectrogram of 20230703-111706_segment_7.way

Mel Spectrogram of ctscan_audio_20230907-131602_segment_6.ay.

(@ (b)

FIGURE 9. Mel spectrogram of (a) Nop and (b) Nnop CT scan machine
sounds.

Mel Spectragram of ctscan audio_20231030-155009-3 wav Mel Spectrogram of ctscan sudio 20231026-171918-3 wav

“ime. e

(@) ®)

FIGURE 10. Mel spectrogram of (a) Aop and (b) Anop CT scan machine
sounds.

Next, the Mel Frequency Cepstral Coefficients (MFCCs)
are computed for each sample to extract compact and
meaningful features from sound signals. MFCCs condense
information into a finite set of coefficients, leveraging the
auditory perception of the human ear for efficient repre-
sentation. The MFCC process begins by collecting the raw
sound signals and segmenting the continuous sound signal
into frames due to its non-stationary nature. Windowing
is then applied to minimise edge discontinuities, followed
by the Discrete Fourier Transform (DFT) to convert the
time-domain signal into the frequency domain. The resulting
spectrum is passed through a Mel-frequency filter bank,
mapping the linear frequency spectrum onto the Mel scale
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to emphasise perceptually relevant audio features. The final
MFCCs are obtained by computing the logarithm of the filter
bank energies, followed by the Discrete Cosine Transform
(DCT) to decorrelate the coefficients. In this study, the Fast
Fourier Transform (FFT) is configured with 2048 intervals,
a sliding window of 512 points, and 25 extracted coefficients.
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FIGURE 11. MFCC of (a) Nop and (b) Nnop CT scan machine sounds.

Computation is performed using the Librosa library.
The MFCC plot’s color scale represents signal intensity
in decibels (dB), with red shades indicating higher energy
(strong frequency components) and blue shades representing
lower magnitudes. Figure 11 presents MFCC representations
for normal operational (Nop) and non-operational (Nnop)
CT scan machine sounds. The Nop feature exhibits a higher
energy concentration in the lower frequencies, typical of
steady-state operational sounds. The Nnop feature exhibits a
similar pattern with slight variations in intensity and energy
distribution. Figure 12 illustrates MFCCs for anomalous
operational (Aop) and non-operational (Anop) sounds. The
Aop features highlights strong low-frequency components,
while the Anop features demonstrates greater variability in
MFCC magnitude across time, particularly in the mid-to-
lower coefficients, suggesting irregular machine behaviour.

MFCCs of ctscan_audio_20231024-101702-9 wav

(a) (b)

FIGURE 12. MFCC of (a) Aop and (b) Anop CT scan machine sounds.

E. DEVELOPMENT OF CT SCAN MACHINE SOUND
CLASSIFICATION MODEL

Following feature extraction, the dataset was split into train-
ing (80%) and testing (20%) sets for the development of the
machine learning model. A Convolutional Neural Network
(CNN) was implemented to classify normal and abnormal CT
scan machine sounds, utilising Mel spectrograms and MFCC
images as input. CNNs are well-suited for processing visual
representations of audio, as they effectively extract spatial
and hierarchical features. The convolutional layers identify
frequency distributions and temporal variations crucial for
distinguishing sound patterns. Figure 13 illustrates the CNN
architecture used in this study. The CNN model used in this
study consists of seven layers. The first is a 2D convolutional
layer with 64 filters, followed by batch normalisation,
ReLU activation, and max pooling. To mitigate overfitting,
a dropout rate of 0.25 is applied.
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FIGURE 13. CNN architecture used for the proposed sound classification using Mel spectrogram or MFCC features as input.

In this study, the CNN comprises three convolutional layers
with filter sizes of 3x3, increasing filter counts of 32, 64,
and 128, and input Mel spectrograms of size 128 x216 with
a single channel. The complexity analysis confirms that the
model maintains a relatively low computational footprint,
making it suitable for real-time classification tasks in
industrial environments where processing resources may be
limited. The first and second convolutional layers follow the
same structure but contain 128 and 512 filters respectively.
A flattening layer transforms the data into a one-dimensional
array for the fully connected layer. The model was trained
over 100 epochs with 10 iterations per epoch. The CNN clas-
sifier distinguishes between normal and anomalous sounds
by analysing time-frequency representations. Convolutional
layers detect frequency irregularities, while pooling layers
reduce dimensionality while preserving key features. Fully
connected layers learn to associate patterns with normal or
anomalous classes, with the final layer assigning probabilities
to each category. Each input image was normalised to
128 x 128 pixels.

The machine learning framework was developed in Python
using Keras with a TensorFlow backend. The implementation
utilised libraries including NumPy, Pandas, Matplotlib,
TensorFlow, Scikit-learn, and Seaborn. The development of
a CT scan machine sound classification model integrates
advanced audio processing and machine learning to enable
intelligent predictive maintenance. The CNN classifier was
designed to train and validate classification models using
Mel spectrograms and MFCCs while assessing the impact of
synthetic data across five dataset cases, as listed in Table 1.
The trained CNN classifier serves as the foundation for test-
ing, validation, and deployment, encapsulating knowledge
from diverse training examples. Its generalisation ability
depends on a well-designed training process, highlighting the
importance of an optimized learning pipeline for accurate and
reliable classification in machine learning applications.

In the implemented model, there are 4 convolutional layers,
with filter counts of 32, 64, 128, and 256 respectively, and
each using 3x3 filters. The input is a Mel spectrogram
image of shape 128 x431x 1 (height, width, channels). As the
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network progresses deeper, the number of channels increases
while the spatial dimensions decrease due to max pooling.
The convolution operations dominate the computational
cost, especially in deeper layers, where the number of
filters is high. On actual hardware (Ryzen 7 CPU, Nvidia
GTX 1650 Ti GPU), the training time to complete 100 epochs
is approximately 26 minutes and 42 seconds, and the
inference time (testing) for a single input takes approximately
3.053 seconds. These practical measurements align with the
theoretical complexity, which scales linearly with the number
of filters and quadratically with filter size. Therefore, the
model remains efficient for real-time classification tasks
while maintaining accuracy and feature richness.

Ill. RESULTS AND DISCUSSIONS

The CNN model was trained to classify sound data, with
performance metrics evaluated on both real and synthetic
datasets. Optimising feature extraction parameters played
a crucial role in improving CNN classification accuracy.
Mel spectrograms and MFCCs emphasised different spectral
and temporal characteristics, impacting model performance
across five dataset cases as shown in Table 1. The combina-
tions of training and testing data were varied to assess the
effectiveness of the trained model in real or synthetic datasets.
The final goal is to achieve the best model that can produce
the most accurate results in recognising the real data.

TABLE 1. Combination of dataset cases.

Case No Train Test
Case 1 Synthetic data Real data
Case 2 Real data Real data
Case 3 Synthetic and Real data | Synthetic and Real data
Case 4 Synthetic and Real data Real data
Case 5 Real data Synthetic data

Table 2 presents the testing accuracy results using Mel
spectrogram and MFCC features for five combinations of
training and testing data. The evaluation showed that Mel
spectrograms achieved higher accuracy with n_mels = 128,
while MFCCs performed best with n_mfcc = 40, high-
lighting the importance of parameter selection in improving
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TABLE 2. The testing accuracy of the cnn model with different parameters using Mel spectrogram and MFCC.

Case Mel Spectrogram MFCC
n_mels=32 | n_mels=128 | n_mels=256 | n_mfcc=13 | n_mfcc=25 | n_mfcc=40
1 47.67 51.83 46.25 54.50 51.58 48.25
2 66.67 65.25 63.33 61.50 68.42 60.25
3 71.08 72.42 73.17 73.50 74.75 75.58
4 65.08 68.75 67.67 68.92 70.33 69.75
5 62.42 66.67 61.00 43.08 69.08 72.25
Average 63.18 64.98 62.28 60.30 66.83 65.21

classification performance. The model was tested using three
different n_mels values: 32, 128 and 256. Among these, the
configuration with n_mels=128 consistently yielded the
highest average accuracy of 64.98%, outperforming the other
two settings. This result indicates that 128 Mel frequency
bands strike an optimal balance between spectral resolution
and generalisation, enabling the model to capture meaningful
acoustic patterns from CT scan machine sounds without
introducing excessive noise or overfitting. Similarly, for
MEFCC features, three configurations of n_mfcc = 13, 25, and
40 were evaluated. The best performance was achieved with
n_mfcc = 25, which attained an average accuracy of 66.83%.
This finding suggests that increasing the number of MFCC
coefficients beyond the traditional 13 coefficient enhances
the model’s ability to extract more detailed frequency
information, which is particularly useful for detecting subtle
anomalies in machine operation.

Next, the orange-highlighted values in Table 2 indicate
the optimal dataset combination, determined based on testing
accuracy, confusion matrices and classification reports.
Among the different cases, Case 4, which utilises MFCC
features, was identified as the most effective configuration
for CT scan machine sound classification. It achieved high
testing accuracy and superior classification performance on
real data, demonstrating its effectiveness in distinguishing
normal and anomalous sounds. Both the Mel spectrogram
and MFCC features in Case 4 outperformed those in
Cases | and 2, showcasing better generalisation capabilities.
In particular, Case 4 achieved higher testing accuracy than
Case 2, which consists of real data only. This indicates that
the inclusion of synthetic anomalous data contributed to a
more robust and generalisable CNN model, enhancing its
ability to accurately classify real-world anomalies. Although
Case 3 exhibited the highest testing accuracy, it was not
selected as the optimal dataset because its test set included
a mix of synthetic and real data, rather than solely evaluating
performance on real-world cases. The presence of synthetic
data in the test set may have artificially inflated accuracy
values, preventing an accurate assessment of the model’s
generalisation ability. Thus, Case 4 was chosen as the
ideal dataset configuration as it provided strong real-data
classification performance while benefiting from synthetic
anomalous data to improve model generalisation.

This highlights the importance of synthetic data aug-
mentation in enhancing predictive maintenance models for
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TABLE 3. Accuracy results for each model using Mel Spectrogram and
MFCC.

Mode Case | Mel Spectrogram | MFCC
1 69.08 71.08
2 57.58 69.25
CRNN 3 49.83 72.08
4 69.75 66.75
5 73.00 72.67
1 50.25 52.08
2 62.10 67.24
YAMNet 3 65.83 72.43
4 52.02 52.19
5 51.65 51.74
1 48.58 53.50
2 73.25 65.25
LSTM 3 78.17 77.83
4 69.75 67.58
5 41.67 64.42

classifying CT scan machine sounds. The integration of
synthetic data enhanced model robustness while maintaining
real-world relevance, establishing a reliable approach for
sound classification in predictive maintenance. Despite
these challenges, the CNN model with MFCC features
demonstrated robust and consistent performance, making it
a reliable tool for sound-based predictive maintenance.

Additionally, several deep learning models were employed
on the CT scan machine dataset to evaluate the performance
of the proposed CNN model. The comparison was conducted
with other state-of-the-art architectures, including the Con-
volutional Recurrent Neural Network (CRNN) model, Yet
Another Multitask Network (YAMNet) model, and Long
Short-Term Memory (LSTM) model [61], [62], [63]. Each
model was trained and tested using Mel Spectrogram and
MEFCC feature representations to ensure a fair evaluation. The
CRNN model, combines convolutional layers with recurrent
layers, allowing it to capture both spatial and temporal
features in the sound data. YAMNet, a pre-trained model
based on the MobileNet architecture, was fine-tuned on the
CT scan dataset for audio classification tasks. Meanwhile,
the LSTM model utilizes sequential processing capabilities
to learn time-based patterns in input audio.

The precision of each model was tested on five cases to
observe consistency and convergence as shown in Table 3.
The results reveal that the CRNN model consistently
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outperforms the others, especially when using MFCC
features, with accuracy values that peak at 73.00% Mel
spectrogram and 72.67% MFCC. YAMNet shows competi-
tive performance, especially for MFCC-based classification,
achieving up to 72.08%, while the LSTM model exhibits
higher variance but peaks at 78.17% (Mel) and 77.83%
(MFCC), indicating strong performance in certain scenarios
but reduced consistency. This comparative analysis high-
lights that while CRNN offers more stable and balanced
performance across feature types, LSTM can yield higher
peak accuracy but suffers from variability. YAMNet provides
a robust pre-trained alternative with decent generalization.
These findings offer insights into the strengths and limitations
of each model architecture for real-world predictive mainte-
nance applications involving audio data.

The confusion matrices and classification reports for
Case 4 were analysed to evaluate the CNN classifier’s
performance using MFCC features. Figure 14 presents
the confusion matrices for training and testing accuracy,
indicating the high classification accuracy in the training
dataset and effective differentiation of all four sound classes
for Case 4. For the test dataset (20% unseen data), the
model demonstrated strong generalisation, particularly in
classifying anomalous non-operational (Anop), normal oper-
ational (Nop) and normal non-operational (Nnop) sounds.
Misclassification primarily occurred between anomalous
operational (Aop) and normal operational (Nop) classes.
In Case 4, Aop was frequently misclassified as Nop, while
the other classes were correctly classified, highlighting the
challenge of distinguishing these anomalies due to their
similar acoustic characteristics. These findings underscore
the difficulty in accurately distinguishing between anomalous
operational (Aop) and non-operational (Nop) states, which
is likely attributed to the inherent similarity in their acoustic
patterns and characteristics. Both classes involve the CT
scan machine in an active state, resulting in overlapping
spectral and temporal features that challenge the model’s
ability to differentiate between them. The subtle variations in
sound intensity or harmonic structure may not be sufficiently
captured by the current feature representation, leading the
CNN to misclassify instances and generalise inaccurately
between these closely related classes.

Tue label
Tue label

Anop ﬁovd le;o‘p Nop Anop Pop Nnop Nop
e IE:) abel Predl((:d) label
FIGURE 14. Confusion matrix for (a) training and (b) testing accuracy in
Case 4.
In addition to that, Table 4 highlights that the model
demonstrates excellent performance for the Anop class,

achieving a precision of 0.95, a recall of 0.89, and an
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Fl-score of 0.92, indicating strong reliability in detect-
ing non-operational anomalies. Similarly, the Nnop class
achieves outstanding results with a precision of 0.92, a recall
of 0.99, and an Fl-score of 0.95, reflecting the model’s
ability to identify normal idle machine sounds. In contrast,
the model struggles with the Aop class, recording a low
precision of 0.44, arecall of 0.23, and an F1-score of just 0.30.
This suggests significant difficulty in detecting anomalous
operational states, probably due to acoustic similarities with
the Nop class, which also shows relatively weak performance.
These results suggest that the model may struggle to
distinguish between operational conditions in which faulty
and normal states share overlapping spectral and temporal
characteristics.

TABLE 4. Classification report of testing accuracy for Case 4.

Precision Recall Fl-score Support
Anop 0.95 0.89 0.92 300
Aop 0.44 0.23 0.30 300
Nnop 0.92 0.99 0.95 300
Nop 0.48 0.70 0.57 300
Accuracy 0.80 1200
Macro avg 0.70 0.70 0.69 1200
Weighted avg 0.70 0.70 0.69 1200

To thoroughly evaluate the stability and generalization
capability of the CNN model, a 5-fold cross-validation
strategy was employed. The dataset was partitioned into
five distinct folds, with each fold serving as the validation
set exactly once, while the remaining four folds were used
for training. This iterative process allows for a more robust
estimation of the model’s performance by mitigating the bias
that can arise from a single train-test split. Table 5 presents
the accuracy and loss achieved for each of the five folds
when using MFCC as the extracted features. The results
demonstrate remarkable consistency across the folds, with
accuracy values that range narrowly from 0.970 (97.0%)
to 0.980 (98.0%). Consequently, the loss values remained
consistently low, fluctuating only between 0.020 and 0.030.
The average accuracy across all five folds was calculated to
be 0.978, with an average loss of 0.022. This high degree
of consistency in performance metrics across different data
partitions strongly indicates the CNN model’s stability and its
ability to generalize effectively to unseen data. The minimal
variance observed suggests that the model is not overly
sensitive to the specific subsets of training data and is robust
in its predictive capabilities.

These results suggest that both anomalous and normal
operational CT scan machine sounds contain complex pat-
terns, making classification difficult. Performance analysis
across all cases using MFCC features reveals that combining
real and synthetic data (Case 3 and Case 4) improves
training and testing performance, resulting in well-trained
models with minimal overfitting and strong generalisation.
In contrast, Case 2 exhibited validation instability, while
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TABLE 5. Cross-validation results of MFCC-based classification model.

Fold Accuracy | Loss

1 0.980 0.020

2 0.980 0.020

3 0.980 0.020

4 0.970 0.030

5 0.980 0.020
Average 0.978 0.022

Cases 1 and 5 showed overfitting, excelling in training
but struggling with unseen data. These insights emphasize
the need for refining data representation, enhancing feature
extraction, and optimizing training strategies to improve
classification performance in predictive maintenance.

To further validate the robustness of the proposed CNN
based sound classifier, the MIMII dataset, comprising
real sound data from normal and abnormal industrial fan
operations, was used as an external benchmark. A total of
320 sound samples were used for retraining, with 80 used for
testing. This assessment determined whether the CNN model,
initially designed for CT scan machine sounds, maintained
its performance across different datasets and operational
conditions. By using the same architecture for both datasets,
the study ensured consistency in evaluation, highlighting the
model’s adaptability to industrial sound classification. The
reliance on the MIMII dataset as the sole source for evaluating
the performance of the proposed CNN classifier represents
a limitation in assessing the model’s overall stability and
robustness. Although the MIMII dataset encompasses a
range of machine types and incorporates realistic industrial
noise conditions, it may not fully capture the diversity and
variability present in real-world environments, including
differences in operational contexts, machine behaviors and
anomaly patterns. To overcome this constraint and strengthen
the evidence supporting the model’s generalizability, future
research will emphasize comprehensive cross-dataset vali-
dation. Specifically, the classifier will be evaluated using
alternative publicly available datasets relevant to anomalous
sound detection. This extended validation strategy will enable
a deeper investigation into the model’s capacity to main-
tain performance when exposed to previously unseen data
distributions, diverse background noise levels, and varying
anomaly characteristics, thus enhancing its credibility and
applicability in larger industrial and real-world settings.

@ ®

FIGURE 15. (a) Training and validation accuracy graph and (b) training
and validation loss graph the MIMII dataset using MFCC.

Performance metrics, including accuracy, confusion matri-
ces, classification reports, and ROC-AUC curves were
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analysed. Figure 15 illustrates the training and validation
accuracy, along with loss curves, for the MIMII dataset using
the CNN model with MFCC features. The accuracy rapidly
stabilises near 100%, while the loss values decline sharply
before approaching zero, indicating rapid learning with min-
imal errors. The confusion matrices in Figure 16 demonstrate
high classification accuracy, with minor misclassification
between normal and abnormal sounds. The model correctly
classified 71 normal and 68 abnormal samples, with one
normal sample misclassified as abnormal and four abnormal
samples misclassified as normal. Misclassified cases in
the testing set can be attributed to overlapping acoustic
characteristics between classes, especially if the sounds share
similar temporal or spectral patterns. External factors such as
background noise, recording variations or subtle anomalies
that resemble normal behavior could also contribute to these
errors. Overall, the slight discrepancy between training and
testing performance reflects a well-trained and stable model
with minimal overfitting.

Confusion Matrix Confusion Matrix for New Dataset

Fue label

Fue label

norm: abnormal rormal

al
Predicted label

(a) (b)

| abnormal
Predicted label

FIGURE 16. Confusion matrix for (a) training and (b) testing accuracy on
the MIMII dataset using MFCC.

Table 6 presents the classification report, showing that the
proposed CNN model achieved an accuracy of 0.97 on the
MIMII dataset. The normal class performed slightly better,
with a precision of 0.95, a recall of 0.99, and an F1-score of
0.97, while the abnormal class had a precision of 0.90, a recall
0f 0.94, and an F1-score of 0.92. The overall accuracy reached
97%, with both macro and weighted averages of precision,
recall, and Fl-score consistently at 0.97. This reflects a
balanced performance across both classes, suggesting that
the model is not biased toward any particular class. The
high scores across all metrics confirm the effectiveness of
the MFCC feature representation in capturing discriminative
characteristics of machine sound signals, enabling accurate
classification.

TABLE 6. Classification report of testing accuracy the MIMII dataset
using MFCC.

Precision Recall Fl-score Support
Normal 0.95 0.99 0.97 72
Abnormal 0.99 0.94 0.96 72
Accuracy 0.97 144
Macro avg 0.97 0.97 0.97 144
Weighted avg 0.97 0.97 0.97 144
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Lastly, the ROC-AUC curves in Figure 17(a) represent a
binary classification problem, where a single. ROC curve is
sufficient to illustrate the model’s performance. In contrast,
Figure 17(b) depicts a multi-class classification problem,
employing the One-vs-All (OvA) approach, which generates
multiple ROC curves that allowing for a more comprehensive
evaluation of the classifier’s ability to distinguish between
different categories. Figure 17(a) shows near-perfect discrim-
ination, with an AUC of 1.00 for validating the CNN model
on the MIMII dataset. For further validation, the ROC-AUC
curve was applied to Case 4 of the CT scan machine sound
dataset, as shown in Figure 17(b).

Receiver Operating Characteristic (ROC) Curve

(a) (b)

FIGURE 17. ROC AUC curve of (a) the MIMII dataset (b) the Case 4 testing
dataset using MFCC.

The model performed exceptionally well for the Anop
and Nnop classes, achieving AUC values of 0.99 and 1.00,
respectively. However, the Aop and Nop classes showed
moderate performance with AUC values of 0.75, suggesting
a potential feature overlap that affects classification. The
model’s overall performance, reflected by a micro-average
AUC of 0.88, indicates a strong ability to generalise
across all classes. This score suggests that the model
effectively identifies key patterns within the dataset, which
makes it suitable for practical implementation. However,
moderate performance in operational sound classes high-
lights limitations in distinguishing complex or ambiguous
features. The results of the ROC AUC curve demonstrate
competitive performance compared to previous studies
in sound-based machine condition monitoring. Previous
research has reported AUC values ranging from 0.82 to
0.90 for CNN models employing MFCC features in mechan-
ical diagnostics. Furthermore, studies incorporating CNN
and hybrid CNN-LSTM architectures have achieved AUC
scores ranging from 0.85 to 0.92 in various industrial sound
classification tasks. These findings suggest that the proposed
CNN model, combined with MFCC-based feature extraction,
performs on par with established benchmarks. This reinforces
the suitability and relevance of the model for predictive
maintenance applications, particularly in monitoring the
operational health of CT scan machines.

However, to better understand the limitations and potential
improvements of the current framework, it is important
to consider the impact of the classification structure on
model performance. The model was evaluated using a
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four-class classification structure. Reducing the number of
classes (e.g., binary classification into normal vs. abnormal)
typically improves accuracy, as observed in comparative
testing using the MIMII dataset. On the other hand, increasing
the number of classes often leads to degraded perfor-
mance due to overlapping acoustic features, particularly
between classes such as abnormal during operation and
normal during operation. These findings are evident in
the confusion matrix, where misclassifications frequently
occur between these closely related classes. To improve
the robustness of future predictive maintenance systems,
fuzzy logic-based classification or hierarchical decision
strategies can be considered. These approaches can help
model uncertainty and reduce ambiguity in borderline cases,
making classification more realistic and suitable for industrial
applications.

The proposed system also offers several advantages for
real-time industrial fault detection and predictive mainte-
nance of medical equipment. By leveraging lightweight
audio features such as Mel spectrograms and MFCCs,
the system enables rapid signal processing suitable for
real-time deployment. The integration of a noise cancel-
lation condenser microphone installed on the CT scan
gantry allows precise sound acquisition while suppress-
ing ambient interference. This ensures that the machine’s
high-intensity operational sounds are distinctly captured,
facilitating accurate classification. In terms of decision-
making, the convolutional neural network (CNN) architecture
employed in this study provides robust pattern recogni-
tion capabilities by learning hierarchical representations
from acoustic features. This enables consistent model
response across various operational states, improving the
reliability of automated fault detection. From an energy
efficiency perspective, early detection through acoustic
analysis prevents machine overuse, minimizes unplanned
downtime, and reduces the need for energy-intensive emer-
gency repairs, thereby supporting proactive maintenance
strategies.

IV. CONCLUSION

This study demonstrated the potential of integrating machine
learning into predictive maintenance through sound-based
classification of industrial machines. By leveraging Mel spec-
trogram and MFCC features, the system effectively trans-
formed raw audio signals into informative representations for
accurate fault detection. To address the scarcity of anoma-
lous sound data, synthetic data generation was employed,
enhancing the model’s generalisation across various dataset
configurations. The findings confirm that combining real
and synthetic data improves classification performance and
reinforces the model’s applicability in real-world scenarios.
Despite challenges in distinguishing acoustically similar
fault conditions, the CNN-based classifier demonstrated
strong generalisation capabilities, particularly in differenti-
ating between normal non-operational and anomalous non-
operational sounds. This system offers significant benefits
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for industrial machine sound monitoring, enabling early
detection of mechanical faults, reducing unplanned downtime
and supporting proactive maintenance strategies. While the
current framework has proven effective in capturing clean and
reliable acoustic data, this performance is largely attributed to
the strategic placement of the microphone and the dominance
of the CT scan machine’s operational sound. In more acous-
tically complex environments, where multiple overlapping
sound sources may be present or where the target machine
sound is less prominent, the system’s robustness could be
affected.

In such scenarios, additional signal processing measures,
such as advanced denoising algorithms or adaptive filtering
techniques, may be necessary to preserve classification
accuracy. Therefore, future work should include extensive
testing under diverse acoustic conditions to evaluate the
adaptability and stability of the model in real-time deploy-
ment, ultimately strengthening its reliability for broader
industrial applications. To further enhance the realism and
adaptability of the proposed predictive maintenance frame-
work, future work should explore the integration of fuzzy
logic-based classification. Traditional classifiers like CNNs
rely on crisp decision boundaries, which may struggle to
accurately classify ambiguous or borderline sound events—
particularly in scenarios where the acoustic characteristics of
fault conditions overlap with normal operations. Fuzzy logic,
on the other hand, allows for degrees of membership and
can model uncertainty more effectively, making it suitable
for handling the inherent variability and imprecision of
real-world industrial environments. By incorporating fuzzy
inference systems or hybrid models (e.g., fuzzy-CNN or
fuzzy decision trees), the system could offer more nuanced
classifications, leading to improved interpretability and
decision-making. This approach would be especially valuable
in early fault detection, where symptoms may be subtle
and are not easily categorized using rigid classification
rules.
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