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ABSTRACT Short-term load forecasting (STLF) is essential for power system operations, supporting
efficient grid management and resource planning. Deep Residual Networks (DRNs) have emerged as
a promising architecture for STLF, offering a balanced solution by combining training stability, deep
feature extraction, and reduced gradient degradation compared to Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Transformers. This study focuses on optimizing DRN for STLF by
evaluating different combinations of multidimensional weather variables and applying Principal Component
Analysis (PCA) to address feature complexity. Using the Malaysia dataset, which includes historical
load, time, and weather variables such as temperature, rainfall, and wind speed, the impact of different
variable combinations on forecasting precision is evaluated. Experimental results show that the DRN model
outperforms baseline models including CNNs, RNN-based models, and Transformers, achieving a Mean
Absolute Percentage Error (MAPE) of 0.052514 and a coefficient of determination (RZ) of 0.927993.
Building upon this, the proposed PCA-DRN further improves forecasting performance, achieving a MAPE
of 0.049994 and an R? of 0.934473, representing a 4.80% reduction in MAPE and a 0.65% increase
in R compared to the original DRN. These findings emphasize the importance of feature selection and
dimensionality reduction in optimizing STLF models, particularly for tropical regions with relatively stable
weather patterns.

INDEX TERMS DNN, DRN, PCA, STLE.

I. INTRODUCTION

In modern power systems, load forecasting (LF) is a
critical tool for optimizing grid operations and ensuring
reliability. It involves predicting future electricity demand,
supporting power companies in planning, operating, and
managing the grid more effectively. Accurate LF enhances
energy efficiency, lowers operational expenses, and ensures
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supply stability. As electricity demand rises and consumption
patterns diversify, LF becomes increasingly essential and
complex [1].

LF is typically categorized into four types: Very
Short-Term Load Forecasting (VSTLF), Short-Term Load
Forecasting (STLF), Medium-Term Load Forecasting
(MTLF), and Long-Term Load Forecasting (LTLF), as illus-
trated in Figure 1 and distinguished by the forecasting
horizon [2]. Among them, STLF generally refers to pre-
dicting electricity demand from one hour up to one week
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FIGURE 1. Classification of load forecasting.

ahead, and plays a crucial role in day-to-day power system
operations and scheduling.

The evolving demands of power system operations require
faster decision-making and better handling of uncertainties.
LF serves various applications, including energy trading,
system security analysis, unit commitment, economic power
generation, and performance monitoring. As forecasting
precision directly impacts grid operations, improving the
precision of predictions has become increasingly critical.
Inaccurate forecasts can lead to unexpected costs, underscor-
ing the importance of reliable LF for daily operations and load
flow analysis [3], [4].

Numerous methods have been proposed to address STLF
challenges, broadly divided into traditional and modern
approaches. Traditional methods, such as linear [5] or non-
parametric methods [6], [7], [8], support vector regression
(SVR) [9], [10], [11], autoregressive models [12], and fuzzy
logic [13], [14], often struggle with limitations like over-
simplification, difficulty in modeling complex load patterns,
and susceptibility to overfitting as input variables increase
[10], [15].

To overcome these shortcomings, modern techniques, par-
ticularly artificial neural networks (ANNs), have emerged
as a popular choice for STLF systems. By leveraging deep
learning, ANN-based methods capture intricate load pat-
terns, enhance prediction precision, and mitigate overfitting
risks [16], [17]. However, increasing the number of inputs,
hidden nodes, or layers can still make these networks prone
to overfitting [20]. To address this, advanced ANN variants
such as radial basis function (RBF) networks [18], wavelet-
based networks [19], and extreme learning machines (ELM)
[20] have been developed for STLF applications.

In recent years, deep neural networks (DNN5), character-
ized by their multiple hidden layers, have gained prominence
in LF. By employing hierarchical feature representation,
DNNs effectively model complex load dynamics. Research
trends in LF have shifted from traditional shallow networks to
specialized deep learning architectures that integrate diverse
data sources to capture intricate temporal and spatial depen-
dencies. These advancements, driven by the proven efficacy
of deep learning, highlight the field’s transition toward more
sophisticated approaches [21], [22], [23]. Figure 2 presents a
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technical roadmap of STLF methodologies, tracing the pro-
gression from traditional statistical approaches to advanced
deep neural networks (DNNs). According to a review of
articles indexed in the Web of Science, traditional statistical
methods in STLF began to emerge in the 1990s, while the
application of artificial intelligence techniques started to gain
prominence in the 2000s. The roadmap highlights key devel-
opments and transitions in load forecasting research over
time [2].

Recent studies have moved beyond shallow networks,
incorporating diverse data into network designs to enhance
forecasting precision. Convolutional Neural Networks
(CNNs) [24], [25], [26], [271, [28], [29], [30], [31], [32], [33],
[34], well-suited for extracting local features, have demon-
strated strong performance in processing temporal patterns
in load data. However, their inability to capture long-term
dependencies and challenges with vanishing gradients in
deeper architectures limit their utility for complex LF tasks.

Recurrent Neural Networks (RNNs) [35], [36], [37], [38],
(391, [401, [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], including Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU), effectively model sequen-
tial dependencies by introducing memory mechanisms that
address vanishing gradient issues. These architectures cap-
ture both short-term and long-term dependencies, but their
step-by-step processing increases computational demands,
making them less efficient for very long sequences. Addi-
tionally, deeper RNNs, including advanced variants like
Bidirectional LSTM (BiLSTM) and Bidirectional GRU
(BiGRU), face scalability challenges due to gradient issues
and heightened computational complexity.

Transformers [52], [53], [54], [55], [56], [57], [58], [59],
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], leverag-
ing self-attention mechanisms, have emerged as a promising
tool for time series forecasting. They excel in modeling
long-range dependencies and efficiently handle sequences of
varying lengths. However, their computational cost grows
quadratically with sequence length, posing challenges for
ultra-long sequences. Similar to CNNs and RNNs, training
deep Transformer architectures can be unstable, necessitating
architectural refinements to address these issues.
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As models grow deeper, training challenges in CNNs,
RNNs, and Transformers often limit their scalability, hin-
dering their ability to learn complex patterns. To address
these issues, Chen et al. [70] proposed a Deep Residual
Network (DRN) for STLF and introduced modifications
to enhance its performance. Unlike conventional structures,
DRNs incorporate residual connections to alleviate gradient
vanishing problems, enabling stable training of deep archi-
tectures. These networks effectively leverage historical load,
temperature, and time data as input, reducing the need for
extensive feature engineering while automatically extracting
complex features. CNNs, although effective at capturing local
patterns, struggle with modeling long-term dependencies.
RNN-based models are better at handling temporal sequences
but are prone to gradient degradation and high computational
costs. While Transformers can efficiently model long-range
dependencies, their high resource demands and instability
in deeper configurations pose challenges for real-time fore-
casting. By addressing these limitations, DRNs provide a
balanced solution—combining depth, training stability, and
expressive power—making them particularly well-suited for
STLF tasks that demand both high accuracy and operational
efficiency.

Currently, research on DRN in STLF mainly focuses on
historical load data, time variables, and temperature vari-
ables [70], [71], [72], [73], [74], [75], [76], [77], [78], [79].
However, weather factors are often more diverse, including
not only temperature but also rainfall, wind speed, and other
elements. Therefore, optimizing DRN models to incorporate
more comprehensive weather data remains a promising area
of research. Thus, optimizing the DRN model to integrate
more comprehensive meteorological data remains an area
worth investigating. Principal Component Analysis (PCA)
has been utilized in STLF as an effective dimensionality
reduction method, helping to identify key features from
complex meteorological datasets [80], [81]. Incorporating
multidimensional weather variables into DRN models has
the potential to enhance forecasting performance by captur-
ing additional meteorological influences. However, as the
number of input variables increases, model complexity also
rises, potentially leading to overfitting and reduced compu-
tational efficiency. By using PCA to extract key features, the
complexity introduced by high-dimensional data can be alle-
viated, which in turn may improve the model’s generalization
ability.

This study plans to use the Malaysia dataset with multiple
weather variables for training, which includes not only histor-
ical load variables, time variables, and temperature variables
but also additional meteorological variables such as rainfall
and wind speed. Through experiments, the study aims to
evaluate the impact of historical load variables, time vari-
ables, and different combinations of meteorological variables
on the performance of DRN models in STLF. At the same
time, PCA is utilized to extract key features and simplify
the input, mitigating potential risks of overfitting introduced
by high-dimensional meteorological variables. This approach
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provides a systematic framework to analyze the role of mete-
orological variables in load forecasting and supports the
optimization of DRN models for STLF.

The main contributions of this study are threefold. First,
a PCA-DRN framework is developed to address the chal-
lenges of high-dimensional and correlated meteorological
inputs, effectively reducing feature redundancy and improv-
ing forecast accuracy for STLF. Second, a comprehensive
comparative analysis of different weather feature combi-
nations is conducted using the Malaysia dataset, revealing
that temperature is the dominant factor influencing elec-
tricity demand in Malaysia’s tropical climate. Third, the
proposed approach is rigorously validated through ablation
experiments, statistical significance testing, and robustness
evaluation under missing-data scenarios, demonstrating its
superior predictive accuracy.

The remainder of this paper is organized as follows:
Section II reviews the application of DRN for STLF;
Section III provides an overview of the methods in this
study, including data preprocessing, variable selection, and
experimental setup; Section IV presents the experimental
results and discusses in detail the impact of adopting dif-
ferent variable combinations on the model’s performance
using the Malaysia dataset; finally, Section V summarizes
the main findings of this study and proposes directions and
recommendations for future research.

Il. DRN FOR STLF

A. DRN STRUCTURE IN BASIC

The DRN is employed to unravel the intricate nonlinear
interplay between input data and the resulting output [82].
Generally, a neural network’s learning potential escalates
with increased model depth. Yet, paradoxically, this depth
might, in reality, impede the deep learning model’s efficacy.
This decline in performance could stem from either the intrin-
sic complexities of the data or the sophisticated nature of
the model itself. To address this challenge, residual blocks
are incorporated into the architecture. In these blocks, the
learning process isn’t about mapping directly from input to
output but rather about mapping from input to a residual func-
tion. This approach facilitates the effective training of deeper
networks by optimizing the learning process through residual
connections, ensuring better gradient flow and reducing the
risk of vanishing gradients. As depicted in Figure 3, a residual
network (ResNet) features two sequential levels bridged by a
skip connection.

A skip connection typically operates as an identical map-
ping when the dimensions of its input and output align. Under
these conditions, the corresponding ResNet’s output is as
follows Equation (1):

Youtput = XInput+F (Xlnpulv ®) (D

where Xmpue represents the input of the ResNet, youtput
denotes the block output, Fis the residual mapping function,
and ® indicates the learnable parameters within this function.
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FIGURE 3. The structure of ResNet [70].

However, when input and output dimensions differ, the
skip connection assumes the role of a linear projection.
In such instances, the associated ResNet yields an output
that integrates this linear projection (Lp), as outlined in
Equation (2):

Youtput = Lp*Xmnput+F (Xlnput’ ®) ()

Stacking multiple residual blocks allows for the straight-
forward construction of a Multi-layer ResNet. Figure 4
depicts the structure of a Multi-layer ResNet.

This skip connection indicates that the learning capacity
of a residual block (ResBlock) or ResNet is, at minimum,
on par with that of an equivalently layered stack. When n
residual blocks are sequentially arranged, the Equation (3) for
forward-propagation is as follows:

y(X) =xqo + Z;:lF (Xj—l,@j — 1) 3)

where X is the input of the residual network, x,the output

of the residual network, and ©®; = { the set of

ej»z|1§Z§Z}
weights associated with the jth residual block, Z being the
number of layers within the block.

The back propagation of the overall loss of the neural
network to xg can then be calculated as Equation (4):

dloss dloss 0 n
14+ — F (xj—1,0; — 1) )

dxg <=1

0Xg 0Xp
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In the given Equation, represents the total loss of the neural
network. The presence of “1” signifies that gradients from
the network’s output can be directly propagated backward
to its input. This direct back-propagation reduces the likeli-
hood of gradient vanishing, a common issue when gradients
must traverse multiple layers before reaching the input, thus
enhancing the network’s learning efficiency.
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B. STRUCTURE OF DRN FOR STLF

Figure 5 depicts the workflow of the DRN model, highlight-
ing the preprocessing steps applied to time variables, load
data, and temperature variables. The preprocessing involves
normalizing numerical data and using one-hot encoding
for categorical variables to prepare the input matrix. This
matrix then serves as the input for the DRN architecture,
which includes both training and prediction stages. The
figure outlines the entire process, from constructing the input
matrix to making predictions and evaluating errors. The DRN
for STLF, based on the structure detailed in [70], primar-
ily comprises a basic structure and the modified ResNet
(ResNetPlus). ResNetPlus, an enhanced version of ResNet
designed to improve 24-hour load forecasting performance,
retains the block structure of ResNet while incorporating
refinements for better prediction precision.

To begin with, a neural network featuring densely con-
nected layers, commonly referred to as the ‘basic structure’
is utilized. This foundational architecture is responsible for
generating an initial load forecast for the upcoming 24 hours.
The visual depiction of the model employing the basic struc-
ture is presented in Figure 6. Within this architecture, every
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FC1

fully connected (FC) layer corresponding to [Lﬁay, Tﬁay],

[Lyveek, yeek], [Lmonth month] apd hour comprises 10 hid-
den nodes. On the other hand, the fully-connected layers
associated with [S, W] are equipped with 5 hidden nodes.
Additionally, both fully connected layer FC1, FC2, and the
fully-connected layer preceding Ly, contain 10 hidden nodes.
It is important to note that all layers, except for the output
layer, utilize the Scaled Exponential Linear Unit (SELU)
activation function to enhance model training stability and
performance.

The SELU activation function is defined as follows in
Equation (5):

f(x)z[kx ifx>0 )

Aa(ex—l) ifx <0

In this expression, x represents the input value. The parame-
ters 1 &~ 1.05 and @ ~ 1.67 serve as scaling factors, where A
ensures normalization and « adjusts the response for negative
inputs. SELU promotes self-normalization by maintaining
consistent mean and variance throughout the network layers.

In this framework, Lhm"nth denotes the load values for the
corresponding hour from the days 1, 2, and 3 months before
the predicted day. L} eek gjgnifies the load values for the same
hour from 1 to 8 weeks prior, and Lﬁay corresponds to the
loads of the same hour for each day of the preceding week.
LEO‘“ represents the load values for the same hour from the
previous 24 hours.

Additionally, T{I“O“th, Tgeek and Tgay are the temperature
readings concurrent with Lg‘omh, Lgeek and Lﬁay, respectively.
Th is the actual temperature forecasted for the next day. S, W,
and H are one-hot encoded variables representing the season,
weekday, and holiday status, respectively. The output from
this basic structure, denoted as Ly, serves as the input for
the second segment of the model, enhancing the forecasting
precision.

The ResNetPlus model builds upon the foundational prin-
ciples of the original ResNet architecture, introducing key
improvements to enhance performance and structural depth.
It features a series of residual blocks, with each block com-
posed of two hidden layers, each containing 20 neurons and
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employing the same activation function. Four such blocks
are sequentially connected to form a unit, and this unit is
repeated across ten layers, allowing the model to capture
deeper and more complex patterns. A distinctive feature of
ResNetPlus is its long-range skip connection, which links
the output of the final block directly back to the input of
the network, thereby influencing the final prediction. This
architectural enhancement improves the network’s represen-
tational capacity while maintaining the residual nature of the
original design. As illustrated in Figure 7, ResNetPlus retains
the core hyperparameters used in standard ResNet blocks but
extends the architecture to fully leverage the advantages of
deep residual learning.

The model’s loss, represented as Loss, is the sum of two
separate components in order to efficiently train the models.
Equation (6):

Loss =Lossg + Lossg (6)

where Lossg quantifies the discrepancy in predictions, and
Lossr serves as a penalty term for out-of-range values,
designed to expedite the training phase. Particularly, Lossg
is articulated as Equation (7):

1 N H
NumH Z:J':l Zh:l

where }Al(j’h) represents the model’s output and y(j ny denotes
the actual normalized load for the hth hour of the jth day.
Here, Num symbolizes the number of data samples, while H
indicates the number of hourly loads within a day (notably,
H = 24 in this scenario). This metric, commonly recognized
as the MAPE, is employed both as a measure of error and as a

‘5’0,h) - Y(j,h)‘
Lossg = = "1

¥YG.h)
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criterion for assessing the forecast results of the models. The
second term, Lossg, is computed as Equation (8):

1 ZNum (0 R )
2Num i1 max ,maxhy(j’h) mathQ’h)

+max (O»minhyo',h) - mi“hy(i’h)) ®

Lossg =

This term speeds up the first round of training by penaliz-
ing the model if the expected daily load curves diverge from
the actual load ranges. This phrase emphasizes the cost of
overestimating the load curves’ peaks and underestimating
their troughs when the model starts to produce forecasts with
higher precision.

C. LIMITATIONS IN UTILIZING WEATHER VARIABLES IN
DRN FOR STLF

Even with DRN’s improvements for STLEF, there are still
significant gaps in the current body of research. Most
DRN-based STLF studies [70], [71], [72], [73], [74],
[75], [77], [78], [79] primarily focus on a narrow set
of input variables, particularly historical load, time fea-
tures, and temperature. Although a few studies, such
as [76], incorporate additional weather variables like humid-
ity, the majority still rely heavily on temperature as the
sole meteorological input. While temperature clearly has
a significant impact on predicting energy demand, lim-
iting the model to this single factor may overlook the
broader and more complex influence of weather on load
patterns.

Furthermore, many of these studies do not fully exam-
ine important meteorological factors such as wind speed
and rainfall, which can significantly influence energy con-
sumption patterns. For example, wind speed affects both
natural ventilation and electricity generation in renew-
able systems, while rainfall impacts outdoor activity
levels and cooling demands. The exclusion of these vari-
ables may lead to oversimplified models, especially in
regions with diverse climatic conditions like Malaysia,
where seasonal and weather-related fluctuations are
pronounced.

Adding more input variables to the model increases its
complexity, which is another drawback. Although expanding
the variety of meteorological data may improve model preci-
sion, it also raises the risk of overfitting—particularly in deep
architectures like DRNs. High-dimensional input data can
reduce generalizability and increase computational demands.
However, systematic strategies to mitigate these risks—such
as feature selection or dimensionality reduction techniques—
are often absent in current research.

In conclusion, the challenges of handling high-dimensional
weather data and the underutilization of diverse meteorolog-
ical features remain key limitations in current DRN-based
STLF research. These issues highlight the need for fur-
ther exploration of feature engineering and model opti-
mization techniques to strike a balance between predictive
performance and architectural complexity.
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IIl. PRINCIPAL COMPONENT ANALYSIS (PCA) IN STLF
A popular method for processing and analyzing high-
dimensional data, particularly in STLF, is PCA, a traditional
dimensionality reduction approach [80], [81]. As much of the
original data as feasible is preserved in the lower-dimensional
space by projecting the original data onto a new orthogonal
coordinate system using linear transformations [83]. Find-
ing the principle components, or the main directions of the
data distribution, and maximizing the variance of the data
are the objectives of PCA. The precision and computing
efficiency of subsequent analyses are frequently weakened
in high-dimensional datasets due to feature redundancy and
multicollinearity. By eliminating correlations and lowering
feature dimensionality, PCA efficiently streamlines the data
structure and produces cleaner, more effective inputs for
machine learning models.

In terms of mathematics, PCA starts by creating the
covariance matrix C, which quantifies the linear correlations
between features as indicated by Equation (9):

1 T
C :TIX X 9
where n is the number of samples, and X is the standardized
data matrix.

Next, using eigen decomposition, the covariance matrix’s
eigenvalues A; and eigenvectors v; are determined, as indi-
cated by Equation (10):

Cvi; = AV (10)

The variance explained by each major component is rep-
resented by the eigenvalues 1, and the directions of these
components are defined by the eigenvectors vi. The top
eigenvectors that correspond to the biggest eigenvalues are
chosen as the principal components after the eigenvalues are
ranked in descending order. To guarantee that the majority of
the original information is retained in the reduced data, the
top k eigenvectors are usually chosen so that the cumulative
explained variance achieves a threshold, which is frequently
set at 90% [81].

Equation (11) illustrates how the reduced data is finally
obtained by projecting the original data onto the chosen
primary components:

Xreduced =XW (1 1)

where the top k eigenvectors form the matrix W. This proce-
dure makes it possible to reduce the dimensionality of the data
while keeping the most important information, which makes
subsequent analysis more effective.

Building on its theoretical strengths, PCA has been effec-
tively applied in STLF to reduce feature dimensionality,
eliminate redundancy, and enhance model performance.
In Bianchi et al. [80], PCA was applied to compress
high-dimensional daily load profiles in the Rome power sys-
tem. By simplifying the input structure and allowing separate
forecasting of principal components using Echo State Net-
works, the model achieved a 16.5% reduction in normalized
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root mean square error (NRMSE) compared to a baseline
Autoregressive Integrated Moving Average Model (ARIMA)
model.

However, the study also indicated that the orthogonality
among principal components degrades over time, leading to
cumulative approximation errors during long-term forecast-
ing. In Bian et al. [81], PCA was combined with a grey
model to extract core temperature-related features, reducing
computational complexity and achieving stable prediction
performance with errors maintained within a £0.04% range.
Nevertheless, the linear nature of PCA limits its ability to rep-
resent nonlinear dependencies between weather conditions
and load behavior, which may affect its generalizability in
more complex forecasting scenarios.

While PCA has demonstrated clear benefits in simplifying
high-dimensional inputs and improving forecasting precision
in STLF applications, several general limitations remain that
warrant attention. As a linear transformation technique, PCA
is inherently constrained by its assumption of linear relation-
ships among variables, which may not adequately capture the
nonlinear dynamics present in real-world load and weather
data. Additionally, PCA is sensitive to noise, as irrelevant or
unstable features can distort the principal components and
compromise model robustness. Interpretability also poses a
challenge, since principal components are abstract combina-
tions of original variables, making it difficult to trace specific
feature contributions—an important consideration for trans-
parent and explainable forecasting in practical settings.

Cleaning, transformation, reduction, and discretization are
crucial phases in the pre-processing stage. By methodically
evaluating and refining data, these procedures enable more
precise and effective forecasts. To further optimize data for
analysis, other sub-phases could be added, depending on the
dataset’s properties, technique, and input requirements.

IV. RESEARCH METHODOLOGY

A. RESEARCH DATA

1) PRE-PROCESSING OF DATA

Irregularities including noise, partial records, missing values,
and unprocessed formats are frequently seen in datasets [84].
Analytical precision may be compromised by these problems
with raw data, which may lead to mistakes or misunder-
standings. In order to improve system efficiency, increase
dependability, and allow valuable insights from real-world
information, pre-processing is therefore essential.

Cleaning, transformation, reduction, and discretization are
crucial phases in the pre-processing stage. By methodically
evaluating and refining data, these procedures enable more
precise and effective forecasts. To further optimize data for
analysis, other sub-phases could be added, depending on the
dataset’s properties, technique, and input requirements.

2) DATA DESCRIPTION
This study utilizes the Malaysia dataset (data sources are
supplied in Appendix), which provides a unique perspective
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on load forecasting in a tropical climate. The dataset, obtained
from the Malaysia Grid System Operator for load data and
the Malaysian Meteorological Department for weather data,
spans January 2020 to December 2022 and includes hourly
load data along with daily weather variables such as rain-
fall, mean temperature, minimum temperature, maximum
temperature, mean wind speed, maximum wind speed, and
maximum wind direction.

The Malaysia dataset reflects relatively stable demand
patterns with moderate variations, making it suitable for
exploring load forecasting in environments with limited sea-
sonal influence. The load in this dataset generally ranges from
10,000 megawatts (MW) to 18,000 MW. Figure 8 illustrates
the load data, highlighting its characteristics and relevance for
evaluating forecasting algorithms in tropical climates.

3) INPUT FEATURES FOR DRN ON THE MALAYSIA DATASET
Because of its daily temporal granularity, the Malaysia
dataset requires particular feature processing in the DRN
model. Unlike the finer-grained hourly data used in other
contexts, this dataset contains daily temperature variables like
Timeans Tmax, Tmin. To accommodate this, the basic structure
was modified to directly integrate daily temperature data as
input, as depicted in Figure 9. In this revised setup, daily
temperature features (Tmean, Tmax> Imin) are combined into
a single input without further temporal breakdown. The tech-
nique for analyzing load characteristics (Lhmomh, Ly eek Lgay)
stays unaltered, continuing to extract insights from the
preceding 24 hours, 8 weeks, and 3 months. Additional date-
related inputs, including S, W, and H, are merged with load
and temperature characteristics to produce the final model
input. The two main seasons of the year are rainy and dry,
according to the Malaysia dataset, and important holidays
include Eid al-Fitr and Malaysia Independence Day.

This change simplifies preprocessing by enabling the
direct use of daily temperature characteristics without the
need to artificially extend them into hourly data. The updated
structure guarantees that the model adjusts to Malaysian
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TABLE 1. Input feature combinations for DRN model in STLF.

Model Scenario Time Load

Tempera Wind Rainf
ture all
I v v
2 v v v
3 v v
DRN 4 v v J v
5 v v v
6 v VoA
7 N J N

datasets with different temporal resolutions by processing
load and date-related characteristics consistently.

B. PCA-DRN STRUCTURE FOR STLF

To evaluate the performance of the DRN model under vari-
ous weather-related input conditions, this study constructs a
series of input feature combinations based on the Malaysia
dataset. The dataset offers rich meteorological information,
including temperature, wind speed, and rainfall, which are
known to influence electricity demand patterns. Given the
diverse nature of these weather variables and their potential
impact on load forecasting, it is essential to assess how differ-
ent combinations affect the predictive capability of the DRN.

Therefore, multiple models are configured by systemati-
cally varying the inclusion of temperature, wind, and rainfall
variables, while consistently retaining historical load and
time features, which serve as the core predictors. These com-
binations allow for a comparative analysis of the model’s
sensitivity to different types of weather inputs and the
effectiveness of each configuration in improving forecasting
accuracy. The details of these input feature combinations are
presented in Table 1.

To better address the complexity and high dimensionality
of weather-related inputs, the proposed PCA-DRN model
for STLF integrates PCA with DRNs. This hybrid structure
leverages the strengths of both components: PCA acts as a
dimensionality reduction technique that removes redundancy
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and noise from meteorological variables, while the DRN
component is designed to capture deep temporal dependen-
cies within time-series data. By incorporating PCA during
the data preparation phase, the model reduces input com-
plexity, improves computational efficiency, and preserves
the most informative features. These principal components,
along with historical load and time variables, constitute the
final input matrix fed into the DRN for forecasting. As illus-
trated in Figure 10, the whole workflow of the PCA-DRN
model comprises data preparation, model training and pre-
diction, and performance evaluation. Weather, historical load,
and time variables are segmented, normalized, and one-hot
encoded during the data preparation step. By eliminating
redundant variables and preserving important information,
principal components are extracted from meteorological vari-
ables using PCA, producing a low-dimensional principal
component matrix. The final input matrix is made up of
historical load features, time features, and the chosen prin-
cipal component features (accumulating until they surpass
90% of the variance). After feeding the input matrix into
the DRN, the load forecasting is finished when the residual
connection structure captures deep temporal relationships.
The error measurement module assesses the model’s per-
formance, while the prediction module generates daily load
projections.

C. DESIGN OF EXPERIMENTS

This study employs DRN as the primary training framework
to investigate the impact of multidimensional weather factors
on STLF performance. Multiple combinations of meteoro-
logical variables, including temperature, wind speed, and
rainfall, were systematically tested to evaluate their individ-
ual and joint contributions. To enhance generalization and
reduce input dimensionality, PCA was applied to extract key
features, resulting in the development of a PCA-enhanced
DRN model. In addition to DRN and PCA-DRN, sev-
eral baseline deep learning architectures—CNN, RNN-based
models (LSTM, GRU, BiLSTM, BiGRU), Transformer,
Multi-layer ResNet, and PCA-Multi-layer ResNet (included
as part of the ablation study to isolate and assess the con-
tribution of PCA)—were implemented for comparison.The
CNN was designed as a one-dimensional Conv1D network
with 64 filters, a kernel size of 3, ReLU activation, and
‘same’ padding, while the RNN-based models used 64 recur-
rent units with default activations. The Transformer adopted
a classical configuration with one encoder layer, eight 64-
dimensional attention heads, a 64-dimensional embedding,
a 2048-dimensional feed-forward network, positional encod-
ing, and a 0.1 dropout rate. The Multi-layer ResNet consisted
of 10 stacked ResNet, matching the depth of the DRN archi-
tecture, and its PCA-enhanced variant was also included for
comparison. All models were trained and tested under iden-
tical experimental conditions, with the same input features
and preprocessing procedures, enabling a fair and objective
performance comparison.
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FIGURE 10. Workflow of the PCA-DRN Model for STLF.

A snapshot ensemble strategy was adopted, saving model
weights (snapshots) at regular intervals during training [70],
[85]. This approach reduces the risk of overfitting a single
model while improving prediction stability and generaliza-
tion by averaging outputs from multiple snapshots. The
training process comprised 600 initial epochs followed by
two rounds of 50 short-term epochs, yielding three snapshots
saved at the end of each short-term phase. Each individual
model was trained within eight hours, although extending
beyond this threshold did not adversely affect predictive
accuracy; this benchmark reflected practical computational
efficiency rather than a limiting factor.

Default parameters were selected based on prior research.
The adaptive moment estimation (Adam) optimizer with
adaptive learning rate adjustment was used, initialized at
0.001 [86]. The Malaysia dataset, spanning 2020-2022,
includes load data and multidimensional meteorological
factors, making it suitable for investigating STLF in trop-
ical climates. All experiments were conducted using Keras
2.10.0 and TensorFlow 2.10.0 in a Python 3.8 environment,
running on a Lenovo laptop equipped with an AMD Ryzen 7
6800H CPU and Radeon Graphics. This setup provided a
stable training environment and a solid foundation for future
research and model optimization.
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To rigorously assess whether the performance improve-
ment of PCA-DRN over DRN is meaningful, a non-
parametric Bootstrap resampling procedure with 10,000
iterations was incorporated into the experimental design.
Unlike the paired Student’s t-test, which assumes normality
of the paired differences, the Bootstrap method makes no
distributional assumptions, providing a robust framework for
comparing model performance [87]. Statistical significance
was determined by examining whether the 95% confidence
interval of the mean difference between the two models’ per-
formance values excluded zero. A 95% confidence interval
entirely greater than zero indicates a statistically significant
improvement at the 95% confidence level, whereas a 95%
confidence interval including zero suggests that the differ-
ence is not significant. MAPE was selected as the evaluation
metric because it offers an interpretable, scale-independent
measure of relative prediction error that is widely used in
STLE.

To further evaluate the stability of the PCA-DRN model
under imperfect data conditions, a robustness test based on
the method proposed by [88] was conducted by introducing
artificial missingness into the weather features of the test set.

Specifically, 5%, 10%, and 20% of the meteorological data
points were randomly removed and imputed using the mean
values derived from the training set. This imputation was
performed in the standardized feature space to ensure consis-
tency with the PCA preprocessing. The retrained PCA-DRN
models were then evaluated on the modified test datasets,
and their forecasting accuracy was compared against the
PCA-DRN model trained on the complete dataset, thereby
assessing their resilience to sensor failures or delayed weather
information.

Overall, the paper systematically examines how multi-
dimensional weather factors affect load forecasting perfor-
mance and how well PCA simplifies input characteristics
using this experimental approach. These results offer a useful
foundation for optimizing the model.

D. EVALUATION METRICS

Researchers use a range of criteria to evaluate prediction pre-
cision in order to evaluate the performance of different DRN
models in STLF [70], [71], [72], [73], [ 741, [75], [76], [77],
[78], [79]. Among these, Mean Absolute Percentage Error
(MAPE) is the most commonly used and representative met-
ric, due to its intuitive interpretation and widespread adoption
in load forecasting studies. Other frequently used metrics
include Mean Absolute Error (MAE), MSE, Normalized
Mean Square Error (NMSE), Correlation Coefficient (R),
and Coefficient of Determination (R?). Different studies may
adopt different evaluation metrics based on specific objec-
tives and dataset characteristics. Equations (12) through (18)
show the corresponding formulas.

1 N
MAPE = N Zi:l
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These metrics’ parameters are as follows: N is the total
number of samples; y; is the actual value for the i-th sample;
¥; is the predicted value for the same sample; § and § are the
mean values of the actual and predicted data, respectively;
and oyz is the variance of the actual values, which is used
in NMSE calculations. These parameters enable the metrics
to account for error magnitude, prediction precision, and the
relationship between actual and predicted values, allowing
them to assess performance in a comprehensive manner.
Higher R and R?values suggest improved precision and bet-
ter model fitting, whereas lower values for MAPE, RMSE,
MAE, MSE, and NMSE often indicate fewer prediction errors
and greater generalization.

a7

R?=1- (18)

V. RESULTS AND DISCUSSION

The experiment was used to forecast the entire year
of 2022 after being trained on data from Malaysia
from 2020 to 2021.

A. IMPACT OF DIFFERENT WEATHER VARIABLE INPUTS
To examine the influence of meteorological factors on
STLEF, several input combinations of weather variables were
tested, as shown in Table 2. Specifically, temperature, wind,
and rainfall were each evaluated both individually and in
combination, aiming to assess their respective and joint con-
tributions to the DRN model’s predictive performance. These
experiments were conducted using the Malaysia dataset, and
the results are also summarized in Table 2 and illustrated in
Figure 11.

With the lowest MAPE (0.052514) and the highest R?
(0.927993), the model that utilizes only temperature data
demonstrates superior predictive accuracy. In contrast, intro-
ducing rainfall or wind individually as inputs decreases the
model’s precision, as reflected in higher MAPE values—
0.056534 for rainfall and 0.060087 for wind—accompanied
by lower R? values (0.909838 and 0.902506, respectively).

When temperature is combined with rainfall, the model
achieves a slightly better performance (MAPE: 0.052405,
R?:0.923621) than the combinations involving wind (MAPE:
0.053510 for temperature and wind, R?: 0.922178) or all three
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TABLE 2. Performance metrics for DRN model in STLF with different
weather variables.

Scenario MAPE RMSE MAE MSE NMSE R R?

1 0.0525 0.0452  0.026  0.002 0.0720 0.964 0.927
14 78 467 05 07 032 993

5 0.0600 0.0526  0.032  0.002 0.0974 0.951 0.902
87 85 506 776 94 189 506

3 0.0565 0.0506  0.030 0.002 0.0901 0.954 0.909
34 65 301 567 62 590 838

4 0.0535 0.0470 0.028 0.002 0.0778 0962  0.922
10 71 826 216 22 905 178

5 0.0524 0.0466  0.027 0.002 0.0763 0.962 0.923
05 32 582 175 79 146 621

6 0.0563 0.0505 0.029 0.002  0.0898 0954 0910
54 81 489 558 61 907 139

7 0.0534 0.0472  0.027 0.002 0.0785 0.960 0.921
14 98 454 237 75 438 425

(a) Performance Metrics (MAE, MAPE, MSE, RMSE, NMSE)
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Scenario 7: Temperature, Wind, Rainfall

FIGURE 11. Performance Metrics for DRN for STLF with Different Weather
Variables: (a) MAPE, RMSE, MAE, MSE, NMSE; (b) R and R2.

weather variables (MAPE: 0.053414, R%: 0.921425). Nev-
ertheless, none of these combinations surpass the predictive
performance of using temperature alone.

These findings underscore the dominant role of tempera-
ture in STLF under tropical climate conditions represented by
the Malaysia dataset. Adding wind or rainfall tends to intro-
duce more complexity without substantial gains in accuracy
and, in some cases, may even degrade performance—
potentially due to increased noise or overfitting risks.
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FIGURE 12. Cumulative explained variance by PCA components.

B. PCA IN REDUCING DIMENSIONALITY

To reduce the dimensionality of the weather feature set in
the Malaysia dataset and mitigate multicollinearity, PCA was
applied. The number of retained components was determined
using a cumulative explained variance criterion of over 90%,
resulting in the selection of five principal components. These
five components collectively capture 94.12% of the total
variance in the original weather variables, with individual
contributions of 37.88% (PCA1), 19.62% (PCA2), 14.23%
(PCA3), 12.08% (PCA4), and 8.54% (PCAS), respectively.
Figure 12 illustrates the cumulative explained variance of the
principal components.

The loadings of the retained components are shown in
Table 3. The loadings indicate the contribution of each orig-
inal weather variable to a principal component, enabling
the interpretation of the underlying features represented by
each component. PCA1 is dominated by negative contribu-
tions from mean, minimum, and maximum temperatures,
indicating that it primarily reflects overall temperature vari-
ations. PCA2 shows strong positive loadings for maximum
wind speed (0.7018) and rainfall (0.4422), highlighting its
representation of extreme wind and precipitation patterns.
PCA3 is characterized by a dominant negative loading on
maximum wind direction (—0.9463), making it a wind
direction—focused component. PCA4 shows a strong nega-
tive contribution from mean wind speed (—0.7924) and a
moderate positive contribution from maximum temperature
(0.4138), reflecting wind—temperature interaction effects.
PCAS is primarily influenced by rainfall (0.7097) and mean
wind speed (0.3875), representing rainfall-wind coupling.

By transforming the correlated weather variables into
these five uncorrelated principal components, PCA not only
reduces redundancy and multicollinearity but also provides
a more compact and insightful feature representation for
subsequent modeling.

C. EXPERIMENT RESULTS

The experiment evaluated and compared the performance
of various deep learning models for STLF, as presented in
Table 4 and illustrated in Figure 13. The models include
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TABLE 3. PCA component loadings.

Weather PCAl  PCA2 PCA3 PCA4 PCAS
Variable
Rainfall 03261 04421 0.099 03817  0.709
46 54 971 35 699
Mean ; 0.0823 . 0.1419  0.086
0.5798 0.091
Temperature 38 23 204 74 094
Minimum ) ) N 0.1472  0.123
0.5036  0.2037  0.011
Temperature 39 54 57 26 478
TMSX‘TTT; 0.4424 0'356155 0.130 0"‘;1237 0.051
emperature 09 403 551
Mean Wind - 0.3188  0.079 - 0.387
Speed 02930 "6 o1 0798 g
4 6
le\f/i[ﬁlrsmg:d 0']1%5 ! 0'73%18 0250 00879 0.512
P 668 86 842
Maximum 0.1051 ) N ; 0.240
_viaxunum 0.1683  0.946 0.0751
Wind Direction 59 48 57 04 546

(a) Performance Metrics (MAPE, RMSE, MAE, MSE, NMSE)
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FIGURE 13. Comparison of Performance Metrics Across Different Models:
(a) MAPE, RMSE, MAE, MSE, NMSE; (b) R and R2.

CNN, LSTM, GRU, BiLSTM, BiGRU, Transformer, Multi-
layer ResNet, PCA-Multi-layer ResNet and DRN, along with
a PCA-DRN. The results show variations in predictive pre-
cision across the different architectures. Notably, the DRN
outperforms most baseline models, while incorporating PCA
into the DRN further improves performance. To provide
additional insights into the training behavior, the loss curves
of DRN and PCA-DRN were also plotted, as shown in
Figure 14.

Firstly, the DRN model demonstrates superior predictive
performance compared to other baseline models. Specifi-
cally, DRN, which adopts a 10-layer ResNetPlus structure,
achieves alower MAPE (0.052514) and higher R2(0.927993)
than CNN (MAPE: 0.053096, R?: 0.928768), GRU (MAPE:
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FIGURE 14. Training Loss Comparison (DRN vs PCA-DRN).

0.053170, R?: 0.923920), BiLSTM (MAPE: 0.054373, R*:
0.912835), and BiGRU (MAPE: 0.057201, R?: 0.905904).
This indicates that DRN is more effective at capturing com-
plex temporal patterns in load forecasting. Although the
Transformer model performs closely (MAPE: 0.054016, R?:
0.924876), it still underperforms relative to DRN. To further
analyze the effect of PCA and residual network architec-
ture, a Multi-layer ResNet model with the same depth (10
layers) but a conventional ResNet structure was introduced
as an ablation model. Its performance (MAPE: 0.071664,
R?: 0.900881) is notably worse than DRN, suggesting that
the ResNetPlus design offers a meaningful advantage over a
conventional ResNet with the same depth.

Secondly, incorporating PCA further improves the perfor-
mance of residual networks. The PCA-DRN achieves the
lowest MAPE (0.049994) and the highest R2 (0.934473)
across all evaluated models, outperforming the original DRN
by reducing MAPE by approximately 4.79% and increasing
R? by 0.65 percentage points. Similarly, applying PCA to
the Multi-layer ResNet structure (PCA-Multi-layer ResNet)
also yields substantial improvements over its non-PCA coun-
terpart (MAPE reduced from 0.071664 to 0.064901, R?
increased from 0.900881 to 0.908612). These ablation experi-
ments confirm that PCA effectively reduces multicollinearity
and eliminates redundant features, thereby enhancing the
model’s generalization ability and predictive precision.

The training loss curves in Figure 14, plotted on a loga-
rithmic scale, indicate that both models experience a rapid
decline in loss during the initial epochs, followed by a gradual
stabilization. Notably, PCA-DRN achieves a lower overall
loss and a smoother convergence trajectory compared to
DRN, reflecting improved training stability. These observa-
tions suggest that incorporating PCA not only accelerates
convergence but also reduces fluctuations during optimiza-
tion, implying a potential regularizing effect that enhances
the robustness of the model training process.

The improvement of PCA-DRN can also be visually
observed in Figure 15, which compares the predicted load
generated by PCA-DRN with the actual load, showing a close
alignment between predicted and actual values.
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FIGURE 15. The comparison of PCA-DRN prediction with the actual load.

Beyond predictive performance, the computational over-
head of the two DRN variants was also analyzed to assess
their practicality for real-time deployment. Table 5 presents
the comparison results. The baseline DRN model utilized
only temperature features, while the PCA-DRN incorpo-
rated multiple weather variables (temperature, wind speed,
and rainfall) and applied PCA to reduce dimensionality.
Despite the increase in input diversity, the introduction of
PCA only slightly increased the model parameters by 0.4%
(from 111,544 to 112,024), indicating negligible growth
in model size. The total training time also showed mini-
mal change, with a difference of less than 1%. Notably,
PCA significantly improved inference efficiency, reduc-
ing the single-sample prediction time from 5.95 ms to
540 ms (a reduction of 9.2%). This improvement sug-
gests that PCA effectively mitigated the computational cost
introduced by additional features, enabling faster forward
passes while maintaining the model’s representational capa-
bility. Considering the hourly forecasting horizon, these
sub-6 ms inference times confirm that both models are
well-suited for real-time deployment in practical STLF
applications.

In summary, DRN outperforms conventional CNN, RNN-
based, and Transformer models even without PCA, and
the inclusion of PCA leads to additional improvements.
These findings demonstrate that integrating PCA into the
data preparation stage provides a practical and effective
approach to enhance both predictive accuracy and computa-
tional efficiency in DRN-based STLF models.

D. STATISTICAL SIGNIFICANCE TESTING

To determine whether the performance improvement of
PCA-DRN over DRN is statistically significant, a non-
parametric Bootstrap resampling procedure with 10,000
iterations was applied to the sample-wise MAPE differ-
ences between the two models’ predictions. The PCA-DRN
model achieved a lower mean MAPE (0.049994 4+ 0.088989)
compared to the DRN model (0.052514 £ 0.106031). The
Bootstrap analysis yielded a mean difference of 0.002520,
with a 95% confidence interval of [0.001409, 0.003658],
which is entirely greater than 0. These results confirm that
the reduction in prediction error achieved by PCA-DRN is
statistically significant at the 95% confidence level, indicat-
ing that the improvement is unlikely to be due to random
variation.
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TABLE 4. Comparison of performance metrics across different models.
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TABLE 5. Comparison of performance metrics across different models.

Trainin, Inference Inference
Model Parameters - g . Time / Sample
Time (s) Time (s)
(ms)
1425.77
DRN 111544 3076 2.172467 5.951963
PCA-DRN 112024 11;35%578 1.970398 5.398351

TABLE 6. R2 of PCA-DRN under different missing rates.

Missing Rate (%) R?
0 0.934473
5 0.873494
10 0.879152
20 0.891214

E. ROBUSTNESS TESTING

To evaluate the robustness of the proposed PCA-DRN model
under incomplete data scenarios, different levels of missing-
ness were introduced to the input features (5%, 10%, and
20%), and the model performance was assessed in terms
of R2. As shown in Table 6, the R? score decreases sub-
stantially from 0.934473 to 0.873494 when 5% of the data
are missing, indicating that even a small amount of missing
information noticeably affects model accuracy. Interestingly,
when the missing rate increases to 10% and 20%, the R?
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values slightly recover to 0.879152 and 0.891214, respec-
tively. Although performance decreases compared to the
complete dataset, the model consistently maintains R? val-
ues above 0.87 even under 20% missingness, demonstrating
that PCA-DRN retains acceptable forecasting accuracy and
exhibits robustness against data incompleteness. This coun-
terintuitive trend may result from the regularizing effect of
data imputation, which can help mitigate overfitting under
moderate missingness. Nevertheless, all missing-data scenar-
ios yield lower R? scores compared to the complete dataset,
underscoring the importance of high-quality and complete
input data for achieving optimal forecasting performance.

F. SUMMARY

The experimental results provided several important insights.
First, temperature emerged as the most dominant weather
variable, with the DRN model using only temperature
achieving the lowest MAPE (0.052514) and the highest R?
(0.927993). In contrast, including wind speed or rainfall indi-
vidually reduced predictive accuracy, while combining these
variables with temperature did not yield further improve-
ments. This finding underscores that in Malaysia’s tropi-
cal climate, temperature largely drives electricity demand,
whereas additional weather variables may introduce noise
or overfitting risks without offering substantial predictive
benefits.

Second, the DRN outperformed baseline deep learning
models, including CNN, LSTM, GRU, BiLSTM, BiGRU,
Transformer, and a conventional multi-layer ResNet, demon-
strating its ability to capture complex temporal dependencies
in load data. The 10-layer ResNetPlus structure used in the
DRN was particularly effective in improving forecasting pre-
cision compared to a traditional ResNet of equal depth.

Third, PCA proved to be an effective dimensionality reduc-
tion technique for handling high-dimensional meteorological
data. The proposed PCA-DRN achieved the best overall
performance (MAPE: 0.049994, RZ: 0.934473), improv-
ing MAPE by 4.79% and R? by 0.65 percentage points
compared to the baseline DRN. PCA effectively reduced fea-
ture redundancy and multicollinearity, leading to improved
generalization, faster convergence, and a smoother training
process.

In addition, a non-parametric Bootstrap analysis with
10,000 resamples verified that the performance improve-
ment of PCA-DRN over DRN was statistically significant,
as the 95% confidence interval of the mean difference did
not include zero, underscoring the reliability of the results.
Robustness testing further indicated that the PCA-DRN main-
tained acceptable performance even under scenarios with up
to 20% artificially introduced missing weather data, con-
firming its resilience to incomplete inputs. Computational
analysis also showed that PCA slightly reduced inference
time despite the inclusion of additional weather variables,
supporting its practical deployment for real-time forecasting
applications.
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While these findings provide valuable insights into load
forecasting in a tropical climate, their generalizability to other
climatic conditions warrants careful consideration. In tem-
perate regions, seasonal variations in temperature, heating
demand, and renewable energy integration may significantly
alter the relative importance of weather variables. In arid
regions, factors such as extreme temperatures and low humid-
ity could lead to different consumption behaviors. Therefore,
the observed dominance of temperature in Malaysia’s tropical
context may not directly translate to these regions, highlight-
ing the need for further research to validate and adapt the
proposed framework under diverse climatic conditions.

Collectively, these findings emphasize the dominant role
of temperature in tropical STLF, the effectiveness of resid-
ual networks in improving predictive performance, and the
value of PCA in enhancing both accuracy and computa-
tional efficiency. At the same time, they highlight the limited
contribution of wind and rainfall in this context, suggesting
that careful feature selection and dimensionality reduction
are crucial for balancing model complexity and forecasting
precision.

VI. CONCLUSION

This study proposed a PCA-DRN for STLF using the
Malaysia dataset, integrating multidimensional weather fea-
tures with residual deep learning and dimensionality reduc-
tion techniques. The experimental results demonstrated that
temperature is the most critical meteorological factor influ-
encing load demand in Malaysia’s tropical climate, while
incorporating wind speed and rainfall, either individually
or in combination with temperature, did not yield notable
improvements and, in some cases, slightly degraded fore-
casting performance. These findings underscore the dominant
role of temperature in relatively stable tropical environments
and highlight the importance of careful feature selection
when introducing additional meteorological variables. The
integration of Principal Component Analysis into the DRN
framework effectively reduced feature redundancy and mul-
ticollinearity, leading to enhanced generalization and com-
putational efficiency. The proposed PCA-DRN achieved the
best overall performance, with a 4.79% reduction in MAPE
and a 0.65-point increase in R? compared to the baseline
DRN, while also exhibiting smoother convergence and more
stable training behavior. Furthermore, robustness testing con-
firmed that the PCA-DRN maintained acceptable forecasting
accuracy under incomplete data conditions, and computa-
tional analysis indicated efficient inference speeds suitable
for real-time operational deployment.

Looking ahead, several promising research directions
emerge from this work. Future studies could investigate
more advanced gradient optimization strategies, such as Nes-
terov accelerated gradient descent [89], to further improve
convergence speed, enhance training stability, and reduce
sensitivity to initialization, which is particularly important for
deep residual networks with complex architectures. In par-
allel, developing innovative architectural designs beyond
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the current residual framework—such as integrating hybrid
modules that combine convolutional, recurrent, and attention-
based components—could enable the model to capture both
local and long-term dependencies in load—weather interac-
tions more effectively. Furthermore, extending the framework
to temperate and arid regions will be essential for eval-
uating its generalizability, as the relative importance of
meteorological variables may shift significantly in climates
with pronounced seasonal changes or extreme environmen-
tal conditions. Such cross-climate validation would provide
deeper insights into how weather factors influence elec-
tricity consumption across diverse contexts. By combining
residual deep learning with dimensionality reduction, the
proposed PCA-DRN not only improves forecasting accu-
racy, efficiency, and robustness in tropical power systems
but also establishes a versatile foundation for developing
next-generation forecasting models that can adapt to varying
climatic and operational challenges.

ABBREVIATIONS

The following abbreviations are used in this manuscript:
Abbreviation  Full name.
Adam Adaptive Moment Estimation.
ARIMA Autoregressive Integrated Moving

Average Model.
ANN Artificial Neural Network.
BiGRU Bidirectional Gated Recurrent Unit.
BiLSTM Bidirectional Long  Short-Term
Memory.

CNN Convolutional Neural Network.
DNN Deep Neural Network.
DRN Deep Residual Network.
ELM Extreme Learning Machine.
ESN Echo State Network.
GRU Gated Recurrent Unit.
LSTM Long Short-Term Memory
LTLF Long-Term Load Forecasting.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MSE Mean Square Error.
MTLF Medium-Term Load Forecasting.
MW Megawatt.
NMSE Normalized Mean Square Error.
PCA Principal Component Analysis.
R Correlation Coefficient.
R? Coefficient of Determination.
RBF Radial Basis Function.
RNN Recurrent Neural Network.
SELU Scaled Exponential Linear Unit.
STLF Short-Term Load Forecasting.

SVR Support Vector Regression.
VSTLF Very Short-Term Load Forecasting.

APPENDIX
Malaysia dataset:
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1. Load dataset https://www.gso.org.my/SystemData/
SystemDemand.aspx
2.Weather dataset https://www.met.gov.my/
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