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ABSTRACT This research optimizes an electric vehicle (EV) sharing system for a university campus,
focusing on different demand patterns and peak times within an Intelligent Transportation System (ITS)
framework. The main objectives are to reduce the number of unserved demands and operational costs.
A simulation model was developed in MATLAB, utilizing the Non-dominated Sorting Genetic Algorithm
(NSGA-II), a powerful multi-objective optimization technique that balances conflicting objectives to achieve
the best trade-offs for operational efficiency. In addition to conventional decision variables, dynamic dual
relocation thresholds and charge levels are introduced as decision variables to enhance optimization. The
study compares two scenarios: Equally Distributed Demand (EDD) and Non-Equally Distributed Demand
(NEDD), customized for the University Putra Malaysia (UPM) campus. Findings indicate that the NEDD
scenario, which concentrates on specific demand areas, effectively decreases unserved demands and oper-
ational costs. Additionally, a station-specific approach expanded the solution space, improving adaptability
and resulting in notable reductions in operational costs and smaller but meaningful improvements in unserved
demands, especially during peak periods. By setting station-specific relocation thresholds and charge levels,
resources were deployed efficiently, minimizing unnecessary relocations. The use of dynamic values for
dual relocation thresholds and charge-to-work levels further optimized the process, reducing operational
costs significantly, with a lesser impact on unserved demands across both scenarios. This research offers
valuable insights into the implementation of EV sharing systems in educational institutions, emphasizing the
advantages of focused resource allocation and the integration of dynamic decision variables.

INDEX TERMS NSGA-II, multi-objective optimization, EV sharing system, smart campus, car sharing
system, vehicle relocation, charging strategies, ITS.

I. INTRODUCTION
EVs are revolutionizing the transport sector, providing a
greener alternative to conventional internal combustion en-
gines. This shift has been necessitated by the pressing need

to reduce greenhouse gas emissions and address the growing
concerns about climate change. Governments and organiza-
tions around the world have acted on ambitious goals of
cutting emissions; hence, EVs are in place for part of the
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future solution to transportation [1], [2]. Besides their en-
vironmental benefits, EVs would be great contributors to
improve ITS, enabling smoother traffic flow and thus pre-
venting congestion, which in turn raises overall transportation
efficiency [3].

Existing studies have emphasized operational efficiencies
and cost savings associated with EV sharing systems. For
instance, the availability of vehicle stations and the proximity
of the stations to the customer destination points are some of
the paramount issues that influence the service quality. Also,
the infrastructure and operational costs of those systems are
driven by multiple elements that include fleet size, number of
stations, and vehicle chargers or timely availability of vehicles
at strategic positions [4], [5], [6], [7]. Most research on EV
sharing systems has focused intensely on operational efficien-
cies in urban areas, highlighting fleet management strategies,
charging infrastructure, and mitigating environmental factors
like weather and public transit availability [4], [8]. However,
these studies may neglect certain challenges that can be more
specific to environments with both concentrated and variable
human demand, such as that of university campuses [9].

University campuses, with high population density domi-
nated by short trips, are an ideal location for the siting of
an EV sharing system due to the controlled environment
and predictable travel patterns by students, faculty, and staff
[10]. Implementing EV sharing systems on campuses presents
a unique opportunity to promote sustainable transportation
while catering to the specific mobility needs of the campus
community [11]. However, optimizing these systems in small-
scale environments like university campuses poses significant
challenges, particularly due to the diverse distribution of de-
mand [12], which lead into the needed relocation vehicle
that can serve more demands without using alarm to have
threshold relocation of vehicles in the supplier station maybe
lead to unbalance system then user dissatisfaction, Moreover,
the need for vehicles to charge adds to the waiting times for
relocation, which, in turn, increases operational costs. Using
a decision variable to manage charge levels and optimize ve-
hicle availability can help address this issue effectively [13].

Recent studies have explored the feasibility of shared
electric mobility systems specifically in campus settings, con-
sidering various vehicle types such as electric cars, e-bikes,
and scooters. Carrese et al. (2017) investigated the imple-
mentation of an electric car-sharing system at Roma Tre
University, focusing on factors that influence service uptake,
such as user behavior [10]. Galatoulas et al. (2018) studied
such economic feasibility in the possible demand and costs
for establishing an electric vehicle sharing system for aca-
demic communities, highlighting economic feasibility [15].
A study was conducted for university Malay (UM) in 2021
as presented by Yin et al. to understand the pattern of usage
and to identify the various factors that determine the shared
transport systems, involving electric scooters. As such, they
identified a few key factors influencing the usage patterns:
daily travel modes, road features, age, and weather conditions.
[11]. Bitencourt et al. (2024) analyzed operational strategies

of the optimal shared e-bike system on campus, focusing
on user-based and operator-based relocation schemes with
the ability to balance out demand effectively. Integration of
other smart campus technologies such as photovoltaic systems
and dynamic energy costs was considered [15]. By reading
these studies, insight into issues of adoption, feasibility, and
sustainability regarding shared electric mobility services at
university campuses can be gained. However, they gave more
emphasis to feasibility, behavioral aspects, and environmental
sustainability than to the operational optimization strategies
which could be used for the improvement of user satisfaction
and operational cost, such as vehicle relocation or dynamic
charging.

Within reputation and benefit, UPM University initiated
an EV sharing program within the campus with the motive
of establishing a name as a smart campus, saving time for
traveling students and staff. This paper accordingly represents
the results of a collaborative joint research by KYUTECH,
Japan, and UPM in designing an optimal one-way EV sharing
system with reservations for transportation within the internal
campus using single-seat COMS cars made by Toyota Auto
Body.

This study contributes by developing a simulation model
for an EV sharing system suited to UPM campus by con-
sidering decision variables of dual relocation threshold and
charge to work in two different demand distribution scenarios
(NEED, EDD), Detailed descriptions of these scenarios are
provided in the (4. Results and Discussion section). In this
work, NSGA-II has been utilised as an optimization tool to
balance dual objectives (minimizing operational costs and
reducing unserved demands). Additionally, A novel station-
specific approach is also implemented to expand the solution
space and enhance resource allocation at individual stations,
thereby using dynamic values for dual threshold relocation
and charge level to work at each station based on the needed
amount, providing more granular levels of optimization. Com-
paring the performance of the EV system in EDD and NEDD
scenarios, the present work has provided some insight into
the most efficient management strategies related to shared
EVs in a campus environment. By using dynamic values of
the decision variables can enhance the optimization in both
the large-scale scenario (EDD) and the small-scale scenario
(NEDD). Results obtained from this research will fill in the
existing gaps in literature and create a useful framework for
the future implementation of EV-sharing systems in similar
contexts.

II. RELATED WORK
A. EV SHARING SYSTEMS IN URBAN ENVIRONMENTS
Numerous studies have examined the design and imple-
mentation of EV sharing systems in urban areas regarding
customer satisfaction, vehicle utilization, infrastructure needs,
relocation strategies, and optimizing charging strategy. For
instance, Hua et al. (2019) examined operational cost strate-
gies as a critical indicator by highlighting vehicle utilization
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and customer satisfaction [16]. Similarly, according to Jung
et al. (2017), establishing an EV sharing system in a densely
populated location is difficult and necessitates efficient car
distribution through robust charging infrastructure [17]. Sev-
eral studies for relocation and charging strategies have been
developed that can provide better availability and operational
costs for the vehicles in the urban environment. For exam-
ple, Caggiani et al. (2020) look at vehicle-to-grid- technology
to optimize the management of energy and the availabil-
ity of vehicles [18]. Additionally, Boyacı et al. developed
two optimization models: a multi-objective mixed-integer lin-
ear programming (MILP) model for one-way EV sharing
systems with reservation, and an extended multi-objective
mixed-integer multi-level programming (MMILP) model that
integrates vehicle and personnel relocation. These models fo-
cused on balancing user satisfaction, operational costs [4], [8].

B. EV SHARING SYSTEMS ON UNIVERSITY CAMPUSES
In contrast to urban settings, university campuses present
unique challenges, including limited space, concentrated de-
mand during specific hours, and the need for sustainable
solutions that align with green initiatives. Recent studies have
specifically examined these challenges and offered tailored
solutions for campus environments, focusing on different
types of electric vehicles such as electric cars, e-bikes, and
e-scooters.

At Roma Tre University, Carrese et al. (2017) suggested
EV sharing system with an emphasis on the behavioral factors
influencing its adoption. Using both revealed and stated pref-
erence surveys, they developed a model that predicted modal
shifts driven by attitudes such as environmental awareness
("Green Attitude") and openness to shared services ("Sharing
Attitude"). These factors were found to significantly impact
the choice of electric cars within the university community
[10]. The university community’s mode choice, particularly
for electric cars, was found to be highly influenced by im-
portant variables including "Green Attitude" and "Sharing
Attitude," which were highlighted in this study.

Similarly, the possible demand and expenses of starting an
EV sharing business aimed at academic communities were
also investigated by Galatoulas et al. (2018). In order to de-
termine the economic viability of deploying such systems in
academic settings, they carried out comprehensive surveys to
evaluate mobility needs and examined the expenses of the fleet
and infrastructure [14]. By investigating the usage of shared
electric scooters at UM, Moosavi et al. (2022) expanded on
this line of investigation. Using machine learning models to
forecast usage trends, they discovered a number of important
parameters affecting usage, including road features, weather,
demographics, and daily travel modes [11]. Their results em-
phasized how crucial it is to comprehend the unique needs
of each community when creating sustainable mobility solu-
tions, especially for e-scooters.

Furthermore, at the University of Tennessee, Knoxville, Ji
et al. (2014) investigated a completely automated electric bike
(e-bike) sharing system. They assessed system dependability

under various configurations by simulating different demand
situations, emphasizing the significance of battery manage-
ment and charging procedures to preserve service availability
[19]. In order to maximize the sustainability of the e-bike
sharing system, the study showed how well off-board battery
charging and swappable batteries work to guarantee reliable
service.

Moreover, Yin et al. (2021) investigated the factors that
motivate service sharing in Ningbo University and the us-
age patterns of shared transportation in high-education zones.
They discovered that the adoption rates of electric vehicles
and shared bikes in university regions were highly impacted
by socioeconomic variables, vehicle density, and service fees.
They found that socioeconomic factors, vehicle density, and
service costs significantly influenced the adoption rates of
shared bikes and electric vehicles in university areas [9].
Their study revealed a knowledge gap about how to efficiently
balance supply and demand, which is crucial for campus
environments with distinct mobility patterns, especially for
electric cars and bikes.

Piazza et al. (2021) also contributed to this area by inves-
tigating the optimal design for a combined electric mobility
service and an energy system based on renewable energy
in an Italian university campus. They presented a mixed-
integer linear programming model that defines the optimal
configuration of shuttles, bikes, and cars with the purpose of
meeting campus needs, while integration of renewable energy
solutions underlines synergies with electric mobility and en-
ergy supplies at the local level [20]. Furthermore, Bitencourt
et al. (2024), studied user-based and operator-based relocation
schemes to balance demand and integrated dynamic energy
tariffs, providing a basis for understanding charging and re-
location strategies in campus environments, particularly for
electric bikes costs [15].

C. RESEARCH GAPS IN LITERATURE
Despite extensive research on EV-sharing systems in urban
areas, there is a significant research gap regarding how the
specific demand of the university campus is met. Some other
unique problems exist with the university campus such as
the non-uniform distribution of demand, limited space, and
concentrated demand at certain locations, which are often
not considered in the prevailing models assuming even dis-
tribution of demand. While relocation strategies with dual
thresholds, along with charging levels, are rarely considered
as simultaneous decision variables, allowing dual threshold
relocations enables some of the vehicles to be located around
essential serving stations with the surplus relocating through
the system toward demand areas, which is an essential require-
ment for efficiency in EV sharing systems. Meanwhile, charge
level can be a decision variable to reduce operational cost
and improve service availability through better optimization
of vehicle usage and reduction of downtime for charging.

Bitencourt et al. (2024) addressed research related to EV
sharing system in university by relocation and charging strate-
gies using a user-based e-bike relocation optimization model
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and an operator-based e-bike relocation optimization model
[15]. Similarly, Piazza et al. present a mixed-integer linear
programming model to integrate electric shuttles, electric
bikes, and cars with renewable energy sources [20]. However,
both studies had their limitations in accommodating concen-
trated and fluctuating demand patterns typical on university
campuses, in particular to electric cars. Their limitations re-
stricted the reliability of static or predictive models that lacked
flexibility for dynamic changing of the outputs with changing
demands.

Most methods presently in existence are rather static and
have failed to consider this dynamic nature, so critical at
university settings where demand is highly concentrated and
time-of-day-dependent. This paper fills the research gaps by
presenting a new dynamic optimization model, incorporating
dual threshold relocation strategies and adaptive charging of
EV, fitted to the unique demand profile and space constraints
found on university campuses. It optimizes vehicle reloca-
tion and charging together to achieve further improvement
in system efficiency, reduction of operating costs, and higher
customer satisfaction than the previous studies that did not
consider campus-specific dynamic operational optimization.

III. METHODOLOGY
This section describes the modeling, simulation, and opti-
mization methodology for the electric vehicle sharing system
on a university campus. The whole structure is divided into
three major parts: (1) Model Description-naming the structure
of the EV sharing system including its environment, vehicles,
stations, and operational processes; (2) Simulation Model-
which simulates the performance of the system in order to
calculate unserved demands and operational costs with gener-
ated data; and (3) Optimization Techniques-by using NSGA-II
in two different ways: one is with uniform decision variables
across all of the stations, and another is with station-specific
approach in order to enhance system adaptability.

A. MODEL DESCRIPTION
This section introduces the EV sharing system adapted to
university campus demands and focuses on the determina-
tion of served demands and operational costs. The system
characteristics are adapted from the large-scale city optimiza-
tion framework developed by Boyaci [4], designed for Nice,
France. Key adaptations include modifications to demand
modeling, station placement, and fleet size, tailored to the
unique spatial and usage patterns of a campus environment.
This adaptation ensures that the system meets the specific
needs of a university, characterized by concentrated demand
in certain hotspots and unique operational challenges.

1) ENVIRONMENTS INFORMATION
Using Google Maps, we obtained a map of the UPM campus
to identify the station locations based on key areas such as
major faculties, offices, and food courts, which attract the
highest concentration of people. This approach mirrors the

Roma Tre University EV sharing project, where stations were
strategically placed near key facilities to serve students and
staff efficiently [10]. The environmental information covers
the UPM university area, with dimensions of 3894 meters in
height and 4372 meters in width. After determining the station
locations on the map, we created a graph representing the
environment, including the stations and routes, as depicted in
Fig. 1.

2) STATIONS
Stations are strategically placed throughout the campus to en-
sure maximum coverage and accessibility. Stations are located
at key points such as building entrances, cafeterias, and other
common areas. This strategy is inspired by similar implemen-
tations in the University of Tennessee e-bike sharing project,
where station placement was optimized to ensure accessibility
and maximize system reliability by serving areas with the
highest demand, such as key campus facilities [19]. Parking
spots for stations are equal. Stations are equipped with charg-
ing infrastructure to ensure that EVs can be charged between
uses, maintaining the system’s operational efficiency, number
of parking spots and charging stations are not considered.

3) VEHICLE
The fleet of EVs is the core component of the sharing system.
Each vehicle is designed to meet the transportation needs
of the university campus. Initially, vehicles were distributed
equally to each station.

4) COVERAGE ZONE
The coverage zone defines the geographical area that each
station can effectively serve. This ensures that most demands
fall within a station’s serviceable area of a station, reducing
waiting times and improving service reliability. Stations are
placed to maximize coverage and accessibility, ensuring that
key areas of the campus are within the coverage zones of one
or more stations.

5) OPERATIONS
a) Charging operations: The charging process begins by
identifying vehicles that need to be charged [12], i.e., those
whose battery levels have dropped below the Threshold Level
to Charge. These vehicles are removed from the service list
and moved to the chargingVehicles list (as shown in fig. 2, 1).
During the charging process, the system monitors battery lev-
els, and vehicles exceeding the Charge Level to Work as a
decision variable can temporarily be used to serve demands
if needed. These vehicles are returned to the charging process
after completing their assigned trips, ensuring minimal inter-
ruption to the charging cycle (as shown in fig. 2, 2). Once fully
charged, the vehicles are moved back to the available Vehicles
table, ready to be deployed again (as shown in fig. 2, 3).
This dynamic system optimizes vehicle availability and
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FIGURE 1. Identification of stations based on faculty locations and buildings on the university campus, and conversion of the campus map into a graph.

FIGURE 2. Charging operations.

charging efficiency, ensuring that vehicles are almost avail-
able when demand arises while maintaining efficient battery
management.

Parameters used for simplification in a simulation and op-
timization can be seen in Table 1. Note herein that all the
values are scaled for simplicity and do not directly relate to
any real-world specifications of EVs. For your reference only,
100 joules scaled approximately corresponded to a real-world
value of about 0.000028 kWh. With this scaling, the relations
for energy consumption, charging, and available vehicles hold
across different scales of parameters. This dynamic system
optimizes vehicle availability and charging efficiency while
maintaining effective battery management.
b) Relocation algorithm: The relocation algorithm is de-
signed to ensure efficient distribution of electric vehicles

TABLE 1. Fixed Vehicle Parameters

(EVs) across the campus, responding dynamically to fluctu-
ating demand throughout the day. This approach was inspired
by similar research conducted for one-way electric car-sharing
systems, which used a dynamic threshold-based method to
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FIGURE 3. Serving demands for EV sharing system with reservation.
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optimize vehicle relocation and minimize inefficiencies in
vehicle distribution [21]. However, unlike the urban-focused
approach, which primarily dealt with broader urban mobil-
ity challenges, our relocation algorithm is specifically tai-
lored to a university campus environment, addressing unique
operational needs such as concentrated demand during peak
academic hours and the availability of campus staff for reloca-
tions. This process relies on two key thresholds. The first, re-
ferred to as Relocation-Threshold-1, signals when a station’s
vehicle count drops below a critical level, indicating that more
vehicles are needed at that location to meet demand. On the
other hand, Relocation-Threshold-2 marks the point at which
a station has more vehicles than it requires, prompting the sys-
tem to redistribute the surplus to under-supplied stations. The
algorithm continuously monitors vehicle levels at each station,
comparing them to these thresholds to determine whether
relocations are necessary. When a station triggers Threshold
1, the system identifies nearby stations exceeding Threshold
2, facilitating the transfer of surplus vehicles. To manage
these transfers, employees working in two shifts (8 AM-2 PM
and 2 PM-8 PM) are responsible for executing relocations.
However, if employee availability becomes a limiting factor,
such as when one station lacks sufficient staff, the system
applies the same relocation logic to employees, reassigning
staff from stations with extra personnel to those requiring
assistance. Since the EVs used in the system are one-seat
vehicles, relocating employees poses an additional logistical
challenge. To address this, different modes of transport, such
as the shuttle, are used to move employees between stations,
ensuring they are available where needed. This approach helps
maintain optimal vehicle and personnel distribution through-
out the day. By balancing vehicle availability across stations
and relocating employees as required, the algorithm enhances
the system’s responsiveness, reducing unserved demands and
ensuring efficient fleet operation across the campus network.
c) Employee: Employees play a crucial role in maintaining
and operating the EV sharing system. Employees work in
shifts to ensure continuous operation of the system. They are
responsible for tasks such as relocating EVs, maintaining ve-
hicles, and assisting users. Their presence ensures the smooth
operation of the system, particularly during high-demand pe-
riods.

B. SIMULATION MODEL
The simulation aims to run the EV sharing system model to
calculate the number of unserved demands and the operational
cost of the system. This is based on generated demand data
over a 12-hour period, from 8 AM to 8 PM, which represents
the most active working hours within a university setting. The
simulation helps assess the effectiveness of the model under
different demand scenarios, using various statistical distribu-
tions to simulate realistic conditions [19].

1) GENERATED DEMAND
The demand generation process is essential for simulating
the operational dynamics of our electric vehicle (EV) sharing

system, due to the lack of real data. This involves gener-
ating demands over a 12-hour period using a combination
of Poisson, Uniform, and Normal distributions to accurately
reflect temporal and spatial variations typical of an EV sharing
system on a university campus.

Poisson Distribution: This distribution is used to model the
number of demands generated per unit of time. It is well-
suited for events that occur independently and sporadically
over time, which is characteristic of demand occurrences in
an EV sharing system. The Poisson distribution is defined by:

P (K) = λke−λ

k!
(1)

where P(K ) is the probability of exactly K demands occur-
ring in each interval, λ is the average number of generated
demands (set to 4 demands per minute), and K is the actual
number of demands occurring in that interval.

Uniform Distribution: This distribution is employed to gen-
erate random spatial coordinates for the origin and destination
of each demand. By ensuring that every point within the
specified area has an equal probability of being selected, it
provides a fair and unbiased spatial distribution. The Uniform
distribution is defined by:

f (X) = 1

b − a
, a ≤ x ≤ b (2)

where f(X) is the probability density function for the variable
X , X represents a randomly generated coordinate within the
environment’s bounds, and a, b denote the lower and upper
limits of the area.

Normal Distribution: This distribution models the tolerance
for each demand, capturing realistic variations where most
values cluster around a mean with some standard deviation.
The Normal distribution is defined by:

f (x) = 1

σ
√

2π
e− (x−μ)2

2σ2 (3)

where f(x) is the probability density function for tolerance
time x, mean tolerance (μ) of 10 minutes and a standard
deviation (σ ) of 3 minutes.

By combining these three distributions, we effectively
replicate a realistic demand environment for the EV shar-
ing system, where the Poisson distribution controls demand
frequency, the Uniform distribution assigns unbiased spatial
coordinates, and the Normal distribution captures realistic
user wait tolerance. This method enables an effective simu-
lation of demand patterns in a campus environment, allowing
for a thorough evaluation of system performance in the ab-
sence of real-world data.

The morning peak hour demand in the NEDD scenario, for
instance, was based on common observations of high mobil-
ity near university gates during the start of regular academic
weekdays. Such assumptions are necessary to create realistic
demand models when real data is unavailable. However, we
acknowledge that these patterns may vary during weekends,
holidays, or summer months, which are not fully captured in
this model. The focus here is primarily on typical weekday
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operational dynamics during active semesters, which help ad-
dress critical operational challenges.

2) SERVING DEMAND
Once the demands are generated, they need to be served to
complete the process, as shown in Fig. 3. The procedure first
identifies stations within the coverage zone radius that can
serve the demand. Next, it determines the destination station
within its coverage radius. Two conditions must be met: the
source station must have at least one available vehicle, and
the destination station must have at least one available park-
ing spot. If these conditions are met, the demand is served.
Otherwise, it is deferred to the next time interval or marked as
unserved after 10-time intervals.

3) DECISION VARIABLES, CONSTRAINS AND FORMULATIONS
a) Decision variables: Nine variables are considered for gen-
erating and serving the demand to pick up from source stations
and drop-off into the destination station which are:
� var1: Number of Parking Spots: Represents the total

parking spots available across all stations. Sufficient
parking is crucial for accommodating EVs, charging, and
determining the overall system capacity.

� var2: Number of Vehicles: Indicates the total number
of vehicles in the system, equally distributed across sta-
tions. This ensures adequate supply to meet demand.

� var3: Number of Employees in First Shift (8 AM-2
PM): Employees in this shift handle vehicle relocation
and customer service. Efficient staffing is necessary for
smooth operations and managing labor costs.

� var4: Number of Employees in Second Shift (2 PM-8
PM): Like the first shift, these employees continue oper-
ations, ensuring consistent service throughout the day.

� var5: Charge Level to Work: Specifies the minimum
battery level required for a vehicle to operate. This helps
manage fleet availability while balancing battery health.

� var6: Threshold to Charge: The battery level at which
vehicles are sent for charging. This is vital for maintain-
ing service reliability and minimizing downtime.

� var7: Coverage Zone Radius: Defines the area within
which vehicles can operate to meet demand. This radius
must be optimized to cover all significant demand areas
without overstretching resources.

� var8: Relocation-Threshold-1: The minimum number of
vehicles at a station below which relocation is stopped.
This prevents over-relocation and ensures that vehicles
are available to meet immediate demand.

� var9: Relocation-Threshold-2: The maximum number
of vehicles above which vehicles are relocated to other
stations. This helps in balancing vehicle distribution
across the network.

We selected these variables because they are crucial for
optimizing the performance of the EV sharing system. The
total number of parking spots and vehicles ensures adequate
capacity and service availability. Dividing employees into

shifts helps manage labor costs and maintain consistent cov-
erage. Setting the charge level to work and threshold to charge
ensures vehicles are ready when needed and preserves battery
life. Optimizing the coverage zone radius provides efficient
service within a specific area, while relocation thresholds
balance vehicle distribution, preventing over-relocation and
meeting demand at all stations. This combination of variables
enhances cost operational efficiency, and user satisfaction.
b) Constraints: There are a few constraints that should be
addressed to make the simulation in a good way during ex-
ecution:
� Each vehicle, employee and parking spot has only one

status.
� Number of total vehicles = number of parked vehicles

(available and charging vehicles) + number of moving
vehicles.

� Number of total employees = number of available em-
ployees + number of moving employees.

� Number of vehicles < Number of parking spots (var2 <

var1)
� Number of employees in the first shift < Number of

parking spots (var3 < var1)
� Number of employees in the second shift < Number of

employees in the first shift (var4 < var3)
� Relocation-threshold-1<Relocation-threshold-2 (var8 <

var9)
� Relocation-threshold-2< (Number of vehicles/ Number

of station)
c) Formulation of objectives:
� Number of Unserved Demands: Unserved demands are

critical in evaluating the effectiveness of the EV sharing
system. This metric indicates the number of demands
that the system could not fulfill.

numUnservedDemands

= |D| − numServingDemands (4)

numServingDemands =
∑

d∈D

∑

v∈V

isServingv,d (5)

Where isServingv,d is 1 if demand d is served, 0 otherwise.
|D| is the total number of generated demands
� Operational Cost of the EV System: The operational cost

of the EV sharing system at the university includes both
fixed and variable components. As a non-profit initiative,
the system is part of the university’s effort to enhance
facilities, with no costs recouped through user or student
fees.

The fixed component consists of expenses such as vehicle
depreciation, insurance, maintenance, and employee salaries:
� Employee Salary (8 RM per hour): This rate is based

on the typical hourly wage for part-time workers at
Malaysian universities, such as student assistants. On-
campus part-time employment generally ranges between
7 RM and 10 RM per hour, making 8 RM a reasonable
middle value for roles related to operating and maintain-
ing the EV system.
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� Fixed Vehicle Cost (5 RM per hour): This represents
the depreciation, insurance, and routine maintenance
costs of the vehicles. Given that the EVs operate in
a controlled environment (limited range and speed on
campus), these costs are expected to be lower than those
for urban fleets. The estimate was derived considering
the specific conditions of campus usage, which impose
less wear and tear compared to city operations.

The variable component of the operational cost includes
expenses that vary depending on usage:
� Variable Vehicle Cost (3 RM per kilometer): This cost

covers energy consumption for charging and additional
maintenance that depends on distance travel. Electricity
costs for EV charging in Malaysia are relatively low,
and minor wear-and-tear maintenance is also considered.
The 3 RM per kilometer rate accounts for charging,
occasional repairs, and tire replacement, reflecting the
moderate distance travelled and operational environment
typical of a campus setting.

These cost parameters provide a reasonable approximation
of operational expenses under typical campus conditions in
Malaysia. While these values serve as an initial assessment,
future models can refine these estimates if more specific data
becomes available.

Operational Cost = FixedCost + VariableCost (6)

fixedCost =
∑

v∈V

∑

t∈T

fixedVehicleCost × �t

+
∑

t∈T

EmployeeSalary × �t (7)

VariableCost =
∑

v∈V

∑

d∈D

isServing

× distanceorigin,destination

× variableVehicleCost (8)

� Operational Cost: The total cost of operating the EV
sharing system.

� f ixed Cost: The fixed part of the operational cost, in-
cluding salaries and vehicle costs.

� Variable Cost: The variable part of the operational cost,
dependent on distance and vehicle utilization.

� v ∈ V : Represents each vehicle in the fleet.
� t � T: Represents each time interval considered in the

simulation.
� d ∈ D: Represents each generated demand.
� fixed Vehicle Cost: Cost associated with each vehicle per

unit time (e.g., depreciation, insurance).
� Employee Salary: Salary of employees per unit time.
� �t : Time interval used for the calculation.
� is Serving: Indicator variable (1 if a vehicle is serving a

demand, 0 otherwise).

TABLE 2. Solutions for Different Decision Variables Values

� distanceorigin,dest inat ion: Distance traveled by vehicle
from origin to destination.

� variableVehicleCost: Cost per unit distance traveled
(e.g., charging, maintenance).

Considering the fixed parameters are used to calculate the
operational cost.

C. OPTIMIZATION TECHNIQUES
This section focuses on the optimization of the EV shar-
ing system, considering two approaches with the aid of the
NSGA-II in order to minimize unserved demands and oper-
ational costs while giving due consideration to achieving a
balance between the different goals of the system.

1) NSGA-II OPTIMIZATION WITHOUT STATION-SPECIFIC
APPROACH
In this study, we used NSGA-II to optimize EV sharing
system [22]. It is one of the most powerful multi-objective
optimization tools which can manage conflicting objectives to
minimize operational costs in addition to reducing unserved
demand. This method can ensure better access to the vehicles
for the users while maintaining cost efficiency.

The key benefit of using NSGA-II is that it produces a
Pareto-optimal front of solutions. A decision-maker can then
choose from a set of solutions that would balance one set of
objectives against others based on the need at hand. NSGA-II
reaches these balanced solutions with several key steps. Fig. 4
gives the flowchart for NSGA-II:
� Step1. Initialization population: We start by creating a

group of potential solutions, called a population. Each
solution is defined by set of decision variables. For ex-
ample, in our EV sharing system, these variables include
the number of parking spots (var1), number of vehicles
(var2), and number of employees in different shifts (var3
and var4). The initial values for these variables are cho-
sen randomly within specified ranges, such as 250 to 500
parking spots or 100 to 250 vehicles based on Table 3.

� Step2. Evaluation objective function: Each solution is
then evaluated using objective functions that measure its
performance. For our EV sharing system, we might use
two objectives: minimizing operational costs and mini-
mizing unserved demands. For example, a solution with
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TABLE 3. Bounds of Decision Variables for NSGA-II

FIGURE 4. NSGA-II flowchart.

200 vehicles and 250 parking spots, so on for other deci-
sions variables, will have its costs and unserved demands
calculated.

� Step3. Non-dominated Sorting: The solutions are sorted
into groups called Pareto fronts. The first front contains
solutions that are not worse than any other solution in all
objectives. For instance, if one solution has lower costs
but the same unserved demands as another, it will be on
the first front.

� Step4. Crowding Distance Calculation: To maintain
diversity in the solutions, we calculate a crowding dis-
tance. This helps us keep solutions that are spread out
and cover different parts of the possible solutions. For
example, if two solutions have similar costs, but different
numbers of unserved demands, they will be kept apart to
explore more options.

� Step5. Selection: From the sorted solutions, we select a
set for the next steps. This is done using a method that
considers both their ranking (Pareto front) and diversity
(crowding distance). For example, we might select solu-
tions that not only have the lowest costs but also explore
different levels of unserved demands.

� Step6. Genetic Operations: including two steps:
— Crossover: We combine parts of two solutions to cre-

ate new ones. For example, if one solution has 100
vehicles and another has 150, the new solution might
have 125 vehicles.

— Mutation: We introduce small changes to the solu-
tions, such as changing the charge level to work (var5)
from 60 to 65, to explore more possibilities.

� Step7. Formation of a New Population: The new solu-
tions form a new population, which is evaluated just like
the initial one. This process helps to explore the solution
space more thoroughly.

� Step8. Combination and Re-sorting: We combine the
old and new populations and re-sort them using non-
dominated sorting. This helps us to see the best solutions
from both the old and new groups.

� Step9. Selection of the Next Generation: A new set of
solutions is chosen for the next generation, again using
ranking and diversity measures. This cycle continues,
gradually improving the solutions.
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� Step10. Stopping Criteria: The process stops when we
reach a certain number of generations, or the solutions
stop improving significantly.

By following these steps, NSGA-II helps us find a set of
solutions that balance different goals, like minimizing opera-
tional costs and unserved demands in our EV sharing system.
This method allows decision-makers to choose the best solu-
tions based on their specific needs.

2) NSGA-II WITH STATION-SPECIFIC APPROACH
In order to improve our optimization results, we adopted the
station-specific approach for some of the decision variables,
for which we greatly increased the size of the solution space.
This would give more detailed information for each station
and, at the same time, allow a more efficient optimization
process. This means, by personalizing the optimization with
respect to individual stations, we achieve higher performance
even with fewer iterations and a reduced population size, sav-
ing execution time and computational resources.

For example, consider an EV sharing system with 25
stations. Without station-specific optimization, 500 vehicles
would be distributed equally, with each station receiving 20
vehicles. However, using the station-specific approach, vehi-
cles are allocated based on the unique demand at each station.
For instance, a high-demand station might receive 35 vehi-
cles, while a low-demand station might only receive 10. This
tailored distribution ensures that resources are allocated more
efficiently according to each station’s needs.

In our EV sharing system, different stations may have vary-
ing needs, such as different numbers of vehicles required or
different charging level requirements. To account for this, we
made the following adjustments:
� Relocation Thresholds (T1 and T2): Previously, we used

a uniform scalar value (an integer) for relocation thresh-
olds across the entire system. In the new station-specific
approach, T1 and T2 are represented as vectors, with
dimensions equal to the number of stations. This means
each station has its own specific threshold values, tai-
lored to its unique demand patterns. For instance, T1
represented as [T 11, T 12, . . . ., T 125] for a system with
25 stations, and similarly for T2. Each station can have a
different threshold for relocating vehicles, dynamically
adjusted to reflect specific demand patterns. For exam-
ple, a station near the gate needs more frequent vehicle
relocations compared to another station near to the fac-
ulties or food court in the morning (starting work). So,
using dynamic dual relocations threshold will help user
satisfaction and an efficient cost system.

� Charge Level to Work (C): In the uniform approach,
we used a single scalar value (an integer) for charge
levels across all stations. In the station-specific approach,
C is now represented as a vector, [C1,C2, . . . .,C25]
,with each value corresponding to a specific station.
This allows for tailored energy usage optimization. For
instance, a station with a high turnover of vehicles

might have a lower charge threshold to ensure quick
availability.

By using these station-specific vectors (T1, T2, C), we can
better optimize the system to meet the unique demands of
each station. For example, during leaving times, the vehicles
at faculty stations need more service than those in gated areas.
By dynamically decreasing the charge level variable (C) at
these locations, we can serve more users while saving re-
location time and reducing user waiting time. This targeted
approach not only helps in reducing unserved demand but
also lowers operational costs. The algorithm can focus on the
most promising areas, significantly improving overall system
efficiency and effectiveness.

IV. RESULT AND DISCUSSION
The simulation and optimization were executed using MAT-
LAB on a computer with an Intel Core i7 processor (2.3 GHz)
and 16 GB of RAM. Two scenarios were considered:
� Equally Distributed Demand (EDD): In this scenario,

similar to large-scale demand distribution, demands are
generated using a uniformly distributed random func-
tion. Both the starting point and destination of each
demand are randomly chosen within the university’s
boundaries, without any specific focus on high-demand
areas. For example, during peak hours, demand could
be randomly generated near a station or in more remote
areas, with destinations also chosen randomly, regardless
of proximity to major stations.

� Non-equally Distributed Demand (NEDD): In this sce-
nario, demands are generated based on specific, high-
demand locations within the university, such as faculties
or food courts. The source and destination are pre-
determined according to expected traffic patterns. For
instance, in the morning peak hour, demands might be
concentrated near the university gate as students and
staff arrive, with destinations at faculty buildings. Simi-
larly, around lunchtime, demands might originate from
faculties and head towards food courts, while in the
evening, demands may shift from faculty buildings to
exit gates. Unlike EDD, NEDD ensures that demands are
generated close to stations, reflecting the actual demand
patterns within the campus.

During the demand generation phase, both scenarios (EDD
and NEDD) produced 1,798 demands over a 12-hour period,
from 8 AM to 8 PM. Since our EV sharing system oper-
ates as a reservation system, the origin and destination of
each demand must be predetermined. In the EDD scenario,
these locations are randomly determined across the campus,
whereas in the NEDD scenario, demands are strategically
generated near specific stations, reflecting the practical needs
of the university environment.

A. SIMULATION METRICS
The primary objective of this study is to calculate the unserved
demands and operational costs for the EV sharing system on
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TABLE 4. Best Solutions With Decision Variables Value for NSGA-II in EDD Without Specific Station Approach

FIGURE 5. Served and unserved demands for three solutions in both scenarios.

the university campus. We present the results for both scenar-
ios based on three different solutions, Table 2, to determine
the most suitable approach for the university campus environ-
ment. The three solutions were logically assumed, Table 4,
each representing different decision variables to calculate the
operational cost and unserved demands for the EV sharing
system per day. In both scenarios, the distribution of EVs is
uniform, meaning the vehicle distribution is not specifically
tailored.

a) Unserved and Served Demands: The NEDD scenario
significantly outperforms the EDD scenario in min-
imizing unserved demands, particularly during peak
hours. In Solution 3, NEDD results in 287 unserved
demands, whereas EDD has 619 (Fig. 5(b)). This is
due to NEDD’s ability to strategically allocate ve-
hicles to predictable high-demand hotspots, such as
faculties and cafeterias. In contrast, EDD’s uniform

distribution means that demand can arise anywhere,
requiring all stations to retain their vehicles, which
leads to inefficiencies. Consequently, NEDD serves
1511 demands compared to 1179 in EDD (Fig. 5(a)),
demonstrating the effectiveness of targeted resource
allocation.

b) Operational Costs: The NEDD scenario incurs higher
operational costs due to frequent relocations to meet
concentrated demand at key locations (Fig. 6). For So-
lution 3, the cost for NEDD is 19,980.5 RM versus
17,288.4 RM for EDD. NEDD’s relocation strategy fo-
cuses resources on high-demand areas, which improves
service quality but increases operational cost, During
peak hours. In contrast, EDD’s uniform approach re-
duces relocation needs but often fails to meet localized
peak demand, leading to more unserved trips. Thus,
while NEDD requires greater resources, it ultimately
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FIGURE 6. Operational cost for three solutions in both scenarios.

delivers higher service efficiency by effectively match-
ing supply with demand.

B. NSGA-II OPTIMIZATION WITHOUT SPECIFIC-STATION
APPROACH
The NSGA-II algorithm was used as a multi-objective op-
timization tool to minimize two key objectives: unserved
demands and operational costs. Based on nine decision vari-
ables within specified bounds, NSGA-II aimed to identify
optimal solutions. With a population size of 40 and 20 genera-
tions, we identified 14 optimal solutions across both scenarios.

In this optimization, the decision variables were applied
uniformly, meaning each station received the same set of fea-
tures. For instance, if there were 100 vehicles, each of the 25
stations would receive 4 vehicles. Similarly, a uniform charge
level of 60% was applied across all stations.

The Pareto front was employed to evaluate the performance
of the optimization in both scenarios, helping to identify the

best solutions where one objective could not improve without
compromising the other. By analyzing the Pareto front, we
could assess trade-offs between objectives like minimizing
unserved demands and reducing operational costs, providing
a balanced view of system efficiency under both scenarios.

Unserved Demands: In the NEDD scenario, Solution 2
(Table 5) achieved the lowest unserved demands (105 out
of 1798), with operational costs of 2.95E+04 RM. This re-
sult highlights the advantage of targeting high-demand areas,
allowing a strategic reduction of “charge to work” (var5)
and dual relocation thresholds (var8 and var9) at stations.
For instance, predictable demand concentrations near faculty
buildings during peak hours enable the system to allocate
resources more effectively, reducing unserved demands sig-
nificantly even with slightly higher operational costs. This
targeted approach maximizes service quality in high-demand
areas, justifying the cost increase.

In comparison, the EDD scenario’s Solution 4 (Table 4)
achieved the lowest unserved demands within this scenario,
with 133 out of 1798 unserved demands at an operational cost
of 2.76E+04 RM. This solution showcases the limitations
of the uniform distribution strategy. The random, spread-out
demand pattern requires each station to retain resources
for unpredictable needs, resulting in higher relocation
thresholds across all stations. While this allocation achieves
similar unserved demand levels as Solution 2 in NEDD, the
lack of concentration in resource deployment means that
high-demand areas are not adequately prioritized, leading
to more unserved demands despite comparable resources.
The EDD approach highlights that uniform allocation limits
adaptability in addressing peak demands at specific locations.

A further comparison between Solution 4 in EDD and
Solution 6 in NEDD reveals a nuanced view of unserved
demands with comparable outcomes but differing costs. In
Solution 6 of the NEDD scenario, unserved demands re-
mained at 133, but fewer resources were used—176 vehicles
and fewer personnel—thanks to optimized decision variables:
dual relocation thresholds (Var 8 and 9 set to 3 and 5) and
a lower charge-to-work level (Var 5 at 56%). This led to
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higher operational costs due to increased efficiency. In the
EDD scenario, the same number of unserved demands (133)
was achieved with 217 vehicles and more staff. However,
inefficient resource utilization was evident, as higher dual
relocation thresholds (Var 8 and 9 set at 5 and 6) and a higher
charge-to-work level (Var 5 at 65%) resulted in underutilized
vehicles, reducing operational costs but not optimizing perfor-
mance.

Operational Costs: Among solutions with the lowest oper-
ational costs, NEDD Solution 3 and EDD Solution 2 illustrate
key trade-offs between cost efficiency and service quality.
NEDD Solution 3, with operational costs of 1.63E+04 RM,
left 857 unserved demands. This solution highlights the cost-
saving potential of targeting high-demand areas and adjusting
relocation thresholds to limit expenses. However, the narrower
service coverage meant that more demands went unmet, re-
flecting a trade-off in reducing operational costs at the expense
of broader service reach.

In comparison, EDD Solution 2 reached the lowest
operational costs of 1.33E+04 RM, with 1224 unserved
demands. The broad, uniform allocation approach reduced
operational costs by minimizing relocation, but the system’s
inability to focus on high-demand areas led to higher
unserved demands. For example, during peak hours, the
uniform distribution constrained the system’s capacity to
adjust resource allocation dynamically, impacting service
quality in high-demand locations.

Finally, examining Solutions 7 and 8 provides additional
insight into cost-efficient service. Solution 7 from the EDD
scenario with Solution 8 from the NEDD scenario, both ex-
hibits almost identical operational costs (169E+04 RM and
170E+04 RM, respectively). However, Solution 7 from the
EDD scenario results in higher unserved demands (810) com-
pared to the NEDD scenario (754), despite having a larger
fleet (154 vehicles vs. 142). The key differences lie in the
dual relocation thresholds: while threshold 1 (Var 8) remains
the same at 2 for both, threshold 2 is set at 4 for EDD and
3 for NEDD. These findings demonstrate how an optimized
dual relocation strategy can significantly enhance resource ef-
ficiency, reduce unserved demands, and maintain operational
cost-effectiveness.

Overall Analysis: The comparison between solutions il-
lustrates the impact of demand concentration on service
quality and cost efficiency Fig. 7. Solutions within the NEDD
scenario consistently demonstrated better service levels for
comparable or slightly higher operational costs due to targeted
resource allocation. Adjusting decision variables like “charge
to work” and relocation thresholds in high-demand areas al-
lowed NEDD to reduce unserved demands, particularly in
Solutions 1,2, and 6 by concentrating resources at critical
locations. This adaptability made NEDD solutions preferable
for scenarios with predictable demand patterns, optimizing
service delivery despite slightly higher operational expenses.

In contrast, EDD solutions like Solution 2 achieved cost
efficiency through a uniform allocation approach, though at

FIGURE 7. Pareto front solutions for NSGA-II in (EDD, NEDD) without
specific-station approach.

the expense of service quality. Without the flexibility to re-
spond to high-demand zones, EDD solutions required higher
fleet sizes and staff numbers, resulting in a consistently higher
count of unserved demands across comparable solutions.
These insights reveal that while EDD is more cost-effective,
NEDD’s targeted strategy is more adaptable, making it prefer-
able for maximizing service efficiency in scenarios with
concentrated demand areas.

C. NSGA-II OPTIMIZATION WITH SPECIFIC-STATION
APPROACH
The transition to station-specific decision variables in the
NSGA-II optimization process yielded significant improve-
ments in the EV sharing system’s performance. This approach
allowed us to tailor solutions more precisely to the unique
conditions of each station, leading to better overall outcomes.
By using NSGA-II with station-specific optimization and a
population size of 20 and 40 generations, we identified 14 best
solutions for both scenarios. We will present these solutions,
highlighting the impact on objective functions and the effec-
tiveness of station-specific decision variable values.

In the EDD scenario, Fig. 8. the NSGA-II without station-
specific allocation (Table 4, solution 4) achieved the lowest
unserved demands (131 out of 1798) and operational costs
(2.76E+04), using uniform relocation thresholds (Var8) of 5
vehicles and (Var9) of 6 vehicles per station. In contrast, the
station-specific NSGA-II used tailored values for each station,
resulting in better optimization. For example, in Table 6, so-
lution 3, station-specific values reduced unserved demands to
134 and operational costs to 2.40E+04. Adjusting the charge
level to work (Var5) dynamically for each station, rather than
uniformly at 65%, further enhanced both objectives. This
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FIGURE 8. Pareto front solutions for EDD scenario for NSGA-II with &
without specific-station approach.

TABLE 6. Best Solutions for EDD-NSGA-II With Specific-Station Approach

demonstrates that dynamic decision variables, like dual relo-
cation thresholds and charge levels, positively impact the EV
sharing system’s efficiency.

In the NEDD scenario, the lowest unserved demands in
NSGA-II without station-specific allocation were 105 in
Table 5, is the lowest value, compared to 99 in Table 7, with
the station-specific approach. The tailored relocation thresh-
olds and charge levels improved both cost efficiency and
system performance.

Comparing NSGA-II with uniform decision variables
against station-specific ones clearly shows that the station-
specific approach yields more efficient results in terms of both
operational costs and unserved demands. However, in some
cases—such as Solutions 5 and 8 in the NEDD scenario—the
uniform approach performed better than Solutions 10 and 13
with the station-specific approach. This may be due to the

TABLE 7. Best Solutions for NEDD-NSGA-II With Specific-Station Approach

FIGURE 9. Pareto front solutions for NEDD scenario for NSGA-II with &
without specific-station approach.

added complexity and potential overfitting caused by increas-
ing dimensionality, Fig. 9.

The station-specific optimization approach significantly re-
duced operational costs compared to the default NSGA-II
approach, for instance, in NEDD scenario, this reduction can
be explained by the dynamic allocation of resources at the
station level, where each station’s unique demand patterns are
taken into consideration. By using station-specific thresholds
for relocation and customized charge levels, the system can
ensure that vehicles are efficiently deployed exactly where
they are needed, minimizing unnecessary relocations. This
results in reduced energy consumption, lower relocation costs,
and better utilization of resources, which collectively drive
down operational expenses. Additionally, the station-specific
approach enables localized optimization, allowing for quicker
responses to changes in demand, which enhances overall ef-
ficiency and decreases operational costs significantly in the
NEDD scenario.
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Overall, the station-specific approach significantly im-
proves operational costs and slightly enhances user satisfac-
tion in EV sharing systems, though simpler solutions may
sometimes perform equally well due to reduced complexity.

V. LIMITATION AND FUTURE WORK
This study applied standard probability density functions
(PDFs) for creating demand through the generation that might
not be able to fully represent peculiarities in a university
campus. Future work could involve on-campus data collection
to develop specific PDFs which are representative of this real
world. The resolution method regarding the EV sharing sys-
tem was significantly improved by the NSGA-II algorithm.
However, this has only been done in simulations. Implement-
ing the system on the UPM campus would provide valuable
insights into its practical applicability.

The simulation model relies on several assumptions, such
as high morning demand near university gates in the NEDD
scenario. Such assumptions may consider typical weekday ac-
tivities. Variations that may occur during weekends, holidays,
or summer months may not be considered. Future scope of
work may consider seasonal changes and weekend usage to
establish a more comprehensive model for greater scenario
coverage.

This is beyond refinements in model assumptions and in-
volves the implementation of strategies developed at other
university campuses. The NEDD scenario combined with
dual threshold relocation, station-specific optimization, and
adaptive charging can be customized according to different
campus layouts and mobility needs. The dual threshold relo-
cation will help in effective redistribution of the vehicles, and
adaptive charging would consider partially charged vehicles
to assist surge demand. These strategies are going to improve
system responsiveness, optimize resource allocation, and in-
crease user satisfaction. Testing these strategies in real-world
conditions will provide valuable insights into their scalability
and broader practical benefits.

Finally, this model could be extended to other small-
scale environments-such as large companies with daytime
peak demands similar to those of universities to test how
well these models apply on scales larger than university
campuses.

VI. CONCLUSION
This study optimized an Electric Vehicle (EV) sharing system
for a university campus using the NSGA-II algorithm to re-
duce unserved demands and operational costs. By comparing
(EDD represents large-scale, NEDD represents small-scale)
scenarios, we found that focusing on high-demand areas in
the NEDD approach significantly reduced unserved demands
and improved service quality, though with higher operational
costs.

The station-specific optimization approach further en-
hanced the system by adjusting vehicle relocation thresholds
and charge levels based on each station’s needs, leading
to better cost efficiency and demand fulfillment. While the

station-specific approach was more effective overall, simpler
strategies performed adequately in certain cases, balancing
complexity and outcomes.

This research offers a valuable framework for improving
EV sharing systems in campus environments, emphasizing
dynamic resource allocation and tailored optimization to en-
hance efficiency and user satisfaction.
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