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ABSTRACT Assessment of stroke severity and recovery progress relies on a therapist’s rating or score.
It is typically administered manually with subjective input from therapists. This method is exposed to
inconsistency, particularly when involving different therapists which depends on their own experiences and
expertise. This paper presents a study on one-wayANOVAanalysis to investigate the impact of force, forearm
and elbow movement, Activity of Daily Living (ADL) equipment motion, and time duration on the MAL
score during the execution of ADLs. A Motor Activity Log (MAL) is employed as the standard clinical
assessment benchmark, where ten ADLs have been selected from the MAL standard for data collection
purposes involving 30 healthy individuals and 56 stroke patients. The analyses are divided into two which
are Analysis 1) focuses on the data with therapist rating 5, while Analysis 2) considers the data with therapist
ratings ranging from 1 to 5. Data inputs including force, forearm and elbow movement, ADLs equipment
motion, and activity time duration have been collected using sensors of force, distance, Inertial Measurement
Unit (IMU), and encoders. Output data in MAL scores are obtained manually from therapists using the cur-
rent methodology. The results indicate significant differences in 19 out of 40 cases for Analysis 1) and 85 out
of 100 cases for Analysis 2). This paper contributes towards an objective and accurate automatic scoring
system for a more consistent and efficient assessment of stroke patients’ performance and recovery progress.

INDEX TERMS Activity of daily living, ANOVA analysis, motor activity log, occupational therapy, stroke
rehabilitation.

I. INTRODUCTION
Stroke, also known as brain attack, occurs when blood flow
to the brain is disrupted or stopped, leading to brain cell death
and potential brain damage [1], [2]. There are two main types
of strokes which are ischemic and hemorrhagic.

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Bellan .

1) Ischemic Stroke: This type of stroke is caused by a
blocked artery in the brain, often due to blood clots or
other particles. It accounts formost strokes and can lead
to long-term disability or even death [3], [4], [5].

2) Hemorrhagic Stroke: This type of stroke occurs when
an artery in the brain leaks blood or ruptures, putting
too much pressure on brain cells and causing dam-
age. High blood pressure and aneurysms are common
causes of hemorrhagic strokes [6], [7].
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Risk factors for stroke include high blood pressure, heart
disease, diabetes, smoking, high cholesterol, obesity, lack
of exercise, and excessive alcohol use [8]. Some of these
risk factors can be changed, treated, or medically man-
aged to reduce the likelihood of a stroke [9]. Symptoms
of a stroke can vary depending on the affected brain area,
but they often include facial drooping, arm weakness, and
speech difficulty [10]. Early detection and treatment of stroke
symptoms are crucial, as they can significantly improve
patient treatment outcomes and reduce the risk of long-term
disability [11].

Stroke assessment is a procedure employed to examine the
intensity and implications of a stroke on a patient’s health.
These measurement tools aid therapists in recognising and
evaluating stroke symptoms, a critical factor in determin-
ing suitable treatment and enhancing patient outcomes [12].
Importantly, the approach varies for each patient, subject to
the extent of their stroke. The evaluation of motor function in
post-stroke patients is typically conducted manually by ther-
apists [13]. However, manual assessment encounters several
challenges, as it is inherently subjective and heavily reliant
on the therapist’s individual experiences [14].
The current qualitative approach requires enhancement

through the incorporation of quantitative methods. Integrat-
ing sensors alongside standard clinical assessments repre-
sents a current research direction aimed at addressing this
need. Wang et al., [15] utilised reflective marker sensors to
measure kinematic and muscular levels in 15 healthy subjects
and 15 stroke patients, employing the Brunnstrom, Fugl-
Meyer Assessment (FMA), and Modified Ashworth Scale
(MAS) clinical scales. Reflective marker sensors are also
being used by Błaszczyszyn et al., [16] tomeasure X, Y, and Z
hand coordinates in a time series 3D trajectory on 54 subjects,
involving 35 stroke patients and 19 healthy subjects, basing
their research on the Frenchay Arm Test (FAT) clinical scale.
Boukhennoufa et al., [17] utilised IMU sensors to measure
tri-axial linear acceleration and tri-axial angular velocity at a
frequency of 50Hz, collecting data from 30 healthy subjects.

Li et al., [18] utilised sEMG sensors to measure muscle
synergies, which consist of synergy vectors and synergy acti-
vation. Their research is based on the Brunnstrom, FMA,
and MAS clinical scales, collected data from 20 subjects,
including 10 healthy individuals and 10 stroke patients.
Bisio et al., [19] used a motion capture (MoCap) system
called SmartPANTS to measure three Cartesian coordinates,
limb rotation, and force, with pilot data from one healthy
subject. Additionally, Weiss and Daniele [20], Ma et al., [21],
Moore et al., [22], Li et al., [23], and Chen et al., [24] utilised
camera or image processing methods to measure parameters
such as the position, direction, and length of fingers, hand
extent of reach and movement speed, body motion, and hand
gestures, respectively.

Table 1 illustrates recent studies undertaken toward this
objective. Despite these efforts, to the best of the author’s
knowledge, there have been few dedicated studies employing
sensors to assess post-stroke patients performing Activities
of Daily Living (ADL). Practicing ADL effectively improves
fine and gross motor skills, coordination, and balance, which
are frequently impacted by a stroke [25], [26].

Therefore, this paper presents an analysis of human arm
and equipment motion data utilising Motor Activity Log
(MAL) assessment towards a quantitative scoring system.
The MAL is directly associated with the selected ADL. The
detailed explanation about MAL assessment will be elabo-
rated in Section III. Parameters of force, forearm and elbow
movement, ADL equipment motion, and time taken to com-
plete the activity are identified as the input measurement
for the stroke assessment [27], [28], [29]. Data collection
involving stroke patients and healthy individuals has been
conducted for this purpose. Two sets of one-way ANOVA
analyses have been performed to investigate the influence
of the measured parameters on the output, specifically the
MAL score obtained from therapist ratings during subject
engagement in ADLs [30], [31], [32]. Analysis (i) focuses on
the data with therapist rating 5, involving healthy individuals
and stroke patients. The aim of Analysis (i) is to examine

TABLE 1. Recent study focuses on strokes quantitative assessment by integrating sensor.
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whether there are significant differences between the healthy
individuals and the patients who are rated as 5 in the therapist
data groups. Analysis (ii) considers the data with therapist rat-
ings ranging from 1 to 5, aiming to investigate whether there
are significant differences to the input parameters among
scores. Both analyses are conducted to confirm whether the
collected data are aligned with the standardMAL assessment.

The paper is structured as follows: Section II describes
ANOVA Analysis, with an elaboration of the processes on
the collected data. Section III presents the data collection
equipment setup, providing a detailed explanation of theADL
selection, the recorded parameters, the sensors utilised, and
the data logger employed. Section IV presents the results
from the analysed data while Section V discusses the results
obtained in the previous section. Finally, Section VI con-
cludes the overall work in this paper, summarising the key
insights and suggesting the potential research areas in the
future.

II. ONE-WAY ANOVA ANALYSIS
One-Way ANOVA analysis is a valuable statistical tool, mak-
ing it a preferred choice in research data analysis [28], [33].
The ability to conduct a comparison ofmultiple groups simul-
taneously and provide a comprehensive analysis in a single
test are among its advantages [34], [35]. Additionally, the
one-way ANOVA analysis helps in identifying statistically
significant differences between group means and enabling
researchers to determine if variations are genuine effects
by calculating the p-value [36]. In this paper, the IBM
SPSS Statistics Version 27 software is employed for one-way
ANOVA analysis. The objective of this analysis is to com-
pare input sensor readings from the different therapist ratings
group. This comparison aims to examine the characteristics
of the collected input sensor data before computing therapist
ratings, ensuring alignment with the standard MAL assess-
ment.

Two sets of data have been collected for this purpose. One
from healthy individuals and the other from stroke patients.
Based on these datasets, there is an overlap in the healthy
individual’s patients who score of 5 data. Stroke subjects,
who perform activities well, are assigned a score of 5 by
the therapist and all healthy subjects are set to be score 5.
Therefore, ANOVA Analysis (i) is conducted to determine
whether a significant difference exists between these groups.
The hypothesis for Analysis (i) suggests that there is no sig-
nificant difference between the groups, indicated by a p-value
greater than 0.05. This is because, according to MAL score
ratings, stroke subjects who score 5 can perform as well as
healthy subjects.

The score distribution for stroke patients performing ADLs
task varies in the range of 0 to 5. ANOVA Analysis (ii) aims
to determine significant differences among input parameters
for stroke patients with scores ranging from 1 to 5. Data
with a score of 0 is excluded due to inconsistencies, such as
excessively high or low force parameters and various move-
ments performed without success. Some subjects take too

TABLE 2. One-way ANOVA analysis conducted.

TABLE 3. The MAL score rating for AOU [41].

long before giving up, while others quit early. This variability
introduces confusion in computation.

The hypothesis for ANOVAAnalysis (ii) is there is a signif-
icant difference among scores, as indicated by a p-value lower
than 0.05. This is grounded in the belief that each MAL score
level should exhibit distinct parameter readings, leading to a
significant difference. The analysis of the one-way ANOVA
conducted on the collected data are simplified in Table 2.

III. DATA COLLECTION EQUIPMENT SETUP
Stroke assessment is a medical evaluation employed to gauge
and diagnose the severity of a stroke patient and monitor their
recovery progress. Physical examination stands out as a key
component within this assessment. Various standard clinical
stroke assessment scales are utilised as part of the physical
examination, depending on the preference of therapists or
doctors. These standards undergo continuous improvement
and are updated over time to align with the current needs and
advancements in medical technology.

The MAL [37] is an established tool widely recognised in
assessing the quantity and quality of arm use in daily activities
among stroke survivors. Its proven valid and relevance to
evaluate upper limb function make it a keystone for measur-
ing rehabilitation outcomes in post-stroke populations [38],
[39], [40]. MAL assesses two key dimensions: Amount of
Use (AOU), which quantifies the capacity of limb usage, and
Quality of Movement (QOM), which evaluates the quality
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TABLE 4. The MAL score rating for QOM [41].

with which the limb is utilised in real-life scenarios. Ratings
range from 0 to 5, as detailed in Tables 3 and 4, respectively,
which outline the scoring criteria and assigned terminology
in this study.

The MAL is utilised in this research due to its extensive
adoption in post-stroke rehabilitation studies and its direct
applicability in assessing ADL for functional recovery. Ten
ADLs are carefully selected from the MAL-30 and MAL-45
scales, with the selection process thoroughly aligned with the
research objectives. This process is conducted under the guid-
ance of experienced therapists from the Hospital Selayang
Rehabilitation Centre, Sultan Ahmad Shah Medical Centre
(SASMEC), and Daehan Rehabilitation Hospital Putrajaya,
ensuring the chosen ADLs are clinically relevant and repre-
sentative of patients’ daily living needs. These 10 ADLs are
also chosen for their suitability to be quantified using five
input parameters, Force, Rot-α, Rot-β, Equipment Motion,
and Time to enable comprehensive analysis and modelling
in the context of rehabilitation. In contrast, ADLs such as
toileting, dressing, and writing are excluded, as they are not
conducive to evaluation using these input parameters. The
10 selected ADLs and their terminology used in this paper
are drawn in Table 5.

Data for the ANOVA analysis are collected while subjects
engage in ADLs as listed in Table 5, imitating the real-life
activities in daily living. The assessment of stroke patients is
particularly dependent on quantifying the force exerted by the
patient and the time needed to complete specific tasks. Addi-
tional relevant parameters, which are the forearm pronation or
supination, elbow flexion or extension and ADLs equipment
motion are also collected to strengthen this study.

Force-sensing resistor (FSR) type force sensors are utilised
across all ten ADLs to measure the force exerted by subjects

TABLE 5. ADLs and the assigned terminology [37].

during these activities. Fig. 1 illustrates the arrangement of
the force sensors attached to the ADLs Doorknob and Water
Faucet. FSR is a resistive pressure sensor that changes its
electrical resistance in response to applied force or pressure.
The construction made from a polymer thick film (PTF)
that contains conductive particles makes the sensor highly
flexible [42]. The film is well-suited for integration into
various surfaces on ADLs. This sensor delivers measurement
in Newton as the participants applied force while performing
the ADLs, enabling precise quantification of the force exerted
during ADLs.

The ADLs equipment motion parameter aims to record the
movement and gather information about the completion of
the ADLs task performed by the subject. Not all subjects can
execute ADLs entirely, especially the new stroke patients.
Various sensors are installed on the ADLs equipment depend-
ing on the motion involved. For Water Faucet and Door,
360-degree rotary encoders are employed. Fig. 2 illustrates
the attachment of the encoder to theWater Faucet ADL. These
sensors convert angular motion into digital signals, enabling
accurate tracking position of the water faucet lever rotation
and the degree of door opening initiated by the subject.
In the case of the Doorknob activity, a Time-of-Flight (ToF)
VL53L0X range sensor is utilised as shown in Fig. 3. The
readings obtained are within the 0mm to 15mm range, where
0mm signifies no knob rotation and 15mm corresponds to
a complete turn. The Drawer activity utilises an ultrasonic
distance sensor to measure the drawer’s opening inmillimeter
(mm). The recorded distance increases with a larger drawer
opening. No additional sensors are required for the 3 Pin
Plug, Switch, and Fan Regulator, as motion is tracked through
digital signals with the completion of the task. A value of
0 indicates that the subject has not successfully completed
the ADLs task, while a value of 1 signifies completion.
Finally, for Toothbrush, Spoon, and Comb, the motions are
not sensed through equipment-mounted sensors; instead, they
are referenced to Inertial Measurement Unit (IMU) sensors
that are attached to the subject’s arm.

The subject’s arm movement is measured using an Iner-
tial Measurement Unit (IMU) sensor, a method also used
by [43] and [44] in their research on daily gesture and
ADL recognition. The sensor is securely housed in a box
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FIGURE 1. The integration of the FSR Force Sensor for (a) Doorknob and
(b) Water Faucet ADLs.

FIGURE 2. The integration of the encoder sensor to the Water Faucet ADL.

FIGURE 3. The integration of the range sensor for the Doorknob ADL.

and worn like a wristwatch, as shown in Fig. 4. This setup
minimizes discomfort associated with electronic equipment
for participants and has proven effective, as demonstrated
by [45]. The MPU6050 3-axis accelerometer and gyroscope
module IMU measures the forearm pronation or supination
and elbow flexion or extension, labelled as Rot-α and Rot-β,
respectively, as depicted in Fig. 5. The initial force reading
provides a baseline of 0◦ and the maximum rotation can be
measured up to 90◦, in accordance with the requirements in
performing ADLs. The key advantage of this sensor is its
ability to simultaneously capture rotation in two directions.

The overall sensors utilised in this study are summarised
in Table 6.

The time parameters are captured using the data logger. All
input parameters are read at the intervals of 500 milliseconds
this means two data points are stamped per second. This
application is designed to capture parameters for post-stroke
patients which generally have slower movement than healthy
individuals. This cycle time provides the most consistent and
reliable data stamps based on the equipment setup calibration.
The sampling frequency are the same for all the sensors. This
data logger is integrated with the ESP32 Wrover B micro-
controller, which plays a role in coordinating all sensors.
It allows for WiFi functionality, serving as a gateway for
potential Internet of Things (IoT) applications in the future.
This strategic inclusion enables seamless connectivity and
communication, opening possibilities for remote monitoring,
data analysis, and other IoT-related functionalities that are
necessary for future work. The ESP32 Wrover B serves as
a versatile and robust central hub, facilitating the integration
and synchronisation of various sensor data.

FIGURE 4. IMU sensor mimics wristwatch for measuring arm movement.

FIGURE 5. The forearm pronation or supination and elbow flexion or
extension donated as Rot-α and Rot-β respectively.

This equipment setup, when compared with methods used
by recent researchers as shown in Table 1, appears to be more
effective. The reflective marker setup by Wang et al., [15]
and Błaszczyszyn et al., [16] can cause significant discomfort
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TABLE 6. Summerised of overall sensors utilised in this study.

for subjects, especially stroke patients, due to the numerous
sensors and tangled wires attached to the body. The use of
IMUs by Boukhennoufa et al., [17], without accompanying
force andmotion sensors for each ADL, limits the assessment
by overlooking fine motor skills such as grip. Similarly, the
MoCap system used by Bisio et al., [19] provides only move-
ment data without capturing force and equipment motion.
Moreover, the camera-based methods with image process-
ing applied by Weiss and Daniele [20], Ma et al., [21],
Moore et al., [22], Li et al., [23], and Chen et al., [24] involve
high costs for camera equipment and do not account for fine
motor performance.

In the authors’ view, this equipment setup is the most
effective and remains unexplored by other researchers, as it
integrates a quantitative scoring system aligned with MAL
assessment. This setup provides therapists with more consis-
tent and objective measures of improvement in specific daily
tasks. Additionally, the simplicity and cost-effectiveness of
this setup could encourage wider adoption in clinical and
home-based environments, especially compared to more
complex sensor systems.

For the data collection procedure, the subjects sit on an
adjustable seat to ensure their comfort. Prior to data record-
ing, subjects are advised to familiarise themselves with the
ADLs tasks through a short briefing and trial sessions. It is
essential to note that not every participant are inclined or
suitable for these trials. Healthy subjects often find these
activities align with their daily routines and do not express
much interest in the trial sessions. Conversely, subjects who
are recovering from a stroke may experience fatigue during
these attempts. As a result, trial opportunities are extended
to participants who genuinely express their interest and are
deemed appropriate for such sessions.

The data collection comprises two groups of subjects:
30 randomly selected healthy individuals from theMachinery
Technology Centre of SIRIM Berhad in Rasa, Selangor and
56 stroke survivors from Sultan Ahmad Shah Medical Centre
(SASMEC), Kuantan, Pahang. The IIUM Research Ethics
Committee (IREC) has approved data collection from under
the approval number IREC 2023-078.

Professional therapists provide rating scores for the
patients. Each stroke patient is paired with the therapist who

closely collaborates with them to understand their constraints
better and monitor their progress. The therapist’s expertise
and familiarity with their patients significantly contribute to
the reliability and validity of MAL score assessments. Fig. 6
shows the summary of the data collection process flow.

The data logger records the input data from sensors
attached to the selected ADLs at an interval of 500 millisec-
onds. These recorded input data includes the force exerted
(Force) by the subject while performing the ADLs, forearm
and elbow rotation donated as Rot-α and Rot-β respectively
as listed in Table 6, ADLs equipment motion (Motion) and
time taken (Time) to complete the ADLs. The output data,
namely the MAL score in AOU and QOM rating are pro-
vided by therapists. These ratings are assigned based on the
subject’s performance during the execution of ADLs. The
subject’s performance improves indicates the score increases,
starting from 0 for subjects unable to perform the activ-
ity or receiving a ‘‘Never’’ score for AOU and QOM. The
scale progresses up to 5, where the subject successfully
performs the ADL similar to a healthy individual for AOU
and achieves a normal QOM. A subject is considered fully
recovered when consistently receiving a score of 5 for both
AOU and QOM.

The collected data is then organised to facilitate subsequent
analysis. The maximum parameters for the Force, Rot-α,
Rot-β, and Time data are extracted, as they indicate the
subject’s maximum capability in completing a specific ADL
task. At this stage, the rest time and error time during data
collection are filtered out. The average data are utilised in
the analysis for subjects who have successfully performed
2 or 3 repetitions of the ADLs. For subject’s incapable of
performing more than one cycle in the ADL task, the data
from that single instance are considered. Then, all input data
undergoes normalisation using a Normalisation Function.
The normalisation function is a statistical process for trans-
forming data to a standard or common scale. The Min-Max
Normalisation Function is utilised to ensure all data are
within the range of 0 to 1. All data including force, angle,
distance, and time are standardised to the same scale after
this process. Normalisation helps to prevent numerical insta-
bility in the computations, particularly when dealing with
diverse and extensive datasets. The formula for the Min-Max
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Normalisation Function is as follows [46], [47]:

XNormalised =
X − Xmin

Xmax − Xmin
(1)

where XNormalised is the data value after normalisation func-
tion, X is the current data value, Xmin is the minimum value
in the dataset and Xmax is the maximum value in the dataset.

FIGURE 6. Data collection process flow.

Next, the normalised data is exported to IBM SPSS Statis-
tics Version 27 software for one-way ANOVA analysis.

IV. RESULT
Two sets of One-way ANOVA analyses, Analysis (i) and
Analysis (ii), have been performed on the collected data.
As described in Section II, for Analysis (i), only healthy
subjects and stroke patients who scored 5 are involved. Con-
sequently, the number of subjects, N, participating in the
analysis for each activity varied based on the number of score
5 instances for stroke patients. For healthy subjects, the count
remained consistent at 30 subjects for each ADL. The results
of the One-way ANOVA for Analysis (i) are presented in
Table 7.

The computed averages (Mean) and standard deviations
(Std. Dev) are derived from normalised data using the
Min-Max Normalisation method. ‘Sig.’ stands for the signif-
icance value, also known as the p-value. A p-value of 0.05 is
utilised as the threshold. Data is considered significantly dif-
ferent if the p-value is less than 0.05 (p ≤ 0.05), indicated in
bold for clarity. Analysis (i) cannot be conducted on the input
ADLs equipment motion (Motion) and the output parameters
AOU and QOM data because all the data for these groups has
a value of 5.

Table 8 presents the results for Analysis (ii). Similar to
Analysis (i), the number of subjects, N, varies for each activ-
ity. This is due to the exclusion of subjects scoring 0 from
the analysis, as data from such subjects are found to be
inconsistent and unsuitable for analysis. One-way ANOVA
calculations for the Motion parameter for the Water Faucet
activity could not be performed as all data involved in Anal-
ysis (ii) indicates that all subjects could fully complete this
activity. So, all of them would have the same score of 5 for
this activity.

Calculations for Analysis (ii) are also unfeasible for the
Comb, Spoon, and Toothbrush activities because these activ-
ities solely depend on the forearm pronation or supination and

TABLE 7. One-way ANOVA for Analysis (i).

elbow flexion or extension (Rot-α and Rot-β) without input
from ADLs motion.
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TABLE 7. (Continued.) One-way ANOVA for Analysis (i).

V. DISCUSSION
Based on the results of Analysis (i) in Table 7, it has been
found that 19 out of 40 ANOVA p-values are less than 0.05.
This indicates that nearly half or 47.5% of the analysed data
shows a significant difference. Table 9 is the summary of
Table 7 focusing only on p-values. 6 out of 10 tasks for Force,
4 out of 10 ADLs for Rot-α, 5 out of 10 tasks for Rot-β,
and 4 out of 10 activities for Time show p-values less than
0.05. These findings do not contradict the hypothesis stating
that the dataset should not show significant differences. More
than half of the dataset does not exhibit a significant differ-
ence, which aligns with the hypothesis based on the MAL
assessment and remains acceptable.

Subsequently, the results of Analysis (i) are discussed
based on their Estimated Marginal Means (EMM) viewpoint
to provide understanding of the effects of input variables
which are Force, Rot-α, Rot-β, and Time on the dataset
groups of healthy individuals and stroke patients. This anal-
ysis helps identify which inputs are driving the variations
in the output. Only data for the ADL parameters showing
significant differences are included in the figures due to their
substantial impact on the dependent variable. For example,
in Fig. 7, only the 3 Pin Plug, Fan Regulator, Water Faucet,
Doorknob, Spoon, and Toothbrush show significant differ-
ences in the ANOVA analysis, with a p-value less than 0.05,
as recorded in Table 9. This means that only these six ADLs
influence the variations of the output (Force) and are included
in Fig. 7. The same concept applies to Figs. 8 to 15.
The EMM for Force parameter in Analysis (i) as illustrated

in Fig. 7 shows that healthy subjects consistently apply higher
force compared to stroke patients. This is in line with litera-
ture findings on the weakened strength of stroked patients.
Figs. 8 and 9 display the EMM for subject arm movement
parameters, Rot-α and Rot-β, which are recorded simulta-
neously. Most activities with a significant dataset show that
stroke patients exhibit a larger range of motion compared to
healthy subjects during ADLs, except for the Fan Regulator
activity in Rot-β.

Stroke patients tend to perform more steps to com-
plete activities, associated with the Force factor, where

FIGURE 7. EMM for Force parameter in Analysis (i).

FIGURE 8. EMM for Rot-α parameter in Analysis (i).

FIGURE 9. EMM for Rot-β parameter in Analysis (i).

their weakened strength leads to more steps compared
to healthy subjects. This trend is observed in activities
like Fan Regulator, where healthy subjects tend to com-
plete the task in one large rotation, while stroke patients
prefer multiple smaller rotations. Thus, the arm move-
ment margin is higher in healthy subjects than stroke
patients.

Fig. 10 illustrates the EMM for the Time parameter.
As expected, stroke patients take a longer time to complete
ADLs compared to healthy subjects, which is in alignment
with the natural observation where stroke patients take a
longer time to complete tasks due to their inability.
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TABLE 9. Analysis (i) p-value.

For Analysis (ii), ANOVA results in Table 8 show that
15 out of 100 recorded p-values are greater than 0.05. Thus,
85% results indicate a significant difference, consistent with
the hypothesis. The Doorknob activity is observed to display
significant differences across all parameter data, as shown in
Table 8. In contrast, other ADLs show one to three parameters
that do not indicate significant differences. However, this
variation is reasoned acceptable for real-life applications due
to potential environmental errors.

For the EMMviewpoint, from the one-wayANOVA results
shown in Table 8, it is observed that 15 out of the Force
dataset exhibit significant differences. Fig. 11 depicts the
EMM graph for the Force dataset in Analysis (ii). The mean
for the Force parameter with a MAL score of 5 is highest for
all activities except AOU Spoon and QOMComb. This aligns
with theMAL assessment standard where lower scorer stroke
patients exert less force in completingADL tasks compared to
recovering patients with higher scores. However, exceptions
occur for the mean of AOU Spoon and QOM Comb, where
the mean with a score of 2 indicates higher readings and is
equal to the mean score of 5 for the respective ADLs. This is
because the MAL score considers not only the Force factor
but also all other input factors, such as completion of ADLs
task, and the time taken to complete the activities.

FIGURE 10. EMM for Time parameter in Analysis (i).

For the Rot-α dataset, a total of 13 datasets exhibits sig-
nificant differences, whereas for the Rot-β dataset, there are
17 datasets showing significant differences, as depicted in
Figs. 12 and 13 respectively. Both input parameters repre-

sent the subject’s arm movement during ADL task execution
and recorded simultaneously. The mean graphs in Figs. 12
and 13 display different trends that are not consistent for each
activity. However, when examining the mean for MAL scores
of 1 and 5 only, it is noticeable that most of them show a
decrease, where stroke patients with a score of 1 exhibit a
wider range of movement compared to those with a score
of 5. To the best of the author’s knowledge, this finding
has yet been documented in any literature review. However,
exceptions occur in the EMM for AOU and QOM for Fan
Regulator activity in the Rot-α dataset. As observed in Anal-
ysis (i), recovering stroke patients with higher scores tend to
complete the task with one large rotation, in line with their
abilities. Meanwhile, stroke patients with lower scores prefer
to make smaller rotations and pause for rest at each fan speed.
Exceptions also occur in the EMM for QOM Toothbrush in
the Rot-β dataset. Based on observations during data collec-
tion, stroke patients with higher scores show more interest in
genuinely imitating their toothbrushing activity and perform
a larger range of armmovement compared to those with lower
scores due to their limitations.

Fig. 14 illustrates the EMM for the Motion parameter.
A total of 12 datasets shows significant differences for the
Motion parameter in Analysis (ii). The graph indicates that
most of the mean scores reach or approach a value of 1 as
the MAL score increases. A mean value of 1 indicates that
the subject successfully performs the ADL task. The dataset
QOM Fan Regulator displays a different pattern, where all
means of MAL scores are below 0.5. This is because the
QOM refers to the quality of movement. Although AOU
Fan Regulator shows an increasing trend up to the value of
1 at MAL score 5, in terms of the quality of task comple-
tion, it is still assessed as low. This aligns with the MAL
assessment standard where stroke patients are expected to
demonstrate poor movement quality. Additionally, the Fan
Regulator activity proves to be challenging for stroke patients
and is a good choice for assessment purposes.

It is observed that 20 out of the Time dataset demonstrate
significant differences as indicated in Table 8. Fig. 15 shows
the EMM graph for the Time dataset in Analysis (ii). Most
of EMM graphs are not consistent for mean MAL scores of
1 and 2. However, for MAL scores 3, 4, and 5, a decreasing
trend can be observed. This aligns with the MAL standard
assessment, where the higher score or the more recovered
the stroke subject, the shorter the time required to complete
the ADL task. The inconsistency in means for scores 1 and
2 is due to the related Motion parameter results where most
subjects fail to complete ADLs task and surrender early,
resulting in low recorded times. Themean graph for the QOM
Toothbrush shows a different pattern which is increasing
across scores.

Referring to the Rot-β results, this activity indicates that
subjects perform a larger range of motion across scores,
requiring more time to complete.

The inconsistencies in the ANOVA results across different
ADLs are attributed to several factors. The nature of each
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FIGURE 11. EMM for Force parameter in Analysis (ii).

FIGURE 12. EMM for Rot-α parameter in Analysis (ii).

ADL itself plays an important role in performance impact.
ADLs that require more complex movements or force gener-
ation show significant differences in certain parameters (e.g.,
Force, Rot-α, Rot-β). Conversely, ADLs that involve simpler
or more routine tasks do not exhibit the same degree of
variation in the same parameters, leading to non-significant
results. Besides, the individual variability among patients,
such as differences in severity of stroke and functional ability
also contribute to the inconsistencies. For instance, certain
patients exhibit significant impairments in one input fac-
tor (e.g., Force) while others may show improvements in
other factors like arm movement or time. This variabil-

ity can affect the significance of each parameter across
different ADLs.

Furthermore, the design and structure of the ADLs them-
selves also influence the results. Some ADLs are inherently
more dependent on specific parameters, such as force or
rotational movement, while others rely on a combination of
inputs, making it more challenging for certain parameters
to emerge as significant. For example, an ADL involving
fine motor skills (e.g., Water Faucet and Doorknob) rely
heavily on rotational movements than force, leading to sig-
nificant results for one parameter and non-significant results
for others. To provide a clearer interpretation of the findings,
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FIGURE 13. EMM for Rot-β parameter in Analysis (ii).

FIGURE 14. EMM for Motion parameter in Analysis (ii).

it is important to consider both, task complexity and patient
attributes. The parameters that are found to be significant
in some ADLs highlight their specific relevance to those
tasks, while non-significant results in others suggest that
these parameters may not be as critical in those contexts.

In this study, utilising one best parameter for analysing
the ADL is impossible since it does not provide enough
information on the subject’s and equipment motion in per-
forming the activities. A combination of the three or four
selected parameters needs to be considered for analysing the
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FIGURE 15. EMM for Time parameter in Analysis (ii).

ADL, depending on the specific task. This is because the two
sets of one-way ANOVA analysis show the significance of
Force, Rot-α, Rot-β, and Time parameters in assessing stroke
patients. The Motion parameters seemed to be less influential
for the analysis process, and Motion data can be excluded
from the analysis. However, they still hold importance in
evaluating a subject’s success in completing the ADL tasks.

Sensor-based in stroke rehabilitation has become a signif-
icant area of research, with various methods utilising sensors
to monitor recovery. These approaches typically focus on
specific parameters, such as joint movement, muscle activ-
ity, or motion tracking. While these methods offer valuable
insights, many fall short in fully capturing functional ability,
particularly when assessing ADLs. They often lack integra-
tion of multiple factors or fail to account for the complexities
inherent in real-life tasks. Table 10 compares our proposed
method to other studies integrating sensor-based approaches,
highlighting the key differences and advancements.

Porciuncula et al. [48] utilised IMUs combined with
advanced signal processing to recognise activities and anal-
yse biomechanical features, focusing on detecting pathologi-
cal motor features and compensatory movements.

Picerno et al. [49] used MIMUs for assessing reach-to-
grasp kinematics, offering a non-intrusive solution that could
be applied to bedridden patients. Bailey et al. [50] employed
accelerometers to quantify upper limb activity hours and
activity ratios, linking these metrics with motor dysfunction
and ADL dependency. While these methods provided useful
insights into specific aspects of stroke recovery, they are
limited in terms of task diversity and real-world applicability.

Our method introduces a novel measure designed to pro-
vide a more comprehensive assessment of functional ability.
By incorporating force, joint angle, ADL equipment motion
and time data, our approach captures a complete picture of
functional performance. The method considers task, object,
and hand characteristics, offering a thorough analysis of
functional ability across different contexts. Additionally,
by integrating 10 clinically validated ADLs from the MAL
with ANOVA, our method allows for the statistical evaluation
of motor control variations and functional abilities across
a wide range of tasks, making it more adaptable to indi-
vidual patient needs. What differentiates our approach is its
broader scope, incorporatingmultiple dynamic variables such
as time, force, andmovement patterns. Thismultidimensional
approach enhances the clinical relevance of our method, mak-
ing it more adaptable to the varying functional abilities of
post-stroke patients. Unlike traditional methods that focus on
limited tasks or measurements, our method integrates a wider
range of factors, offering deeper insights into rehabilitation
outcomes.

The ANOVA results reveal significant differences in func-
tional abilities across class variations and between healthy
individuals and post-stroke patients. Complex activities, such
as Fan Regulator or Water Faucet, require greater force and
arm movement, highlighting the need to prioritise ADLs
based on class levels. This ensures therapy targets tasks
that align with each patient’s needs, enhancing rehabilitation
outcomes. Force emerged as the most critical input factor,
showing significant differences across six of the ten ADLs.
This finding underscores its importance as a primary focus
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TABLE 10. The comparison of other studies that integrate sensor-based approaches with our proposed method.

in rehabilitation. Therapists can use this insight to design
programs that prioritise force generation before addressing
secondary factors like arm movement and task completion
time. By tailoring therapy to each patient’s functional ability
and recovery stage, therapists can deliver focused, evidence-
based interventions. This personalised approach accelerates
recovery and optimises rehabilitation outcomes, ensuring
effective and impactful treatment.

This research aims to provide a quantifiable and objective
measure of upper extremity functional ability to assist thera-
pists inmonitoring progress, evaluating therapy effectiveness,
and personalising rehabilitation strategies. By analysing key
metrics such as force and joint angular displacement, it pro-
vides valuable insights to enhance therapeutic outcomes. The
integration of IoT-ready devices, like the ESP32, enables
real-time data collection and feedback during home-based
rehabilitation. These devices allow therapists to monitor
patient performance during ADLs, provide immediate feed-
back to encourage exercise adherence, and facilitate remote
monitoring. Therapists can analyse trends and adjust treat-
ment plans without requiring in-person visits, ensuring
consistent, evidence-based care while reducing access barri-
ers. In clinical settings, the functional ability metric serves as
a decision-support tool, offering detailed performance data
to identify impairments, target specific interventions, stan-
dardise evaluations, and support research and clinical trials.
By combining objective assessments, real-time feedback, and
remote monitoring, this approach bridges clinical rehabili-
tation with home-based care, improving therapy outcomes,
reducing healthcare costs, and expanding access to effective
rehabilitation services.

VI. CONCLUSION
This paper presents the outcomes of analysing ADLs data
utilising MAL assessment towards quantitative scoring sys-
tem. A set of ten ADLs is chosen from the MAL assessment

standard and employed for data collection. Data has been col-
lected from 86 subjects, consisting of 56 stroke patients and
30 healthy subjects. The forces, encoders, distances and IMU
sensors are installed on the ADL devices and the subjects’
arm used to collect the input parameters data including the
force exerted, arm rotation around α and β direction, ADLs
equipment motion and time taken to complete the ADLs task.
Certified therapists provided the MAL scores for the output
parameters in AOU and QOM.

Future work will focus on developing an equation to auto-
matically describe a patient’s ability or recovery progress
based on MAL scoring, incorporating these results as an
assessment tool in hospitals and rehabilitation centers. The
ANOVA findings could contribute to a more objective, mea-
surable approach for monitoring recovery, complementing
the subjective assessments typically made by therapists. This
approach would enhance traditional qualitative evaluations
with a consistent, data-drivenmethod. Additionally, this tech-
nique would support home-based rehabilitation, allowing
assessments to be conducted without a therapist’s presence.
An ADL-focused assessment system for both clinical and
home use could empower patients to monitor their own recov-
ery, encourage daily practice, and enable therapists to assess
progress remotely.
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