UNIVERSITI PUTRA MALAYSIA

IMPROVED HANDOVER ROUTING SCHEME IN HIERARCHICAL MOBILE IPv6 NETWORKS

INDRA VIVALDI

FK 2003 9
IMPROVED HANDOVER ROUTING SCHEME IN HIERARCHICAL MOBILE IPv6 NETWORKS

By

INDRA VIVALDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Partial Fulfillment of the Requirement for the Degree of Master of Science

May 2003
Dedicated to

My Loving Parents, My dear siblings and my dear Puyi for their endless care and comfort.

Thank You
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in partial fulfillment of the requirement for the degree of Master of Science

IMPROVED HANDOVER ROUTING SCHEME IN HIERARCHICAL MOBILE IPv6 NETWORKS

By

INDRA VIVALDI

May 2003

Chairman: Professor Borhanuddin Mohd Ali, Ph.D.

Faculty: Engineering

Mobile Internet Protocol version 6 (MIPv6) has been proposed to solve the problem of mobility in the new era of Internet. MIPv6 is a proposal for handling routing of IPv6 packets to mobile nodes that have moved away from their home network. In the near future, with the simultaneous growth of the mobile user population and the Internet, users will move more frequently between networks as they stay connected to the Internet and access its resources. Thus, as mobility increases across networks, handovers will significantly give impact on the quality of the connection and on user application.

Previous research has shown that MIPv6 only defines a means of managing global mobility (macro-mobility) but does not address local mobility (micro-mobility) separately. Instead, it uses the same mechanism in both cases. This involves long handover delay and a lot of signaling. The extension of protocol of basic MIPv6 has been investigated. Internet Engineering Task Force (IETF) introduced Hierarchical Mobile IPv6 (HMIPv6). HMIPv6 is the proposed enhancement of MIPv6 that is
designed to reduce the amount of signaling required and to improve handover speed for mobile connections. New node in HMIPv6 called the mobility anchor point (MAP) serves as a local entity to aid in mobile handover. By separating global and local mobility, HMIPv6 makes it possible to deal with either situation of macro mobility and micro mobility appropriately. The MAP helps to decrease the delay and packet loss during handover.

HMIPv6’s handover operation has been investigated. We have analyzed the handover routing scheme on Internet Protocol (IP) layer. The operation of this handover starts from the mobile node (MN) sends binding update (BU) to its new network until MN receives packet from the correspondent node (CN) or home agent (HA) through its new network.

The adoption of multicast scheme and the avoidance of redundancy in sending binding update scheme have been proposed and have been implemented to HMIPv6. Proposed multicast scheme may allow MN to receive packets during handover operation. The avoidance of redundancy in sending BU scheme may reduce the amount of signaling for the handover thus reduce the handover delay. We have tested the performance of HMIPv6 with the proposed schemes based on simulation study. The results show that our proposed schemes reduce the handover delay and the amount of packet loss in HMIPv6.
Protokol Internet bergerak versi ke-6 (MIPv6) telah dianjurkan untuk menyelesaikan masalah berhubung-kait dengan kebolehgerakan pada protocol Internet versi ke-6. MIPv6 adalah anjuran untuk memperlakukan penghalaan pada paket protokol Internet versi ke-6 (IPv6) kepada titik bergerak yang telah berpindah daripada rangkaian awalnya. Menjelang masa depan, dengan adanya pertumbuhan selari antara Internet dan pengguna rangkaian bergerak, para pengguna rangkaian bergerak akan bergerak lebih banyak dari satu rangkaian ke rangkaian yang lain seiring dengan mereka terhubung kepada Internet. Oleh karena itu, seiring dengan kebolehgerakan meningkat di antara rangkaian-rangkaian, proses pengambilalihan sangat mempengaruhi kualiti sambungan dan aplikasi pengguna.

Kita telah mempelajari bahwa MIPv6 hanya mengerusi kebolehgerakan makro tetapi tidak mengerusi kebolehgerakan mikro secara terpisah. Ataupun MIPv6 menggunakan proses yang sama dalam dua kes tersebut. Ini mengakibatkan masa pengambilalihan yang tinggi dan banyak proses pemberian isyarat. Angkatan Kejuruteraan Tugasan Internet (IETF) memperkenalkan Hirarki Protokol Internet
versi ke-6 bergerak (HMIPv6). HMIPv6 adalah peningkatan yang dianjurkan daripada MIPv6 yang telah dibentuk untuk mengurangi jumlah dari proses pemberian isyarat yang diperlukan dan untuk meningkatkan kelajuan pengambilalihan untuk sambungan rangkaian bergerak. Satu unsur baru pada HMIPv6 iaitu Titik Jangkar Kobolehgerakan (MAP) melayani sebagai kesatuan tempatan untuk membantu proses pengambilalihan rangkaian bergerak. Dengan memisahkan global dan tempatan kebolehgerakan, HMIPv6 memungkinkan mengerusi ke dua keadaan dengan tepat. MAP membantu mengurangi masa gangguan dan paket hilang selama masa pengambilalihan.

Kita telah menguji keupayaan daripada HMIPv6 dan skema yang kita anjurkan dengan berdasar pada simulasi. Hasil menunjukkan bahwa skema yang dianjurkan dapat mengurangi masa gangguan pada proses pengambilalihan dan jumlah paket hilang daripada dasar HMIPv6

vi
ACKNOWLEDGEMENTS

In the name of ALLAH the most beneficent and the most merciful. First and
for most, I wish to give all the praise to Almighty ALLAH for with His Mercy. He
has given me the life and sustenance and giving me the strength and time to complete
this research.

Secondly I would like to extend my heartiest thanks to my supervisor Prof.
Dr. Borhanuddin Mohd Ali for his valuable guidance, encouragement and advises
that made this work possible.

I extend my gratitude to my Dr. Hadi Habaebi and Dr. V Prakash for
accepting me to be on my committee. Their comment, time and involvement have
played a significant role in improving this work.

I am thankful to all academic and non-academic members of department
computer and communication system Engineering, Universiti Putra Malaysia for
their kind and cooperation and help. My gratefulness also goes to the administration
and staff of the post-graduate center at UPM for all their cooperation. Specials thank
to my Indonesian friends, my younger brother, Fadly, Galliv, all my housemates,
Reza’s family, my kholaaqoh team, mas Iwan, The ling the Lukman, mas Bakti
Kumara, mas Slamer, Arief Fad, Mbak Penny, Uni Rini, kak Ade, Kang Yusef and
Family, Iin, and others that I can’t mention all of you.

Finally I send my high appreciation to my parents, and my siblings for their
constant support and encouragement throughout my life. I could not have done
without all of you. Lastly but never the least, I extend my appreciation to my Puyi for
her care, courage and love during my life.
I certify that an Examination Committee met on 7th May 2003 to conduct the final examination of Indra Vivaldi on his Master of Science thesis entitled “Improved Handover Routing Scheme in Hierarchical Mobile IPv6 Networks” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded a relevant degree. Members of the Examination Committee are as follows:

MOHD KHAZANI ABDULLAH, Ph.D.,
Associate Professor,
Department of Computer and Communication System
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

BORHANUDDIN MOHD ALI, Ph.D.,
Professor,
Department of Computer and Communication System
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

MOHD HADI HABAEBI, Ph.D.,
Department of Computer and Communication System
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

VEERARAGHAVAN PRAKASH, Ph.D.,
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 MAY 2003
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as partial fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

BORHANUDDIN MOHD ALI, Ph. D.,
Professor,
Department of Computer and Communication System
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

MOHD HADI HABAEBI, Ph.D.,
Department of Computer and Communication System
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

VEERARAGHAVAN PRAKASH, Ph.D.,
Department of Computer and Communication System
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.,
Professor/Dean
School of Graduate Studies,
Universiti Putra Malaysia

Date: 11 JUL 2003
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or currently submitted for any other degree at UPM or other institutions.

INDRA VIVALDI

Date: 27 MAY 2003
TABLE OF CONTENTS

DEDICATION
ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL SHEETS
DECLARATION
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER

1 INTRODUCTION
1.1. Research Objectives
1.2. Thesis Organizations
1.3. Research Objectives
1.4. Thesis Organization

2 LITERATURE REVIEW
2.1. Introduction
2.2. Internet Reference Model
2.2.1. User Datagram Protocol (UDP)
2.2.2. Transmission Control Protocol (TCP)
2.2.3. Internet Protocol (IP)
2.3. Network Layer System for Mobility
2.4. The need of Mobile IP for Multi access Technology
2.5. Mobile IPv4 Overview
2.5.1. Terminology used in Mobile IPv4
2.5.2. Mobile IPv4 Operation
2.5.3. Supported services
2.5.4. Mobile IPv4 Limitation
2.5.4.1. Triangular Routing
2.5.4.2. Address Limitation
2.6. IPv6 and Mobile IPv6 Overview
2.6.1. IPv6 History
2.6.2. Mobility support in IPv6
2.6.3. Mobile IPv6 Operation
3 METHODOLOGY
3.1. Introduction 3.1
3.2. Handover 3.2
 3.2.1. Handover Phases 3.2
 3.2.2. Handover Operation 3.3
 3.2.2.1. Handover Operation at the Lower Layers 3.4
 3.2.2.2. Handover Operation in Network Layer 3.5
3.3. Handover Operation Time 3.6
3.4. Proposed Routing Scheme 3.7
 3.4.1. Proposed Scheme for Macro Mobility Handover 3.8
 3.4.2. Proposed Scheme for Micro Mobility Handover 3.13
3.5. Simulation Setup and Performance Testing 3.16
 3.5.1. NS-2 Simulator Basic 3.16
 3.5.2. Simulation Setup 3.17
 3.5.3. Analysis of Parameters 3.18
 3.5.4. Parameters Simulation Setup 3.19
 3.5.5. Trace File Analysis for Simulation Testing 3.20
 3.5.6. Performance Testing 3.21
3.6. Conclusion 3.21

4 RESULTS AND DISCUSSION
4.1. Macro Mobility 4.1
 4.1.1. Proposed Multicast Scheme 4.2
4.1.2. Avoidance of Redundancy in Sending Binding Update Scheme 4.8
4.2. Micro Mobility 4.9
 4.2.1. Proposed Multicast Scheme 4.10
4.3. Comparative and analysis between Macro and Micro Mobility 4.14

5 CONCLUSIONS AND FUTURE WORKS 5.1
 5.1. Conclusion 5.1
 5.2 Future Work 5.5

REFERENCES R.1
APPENDICES A.1
 Appendix A1 A.1
 Appendix A2 A.5
BIODATA OF THE AUTHOR B.1
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A node roams without changing its IP address</td>
<td>1.3</td>
</tr>
<tr>
<td>2.1</td>
<td>Internet (TCP/IP) Reference Model</td>
<td>2.5</td>
</tr>
<tr>
<td>2.2</td>
<td>Mobile IP and their Entities</td>
<td>2.9</td>
</tr>
<tr>
<td>2.3</td>
<td>Registration operation in Mobile IP</td>
<td>2.12</td>
</tr>
<tr>
<td>2.4</td>
<td>Triangular Routing</td>
<td>2.13</td>
</tr>
<tr>
<td>2.5</td>
<td>Mobile Node moves to new foreign link in MIPv6 network</td>
<td>2.22</td>
</tr>
<tr>
<td>2.6</td>
<td>Mobile IPv6 Operation with Route Optimization</td>
<td>2.25</td>
</tr>
<tr>
<td>2.7</td>
<td>The Protocol architecture of HMIPv6 in terms of handover management</td>
<td>2.31</td>
</tr>
<tr>
<td>2.8</td>
<td>Regional Care of Address</td>
<td>2.32</td>
</tr>
<tr>
<td>2.9</td>
<td>On-link care of address</td>
<td>2.32</td>
</tr>
<tr>
<td>2.10</td>
<td>Binding Update Address Field</td>
<td>2.33</td>
</tr>
<tr>
<td>2.11</td>
<td>Macro-mobility handover routing scheme</td>
<td>2.33</td>
</tr>
<tr>
<td>2.12</td>
<td>Micro Mobility Handover Routing Scheme</td>
<td>2.35</td>
</tr>
<tr>
<td>3.1</td>
<td>The phases of handover</td>
<td>3.3</td>
</tr>
<tr>
<td>3.2</td>
<td>Traffic flow of proposed routing scheme in macro-mobility handover</td>
<td>3.9</td>
</tr>
<tr>
<td>3.3</td>
<td>Proposed routing scheme in Macro mobility Management</td>
<td>3.10</td>
</tr>
<tr>
<td>3.4</td>
<td>Access router check the multicast packet availability</td>
<td>3.11</td>
</tr>
<tr>
<td>3.5</td>
<td>Avoidance of redundancy in sending Binding Update scheme</td>
<td>3.12</td>
</tr>
<tr>
<td>3.6</td>
<td>Traffic flow of proposed routing scheme in micro-mobility handover</td>
<td>3.14</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.7</td>
<td>Proposed routing scheme in Micro Mobility Management</td>
<td>3.15</td>
</tr>
<tr>
<td>3.8</td>
<td>AR check the multicast packet's availability</td>
<td>3.15</td>
</tr>
<tr>
<td>3.9</td>
<td>Architectural view of NS-2</td>
<td>3.17</td>
</tr>
<tr>
<td>3.10</td>
<td>Simulation parameter setup</td>
<td>3.20</td>
</tr>
<tr>
<td>4.1</td>
<td>Macro mobility handover routing scheme</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2</td>
<td>Proposed routing scheme for macro mobility</td>
<td>4.2</td>
</tr>
<tr>
<td>4.3</td>
<td>The handover delay for basic HMIPv6 in macro mobility for wireless networks of different bandwidth and link delay parameters</td>
<td>4.3</td>
</tr>
<tr>
<td>4.4</td>
<td>The handover delay for our proposed scheme in macro mobility for wireless networks of different networks of different bandwidth and link delay parameters</td>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
<td>Packet loss rate for HMIPv6 in macro mobility</td>
<td>4.6</td>
</tr>
<tr>
<td>4.6</td>
<td>Packet loss rate for our multicast scheme in macro mobility</td>
<td>4.6</td>
</tr>
<tr>
<td>4.7</td>
<td>The avoidance of redundancy in sending binding update scheme</td>
<td>4.7</td>
</tr>
<tr>
<td>4.8</td>
<td>The handover delay for redundancy avoidance scheme in macro mobility</td>
<td>4.8</td>
</tr>
<tr>
<td>4.9</td>
<td>Packet loss rate for our redundancy avoidance in macro mobility</td>
<td>4.9</td>
</tr>
<tr>
<td>4.10</td>
<td>The routing scheme for micro mobility handover</td>
<td>4.10</td>
</tr>
<tr>
<td>4.11</td>
<td>The routing scheme for our proposed multicast scheme in micro mobility handover</td>
<td>4.10</td>
</tr>
<tr>
<td>4.12</td>
<td>The handover delay for basic HMIPv6 in micro mobility for wireless networks of different bandwidth and link delay parameters</td>
<td>4.11</td>
</tr>
<tr>
<td>4.13</td>
<td>The handover delay for multicast scheme in micro mobility for wireless networks of different bandwidth and link delay parameters</td>
<td>4.12</td>
</tr>
<tr>
<td>4.14</td>
<td>Packet loss rate for HMIPv6 in micro mobility</td>
<td>4.13</td>
</tr>
<tr>
<td>4.15</td>
<td>Packet loss rate for our multicast scheme in micro mobility</td>
<td>4.13</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

AR Access Router
B_ack Binding Acknowledgment
BU Binding Update
CBR Constant Bit Rate
CN Correspondent Node
CoA Care of Address
DAD Duplicate Address Detection
FA Foreign Agent
FTP File Transfer Protocol
GPRS Global Packet Radio Services
GSM Global System for Mobile Communication
HA Home Agent
HMIPv6 Hierarchical Mobile Internet Protocol version 6
HTTP Hyper Text Transfer Protocol
ICMPv6 Internet Control Message Protocol version 6
IETF Internet Engineering Task Force
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ITU International Telecommunication Union
LAN Local Area Network
LCoA On Link care of address
MAP Mobility Anchor Point
MIPv6 Mobile Internet Protocol version 6
MN Mobile Node
NS-2 Network Simulator version 2
OSI Open Source Institute
RCoA Regional Care of Address
TcL Tool Command Language
TCP Transport Control Protocol
UMTS Universal Mobile Telecommunication services

xvi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>VOIP</td>
<td>Voice Over Internet Protocol</td>
</tr>
<tr>
<td>W-CDMA</td>
<td>Wide Code Division Multiple Access</td>
</tr>
<tr>
<td>3GPP2</td>
<td>The Third Generation Partnership Project version 2</td>
</tr>
<tr>
<td>CTP</td>
<td>Context Transfer Protocol</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

People's expectation for sophisticated communication system is getting higher all the time. People are becoming more critical for every technologies provided for them as they look for the most convenient one.

The most famous communication system that can support mobility is GSM (Global System for Mobile Communication). GSM is a wireless communication technology that have a lot of advantages such as the flexibility of providing integrated voice mail, high speed data, fax, SMS, additionally GSM supports full-featured, seamless roaming between GSM systems in the world. However GSM still has to be set with problems such as limited bandwidth and high cost. GSM is now almost saturated and are no longer able to fulfill users more sophisticated demand. People need communication systems that are cheap, flexible, scalable and more interactive than voice. GSM could not meet those demands due to the lack of bandwidth on the wireless interface, the form factor of wireless devices and the cost of wireless services.

The introduction of GPRS (General Packet Radio Service) in the wide area absolute based on IP (Internet Protocol) technology provides an extension to the GSM technology. Mobile users being permanently connected and expected to be able to support multimedia application and the usage of IP technologies at the backbone will be able to reduce the cost of wireless services. At the same time, another wireless
technology has been introduced based on the IP technology, specifically in the local area. This wireless LAN allows the user to interconnect to the wide area networks, such as GPRS or UMTS. Both wide area wireless networks and local area wireless network have their own good feature and drawbacks; usually a trade-off between capacity and mobility. Pricing is another key factor that concern to users. Users need the cheapest and fastest connection. An operator that is able to offer a complete system that provides seamless roaming between different wireless systems will be the winning player for the next communication system provider. The trend for the next generation communication system focuses on real-time traffic and the mobility support between different communications systems. Several groups for standardization area in communication system such as 3GPP2, and ITU have defined that the core network of the next generation mobile network will be pure IP based.

Currently, we have to face several problems due to IP immobility. Problems occur when somebody disconnects his mobile device from the Internet in order to reconnect it elsewhere. Normally he would not be able to continue communication until he configures the system with a new IP address and new default routers.

The problem is based on the IP routing schemes. IP addresses define a kind of topological relation between the linked computers. Today's version of Internet protocols assumes implicitly that any node has always the same point of attachment to the Internet. Additionally the node's IP address identifies the link on which the nodes reside. If a node moves without changing its IP address, there is no information in the new network about the new point of attachment.
We can see from the figure 1.1, the packets are routed to subnet A and sent to mobile node. If this mobile node roams to another subnet, it will not receive the packets since the packets addressed to this mobile node are routed to subnet A.

IP mobility is specified for IPv4. Mobile IPv4 is not deployed widely enough to satisfy current mobile needs such as limited address space, triangle routing that cause long delays and overloaded network capacity especially in foreign network.

1.1. Problem Statements

The usage of IP as a transport technology solves several inter-working problems between different technologies. IP may become the core network for real time traffic, interactive services such as telephony, video conferencing and online games. Mobility support for Internet devices is becoming more important, since mobile computing is getting more pervasive. It is expected that in the near future, the number of mobile computers, including handheld devices will increase exponentially. However, IP technology is still far from the solution. IP was not developed to support each and every existing technology. In particular, IP protocol
suffers from mobility restriction since IP was designed for a stationary environment that makes mobility difficult.

Several solutions have been introduced to support mobile devices, which dynamically changes the point of attachment to the Internet. The problems of mobility have been developed inside IETF (Internet Engineering Task Force) since 1996, with IPv4. The purpose is to enhance the conventional IP to support mobility called Mobile IPv4 associated with wireless technology; this allows movement from networks to networks. Mobile IPv4 handles mobility at the IP layer, which makes the mobility transparent to the application running over IP.

The next generation Internet called IPv6 has built in mobility support in the standard. This alleviates the drawback suffered in Mobile IPv4. Mobile IPv6 is designed to be efficient, robust and scalable. However the extensions to Mobile IPv6 are still necessary in order to provide higher grades services, such as real-time application support. The problem in Mobile IPv6 occurs when mobile users want to roam from one network to another network that need special handover operation. In order to support the applications, the handover operation must not significantly cause communications interruptions.

As noted in (Nokia, 2001), Mobile IPv6 is designed to address the macro-mobility management problem, such as supporting host mobility over wide area network. Mobile IPv6 does not address micro-level mobility issues. Studies and investigations to solve the drawbacks in Mobile IPv6 should be considered especially in handover operation.
Hierarchical Mobile IPv6 (HMIPv6) is an extension to Mobile IPv6 that is designed to reduce the signaling load and improve handover speed for mobile connections by introducing new protocol agents called mobility anchor point (MAP). This network element splits the mobility management into macro mobility and micro mobility schemes. However, HMIPv6 only improves the micro mobility problem. Significant delays still occur in the HMIPv6 macro mobility management because the handover algorithm is similar with the Mobile IPv6 in this environment. However, there are still long interruptions in handover in micro-mobility, which can still be reduced.

In this thesis, we propose a new handover algorithm that overcomes the limitations in Mobile IPv6 and its extension HMIPv6. Our objective is to re-establish the communication traffic flow quickly and to minimize the service disruption delay that occurs during handover process in a macro and micro mobility environment. This handover algorithm is based on the modification of the HMIPv6 protocol using the multicast technique concept. Basically, we implement the multicast technique on the MAP, which allows the MAP to multicast the packets to the same single mobile user. However, our proposed algorithm is not strictly the same as the base multicast technique, thus we define our proposed technique as a multicast-like algorithm, since it only resembles multicasting during handover rather than multicasting for distribution. This multicast-like algorithm will enable the mobile node to receive packets faster than HMIPv6 protocol during handover, seamlessly and transparently.
1.2. Scope of Works

Mobile IPv6 mechanism requires some handover algorithm when it changes its point of attachment in the Internet. This causes Mobile IPv6 to incur long delays and signaling load to the backbone networks. This limitation is due to the lack of hierarchy in the Mobile IPv6 mobility management that it uses the same mechanisms for macro mobility and micro mobility. This is an inefficient use of resources in the case of local mobility.

This thesis tries to examine the problem that causes delays during handover operation in Mobile IPv6 and its extension, the HMIPv6. Registration operation is part of the handover operation in Mobile IPv6 protocol that can cause communications interruptions and this thesis will analyze and consider the registration operation. Since this operation is on the network layer, we can model for this operation based on the routing scheme from the related protocol agents, such as mobile node, access router, and the correspondent node. However, the handover on the lower layer e.g., physical layer and link layer are out of the scope of this thesis.

1.3. Research Objectives

The aim of this thesis are defined as follows:

1. To investigate the design issues for supporting mobility in Internet Protocols,
2. To study several handover routing schemes for Mobile IPv6,
3. To examine the problem of performing handover routing scheme in Mobile IPv6,
4. To analyze the drawback of handover routing scheme in Mobile IPv6.
5. To propose routing schemes for handover operation in Mobile IPv6.
6. To evaluate the performance of the routing scheme based on the delay and packet loss.

1.4. Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 starts with a brief discussion of the concept of internet reference model, then a discussion of the proposal of the Mobile IPv4 by IETF. This includes the advantages of Mobile IPv4, Mobile IPv4 overview, the terminology of Mobile IPv4 followed by Mobile IPv4’s drawbacks. Secondly we discuss the enhancement of Mobile IPv4 and the next IP next generation that is Mobile IPv6 and IPv6 respectively. This chapter describes the terminology of Mobile IPv6, the handover operation of Mobile IPv6, the advantages of Mobile IPv6 compared to Mobile IPv4 and we also discuss the handover management issues in mobile IPv6 network and the problem occurs due to the handover operation. This chapter also concerns with the discussion of HMIPv6 as the extension of basic Mobile IPv6 that is able to solve some problem due to handover operation. Chapter 3 describes the scope of the research and the proposal for HMIPv6 and the detailed description of the handover routing scheme on IP layer for HMIPv6 and our proposal routing scheme and also this chapter presents a performance testing for HMIPv6 handover routing scheme and our proposal handover routing scheme using simulation tools. Then a comparison of them is made. In chapter 4 we show our results and finally in chapter 5 we conclude our work with a brief summary of the overall work.