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Abstract. In this paper, we introduce a new gradient method called the Diago-
nal Variable Matrix method. Our proposed method is aimed to minimize Hk+1

over the log-determinant norm subject to weak secant relation. The derived di-
agonal matrix Hk+1 is the approximation of the inverse Hessian matrix, which
enables the calculation of the search direction, dk = −Hk+1gk, where gk denotes
the gradient of the objective function. The proposed method is coupled with the
backtracking Armijo line search. The proposed method is specifically designed
to reduce the number of iterations and training duration, particularly in the con-
text of solving large-dimensional problems. Finally, as a practical illustration,
the proposed method is applied to solve the image deblurring problem, and its
performance is analyzed using image quality metrics. The results demonstrate
that the proposed method outperforms various conjugate gradient (CG) methods
and multiple damping gradient method.

1 Introduction
Optimization has been a popular research problem in various domains. It covers a wide range
of fundamental concepts used in mathematics, engineering, computer science, economics,
and more. Essentially, optimization requires identifying the best solution from a set of poten-
tial solutions, while often adhering to predefined constraints.

The initial step in optimization involves formulating an objective function, also known as
a cost function. This function quantifies what one aims to minimize (e.g., cost, error) [8]. The
primary objective is to determine the input or parameter values that yield the optimal value of
this function. In many cases, optimization problems introduce constraint conditions that the
solution must adhere to. Constraints can manifest as either equality constraints or inequality
constraints (refer [8]).

Optimization has been commonly used in numerous fields of application such as neural
networks, image processing, and computer science. Among the various applications consid-
ered, our main focus is on image processing, since it represents the practical implementation
domain of the method proposed in this paper. Image deblurring is a fundamental task in im-
age processing that aims to restore images affected by blur caused by factors such as motion,
defocus, or optical aberrations.

Some challenges will be faced when we recover a blurred image, such as:
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• Ill-posedness: The problem of recovering sharp images from blurred ones is often ill-posed,
meaning it lacks unique solutions or is sensitive to small changes in the input data.

• Blur Kernel Estimation: In the cases of unknown or complex blur patterns, errors in blur
kernel estimation can significantly affect the quality of the deblurred image, leading to
inaccurate results.

• Trade-off between Sharpness and Noise: There is often a trade-off between recovering
sharpness in the image and suppressing noise and artifacts introduced during the deblurring
process.

In the field of image deblurring, many methods and algorithms have been published such
as the blind deconvolution technique [3] and the iterative deconvolution [9]. Each method
has its advantages and limitations. Blind deconvolution methods aim to recover sharp images
and blur kernels without prior knowledge of the blurring process. Iterative deconvolution,
or optimization-based methods such as steepest descent (SD) aim to iteratively refine the
estimate of the original image by minimizing the difference between the blurred image and
the estimated image. In this paper, we use iterative deconvolution as an application for image
deblurring, due to it often comes with convergence guarantees, ensuring that the algorithm
converges to a stable solution under certain conditions [19]. This provides confidence in the
reliability and convergence properties of the deblurring process.

Numerous optimization algorithms, including gradient descent, Newton’s method, and
genetic algorithms, employ iterations to incrementally enhance the solution until a satisfac-
tory optimum is achieved. The selection of an appropriate optimization algorithm and the
specific details of the iterative method can vary depending on the nature of the problem(e.g.,
convexity vs. non-convexity, differentiability of the objective function) and the optimization
objectives (e.g., minimizing or maximizing the objective function, discovering global or local
optima)[14].

The SD method is an iterative method commonly integrated into the iterative process of
optimization algorithms to minimize a function. The key idea behind the gradient descent
method is to iteratively update the solution in the direction of the negative gradient, as this
direction represents the steepest decrease in the objective function. By repeatedly moving
in the direction of decreasing function values, the algorithm aims to converge to the optimal
solution [8].

Quasi-Newton is another popular gradient method in optimization. However, the quasi-
Newton method has a main drawback: it relies on the computation of the inverse Hessian
matrix. The Hessian matrix is a full-rank matrix. Inverting a full rank matrix is computa-
tionally expensive. In this paper, we proposed a spectral gradient method with the spectral
parameter approximating the inverse Hessian’s matrix. The approximated Hessian matrix,
in this case, takes the form of a diagonal matrix, offering computational efficiency and less
memory storage. The proposed method is tested in blurred images and a comparison of its
performance is conducted with state-of-the-art methods by using image quality metrics and
number of iterations.

In the forthcoming sections, the paper will be structured as follows: in Section 2, we
review some iterative methods in optimization. In Section 3, we derive the diagonal vari-
able matrix (DVM) method and outline the algorithm of the DVM method and backtracking
Armijo conditions. In Section 4, we apply the proposed method in an image deblurring sys-
tem. It provides the result of the performance of the DVM method and compares it with some
state-of-the-art methods presented in Section 2.

2 Iterative Method in Optimization

In this section, we consider the optimization problem

min
x∈Rn

f (x)

where f (x) is twice differentiable function. x is an n × 1 decision vector. A generic formula
for iterative updates in optimization is represented as:

xk+1 = xk + αkdk, (1)

where xk represents the approximated solution of the optimization problem at step k, αk is the
step size, and dk is a direction vector. Various existing methods have been developed based
on this updating formula.

In the following subsections, several iterative methods in optimization are discussed, in-
cluding the SD method, the conjugate gradient (CG) method, the quasi-Newton method, and
the spectral gradient family.

2.1 Steepest Descent

One of the oldest methods in the iterative method of optimization is the SD method, developed
by Cauchy in 1847. SD is an iterative approach that starts with an initial guess and moves
in the direction of the negative gradient of the function being minimized. It is a simple
and widely used optimization method, moving in the direction of the negative gradient of
the objective function [4]. SD converges slowly when the objective function is not well-
conditioned.

This approach is vital to the development of optimization theory. It is a first-order method,
simple to implement, requires less memory storage, and computationally inexpensive. How-
ever, due to zig-zagging behavior, it has slow convergence when it is near the minimum
point. Therefore, increasingly complex methods such as the CG and quasi-Newton methods
are frequently employed [17].

2.2 Conjugate Gradient

Moving forward, the Conjugate Gradient (CG) method is a commonly used iterative method
for solving linear systems of equations and optimization problems. Hestenes and Stiefel
(1952) introduced the CG approach for minimizing a large linear function. The CG method
gained popularity due to its properties as an iterative method. Currently, the CG method
is widely employed for non-linear challenges in large-scale systems. In the non-linear CG
method, the search direction, dk, in the iterative update equation is generated using this rule:

dk+1 = −gk+1 + βkdk, (2)

where gk+1 is the current gradient vector. The βk represents an updating parameter to control
the direction in the system. Table 1 shows some CG update parameters.

The CG method introduced by Fletcher and Reeves [10] is widely recognized as the
first nonlinear CG algorithm, with a focus on nonlinear optimization. Subsequently, the
CG method modified by Hestenes and Stiefel [13] primarily addresses symmetric, positive-
definite linear systems. For large-scale problems, CG update parameters that circumvent the
need for computing the Hessian matrix are typically preferred. When dealing with strongly
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Update Formula Authors

βk =
gT

k+1yk

dT
k yk

Hestenes and Stiefel (1952)

βk =
||gk+1||2
||gk ||2

Fletcher and Reeves (1964)

βk =
gT

k+1yk

||gk ||2
Polak (1969) and Ribiere and by Polyak(1969)

βk =
gT

k+1yk

−dT
k gk

Liu and Storey (1991)

βk =
||gk+1||2
dT

k yk
Dai and Yuan (1999)

βk =

yk − 2d
||yk ||2
dT

k yk


T
gk+1

dT
k yk

Hager and Zhang (2005)

Table 1. The update parameter, βk for various CG methods. Here yk = gk+1 − gk.

convex quadratic functions, all the mentioned parameter choices in the list above are equiv-
alent to an exact line search. However, for non-quadratic functions, the selection of each
parameter leads to varying performance outcomes. Table 1 shows the incremental improve-
ment on the CG methods over time.

All methods that include conjugate directions are quadratically convergence. This prop-
erty allows one to find a quadratic function’s minimum point in a maximum of n steps. Since
a quadratic may fairly accurately approximate any general function as it approaches the op-
timum point, any quadratically convergent method should be able to identify the optimum
point in a finite number of iterations. The convergence of the CG can be sensitive to the
choice of the initial guess. Poor initializations may lead to slow convergence or convergence
to suboptimal solutions. Furthermore, the approach might need more than n iterations for ill-
conditioned quadratic problems due to the accumulation of rounding errors. The CG method
performs better than the SD method in spite of this drawback [20]. As compared to Newton
and quasi-Newton methods, the CG approach is less efficient but has the advantage of not
requiring the storage of Hessian matrices [14].

2.3 Quasi-Newton Method

The quasi-Newton method encompasses a family of methods derived from Newton’s method.
Newton’s method finds the solution to the optimization problem by searching for the roots of
∇ f = 0 [22]. Newton’s method employs the actual Hessian matrix, while the quasi-Newton
method uses an approximated version of the Hessian matrix. Table 2 presents the updating
formulas used in the quasi-Newton family. This method has gained popularity in the field
of optimization because it strikes a balance between the computational intensity of Newton’s
method and the simplicity of gradient-based methods.

The rank-one correction algorithm is effective for cases involving a constant Hessian ma-
trix, such as the quadratic scenario. However, it tends to perform poorly in nonquadratic

Name Updating Formula(Bk+1)

Symmetric Rank One (SR1) Bk +
(yk − Bk sk)(yk − Bk sk)T

(yk − Bk sk)T sk

Broyden Family Bk +
sT

k yk − sT
k Bk sk

(sT
k Bk sk)2

Bk sk sT
k Bk

Davidon, Fletcher, and Powell (DFP)
I −

yk sT
k

yT
k sk

 Bk

I −
sky

T
k

yT
k sk

 +
yky

T
k

yT
k sk

Broyden, Fletcher, Goldfarb, and Shanno (BFGS) Bk +
yky

T
k

yT
k sk
−

Bk sk sT
k BT

k

sT
k Bk sk

Table 2. The update formula, Bk for various quasi-Newton methods. Here Bk is an approximation to
the Hessian matrix, I is n × n identity matrix and sk = xk+1 − xk.

cases [5]. Next, initially developed by Davidon [7] and subsequently refined by Fletcher and
Powell [11], the DFP algorithm provides an alternative. By replacing the rank-one correction
formula with the DFP update Bk+1, the DFP algorithm can resemble the rank-one algorithm.
Additionally, the BFGS algorithm inherits the positive definiteness property of the DFP al-
gorithm. Notably, the BFGS update demonstrates robustness even when line searches are
imprecise. Consequently, among the quasi-Newton methods, BFGS stands out as the most
popular and potent technique due to its ability to maintain effectiveness in the presence of
sloppy line searches.

However, the quasi-Newton method does come with certain drawbacks. It can be
memory-intensive and computationally costly due to the computation of Hessian matrix[14].
Quasi-Newton methods require storing and updating an approximation of the Hessian ma-
trix or its inverse. This can be memory-intensive, especially for large-scale optimization
problems with many variables. Apart from this, one of the key drawbacks is the high com-
putational cost. It can be computationally costly to update the Hessian matrix or its inverse
approximation at each iteration, especially for high-dimensional situations.

2.4 Spectral Gradient Family

In the spectral gradient family, Barzilai and Browein proposed a two-point step size gradient
method, named as Barzilai-Browein (BB) gradient method for the unconstrained minimiza-
tion of a differentiation function f : Rn → R [2]. The method uses a two-point approximation
of the secant equation based on quasi-Newton methods to determine the step size. In the BB
gradient method, the gradient iteration form will be given as,

xk+1 = xk − Mkgk, (3)

where Mk = λkI and gk is the gradient vector. In order to mimic the quasi-Newton method,
the matrix Mk is derived from the secant equation and has the following λk,

λk =
sT

k−1yk−1

yT
k−1yk−1

, (4)
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cases [5]. Next, initially developed by Davidon [7] and subsequently refined by Fletcher and
Powell [11], the DFP algorithm provides an alternative. By replacing the rank-one correction
formula with the DFP update Bk+1, the DFP algorithm can resemble the rank-one algorithm.
Additionally, the BFGS algorithm inherits the positive definiteness property of the DFP al-
gorithm. Notably, the BFGS update demonstrates robustness even when line searches are
imprecise. Consequently, among the quasi-Newton methods, BFGS stands out as the most
popular and potent technique due to its ability to maintain effectiveness in the presence of
sloppy line searches.

However, the quasi-Newton method does come with certain drawbacks. It can be
memory-intensive and computationally costly due to the computation of Hessian matrix[14].
Quasi-Newton methods require storing and updating an approximation of the Hessian ma-
trix or its inverse. This can be memory-intensive, especially for large-scale optimization
problems with many variables. Apart from this, one of the key drawbacks is the high com-
putational cost. It can be computationally costly to update the Hessian matrix or its inverse
approximation at each iteration, especially for high-dimensional situations.

2.4 Spectral Gradient Family

In the spectral gradient family, Barzilai and Browein proposed a two-point step size gradient
method, named as Barzilai-Browein (BB) gradient method for the unconstrained minimiza-
tion of a differentiation function f : Rn → R [2]. The method uses a two-point approximation
of the secant equation based on quasi-Newton methods to determine the step size. In the BB
gradient method, the gradient iteration form will be given as,

xk+1 = xk − Mkgk, (3)

where Mk = λkI and gk is the gradient vector. In order to mimic the quasi-Newton method,
the matrix Mk is derived from the secant equation and has the following λk,

λk =
sT

k−1yk−1

yT
k−1yk−1

, (4)
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where yk−1 = gk − gk−1 and sk−1 = xk − xk−1. Note that, by symmetry, ||M−1
k sk−1 − yk−1|| in

relation to λk and obtain

λk =
sT

k−1sk−1

sT
k−1yk−1

. (5)

The BB method does not require the computation of full-rank matrices and does not require
line search. Barzilai and Borwein demonstrated that their method is R-superlinearly con-
vergence for the quadratic case [2]. Raydan and Svaiter combined the BB method with the
SD method [21]. This method demonstrates that the limitations of the SD approach are not
related to the choice of the search direction but instead stem from Cauchy’s selection of the
step length.

Sim et al. proposed the Multiple Damping Gradient (MDG) method by expressing Mk as
B−1

k [23]. MDG method has been developed to dampen the vector of gradient and decrease
the function value simultaneously.

3 Diagonal Variable Matrix Method

In the previous section, we have discussed several iterative methods in optimization and
their disadvantages. To overcome these shortcomings, we construct a new spectral gradi-
ent method, the DVM method, by constructing an updating formula to approximate the in-
verse Hessian matrix instead of the Hessian matrix using a diagonal approach. Our proposed
method is anticipated to reduce computational cost and memory requirements in solving a
large-scale unconstrained optimization problem.

3.1 Derivation

Sim et al. proposed to use the diagonal matrix to approximate the Hessian matrix [23]. The
updating formula is shown as follows:

B(i)
k+1 =

1

1 + ω(s(i)
k )2
, (6)

where i is the diagonal component of the matrix B, and the ω can be approximated by

ωk ≈
sT

k sk − sT
k yk∑n

i=0(s(i)
k )4
. (7)

However, the updating formula of the MDG method needs to be inverted. Hence, the
motivation of this paper is to extend a spectral gradient method that approximates the inverse
Hessian matrix directly. Similar to the derivation by Sim et.al., we begin by establishing an
updating formula for the approximation to the inverse Hessian matrix at step k, Hk. Consider
the log-determinant norm as follows:

Ψ(Hk) = tr(Hk) − ln(det(Hk)), (8)

where tr(Hk) is the trace of Hk and the det(Hk) represent as the determinant of Hk.
The optimization problem can be formulated by minimizing the log-determinant norm

subjected to the weak secant condition:

min Ψ(Hk+1), (9)

s.t. yT
k Hk+1yk = y

T
k sk, (10)

where Hk+1 is a diagonal and positive-definite matrix which aim to approximate B−1
k+1.

Assume that Hk+1 = diag(H(1)
k+1, ...,H

(n)
k+1) and yk = (y(1)

k , ..., y
(n)
k ), the objective function (9)

and constraint (10) can be rewritten as

min


n

i=1

H(i)
k+1

 − ln


n

i=1

H(i)
k+1

 , (11)

s.t.


n

i=1

(y(i)
k )2H(i)

k+1

 − yT
k sk = 0. (12)

Based on expressions (11) and (12), the Lagrangian is defined as

L(λ, ω) = ω




n
i=1

(y(i)
k )2H(i)

k+1

 − yT
k sk

 +
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where ω is the Lagrange multiplier.
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By substituting the Eqn.(15) into the constraint (10), we get an expression
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Note that G′(ω) < 0 and G is monotonically decreasing since the ω ∈ [0,∞). Hence, in the
scenario yT

k yk > y
T
k sk, Eqn.(16) has a unique positive solution. We could get the approximated

value of ω by solving G(ω) = 0. A reasonable approach approximating the solution is with
a single step of Newton–Raphson iteration initiated at ω̄ = 0. Subsequent Newton-Raphson
iteration steps are unnecessary as we only require an approximate value of ω. Consequently,
when yT

k yk > y
T
k sk, the Lagrange multiplier ωk is approximated by:

ωk ≈ ω̄ −
G(ω̄)
G′(ω̄)

=
yT

k yk − yT
k skn

i=1(y(i)
k )4
. (17)
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We still need another updating rule for the case of yT
k yk < y

T
k sk. We applied the Oren-

Luenberger scaling [16], which is used to affect the direction of the SD for the majority of
quasi-Newton methods. Therefore, the updating formula for Hk+1 is given by the following
when the two occurrences are combined:

Hk+1 =


diag(H(i)

k+1, ...,H
(n)
k+1), if yT

k yk > y
T
k sk

yT
k sk

yT
k yk

I, otherwise,
(18)

where Eqn. (15) defines H(i)
k+1 and Eqn.(17) provides ω.

3.2 Algorithm

In addressing general nonlinear unconstrained optimization minx∈Rn f (x) = 0, the iterative
method is frequently used with a line search strategy. In this paper, we will apply a back-
tracking line search strategy. The steplength, αk is computed to satisfy specific line search
conditions, such as the Armijo condition [1]:

f (xk + αkdk) ≤ f (xk) + cαkdT
k gk, (19)

where 0 < c < 1.

Backtracking Armijo line search algorithm

Step 1: Set c ∈ (0, 1), τ ∈ (0, 1), and initial steplength, α = 1. In this paper, we use c = 0.1
and τ = 0.5.
Step 2: Run the following relation,

f (xk + αdk) ≤ f (xk) + cαgT
k dk, (20)

Step 3: If Eqn.(19) has been fulfilled, choose the αk = α and xk+1 = xk + αkdk. Otherwise,
αk+1 = ταk and go to Step 2.

Next, for our proposed method, the algorithm is as follows:

Diagonal Variable Matrix Algorithm
Step 1: Set k = 0, given x0 ∈ Rn, n × n identity matrix as H0, and convergence tolerance ϵ.
Step 2: Compute g0 = ∇ f (x0) and d0 = −g0.
Step 3: If ||gk || ≤ ϵ, stop, else compute α by using a backtracking Armijo condition (19).
Step 4: Compute xk+1 = xk + αdk.
Step 5: Calculate gk+1 = ∇ f (xk+1)
Step 6: Compute Hk+1 by using the DVM method in Eqn. (18).
Step 7: Compute dk+1 = −Hk+1gk+1.
Step 8: Set k = k + 1, continue from step 3.

3.3 Application

In this paper, we have implemented our proposed method in non-blinded image deblurring
affected by linear motion blur. Figure 1 shows some examples of ground truth (left) and
blurred images (right) that are affected by motion blur.

A drag kernel has been applied to the original images (Figure 1: left) to create the blurred
images (Figure 1: right). The drag kernel, A, is given by

Figure 1. Examples of ground truth (left) and blurred image (right). Top to bottom: Lenna; Cat 1; Cat
2; Horses.

A =



k1 . . . kn 0 0 0 0
0 k1 . . . kn 0 0 0
0 0 k1 . . . kn 0 0
...
...

...
...
. . .

...
...

0 0 0 . . . k1 . . . kn


, (21)

where ki = 1/n, 1 ≤ i ≤ n, and n determines the "speed" of the drag. The relationship between
the original image, X and blurred image, B is given by optimization problem, min f (X),

f (X) =
1
2
∥B − AX∥2F . (22)

Let xk be a row in the original image X, and b is the corresponding blurred image B, the
image deblurring algorithm is similar to the Diagonal Variable Matrix algorithm except that
in Step 5, gk+1 = ∇ f (xk+1) is replaced by gk+1 = AT (Axk − b).
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4 Result and Discussion

In this paper, SD, MDG, and various CG methods are considered competitors to the DVM
method. In the following sections, we will use some abbreviations for convenience:

1. DVM as Diagonal Variable Matrix method (Proposed method).

2. MDG as Multiple Damping Gradient method [23].

3. CG-FR as Fletcher-Reeves Conjugate Gradient method [10].

4. CG-PRP as Polak-Ribiere-Polyak Conjugate Gradient method [18].

5. CG-LS as Liu-Storey Conjugate Gradient method [15].

6. CG-DY as Dai-Yuan Conjugate Gradient method [6].

7. CG-HZ as Hager-Zhang Conjugate Gradient method [12].

8. SD as Steepest Descent method [4].

The performance of the mentioned methods is assessed using image quality metrics and
the number of iterations. Less number of iterations indicates that the method converges faster.
Image quality is assessed using three metrics: root mean square error (RMSE), peak signal-to-
noise ratio (PSNR), and structural similarity (SSIM). RMSE measures the average difference
between the restored image and the ground truth image. Lower values of RMSE indicate
better performance. On the other hand, higher values of PSNR are more favorable. SSIM
values range from 0 to 1, with higher values indicating better restoration.

MSE is defined as the difference between a noise-free image, F, and its noisy approxima-
tion R.

MSE =
1

ab

a−1
i=0

b−1
j=0

[F(i, j) − R(i, j)]2, (23)

where a × b is the dimension of F and R. The RMSE is given as

RMSE =
√

MSE. (24)

The PSNR is represented as

PSNR = 10 log10


MAX2

F

MS E

 , (25)

where MAXF is the maximum pixel value of the image.
The formula of SSIM is defined as

SSIM(x, b) =
(2µxµb + e1)(2σxb + e2)

(µ2
x + µ

2
b + e1)(σ2

x + σ
2
b + e2)

, (26)

where µx and µb denote as pixel sample mean of x and b, σx and σb denote as variance of x
and b, σxb represent as covariance of x and b. e1 and e2 are two variables, used to stabilize
the division with a weak denominator.

A total of four images were tested: Cat 1, Lenna, Cat 2, and Horses. Tables 3, 4, 5 and 6
show the results of the various gradient methods in restoring the images. Because computing
the Hessian matrix is time-consuming and resource-intensive, the quasi-Newton method is
not utilized as the benchmark for comparison.

Gradient Method RMSE PSNR SSIM No. Iteration
SD 0.070 7 22.453 4 0.944 2 150
CG-FR 0.068 3 22.748 8 0.951 7 84
CG-PRP 0.070 7 22.444 7 0.944 0 150
CG-LS 0.070 7 22.444 1 0.944 0 150
CG-DY 0.068 3 22.949 4 0.950 2 96
CG-HZ 0.070 6 22.456 8 0.944 3 150
MDG 0.069 2 22.631 8 0.951 5 150
DVM 0.068 3 22.745 2 0.951 7 61

Table 3. Image deblurring result of image "Cat 1"

Gradient Method RMSE PSNR SSIM No. Iteration
SD 0.104 0 17.723 7 0.826 3 150
CG-FR 0.103 4 17.769 1 0.823 9 101
CG-PRP 0.104 0 17.721 2 0.826 3 150
CG-LS 0.104 0 17.721 1 0.826 3 150
CG-DY 0.104 0 17.724 5 0.821 7 127
CG-HZ 0.103 9 17.725 5 0.826 3 150
MDG 0.103 6 17.753 0 0.828 1 150
DVM 0.103 4 17.772 8 0.824 1 76

Table 4. Image deblurring result of image "Lenna"

Gradient Method RMSE PSNR SSIM No. Iteration
SD 27.383 3 17.817 9 0.915 7 150
CG-FR 26.347 1 18.152 8 0.930 0 100
CG-PRP 27.382 8 17.818 0 0.915 7 150
CG-LS 27.414 3 17.808 0 0.915 3 150
CG-DY 26.365 5 18.146 9 0.931 6 122
CG-HZ 27.377 6 17.819 7 0.915 7 150
MDG 26.956 8 17.954 2 0.922 5 150
DVM 26.3252 18.160 2 0.931 7 72

Table 5. Image deblurring result of image "Cat 2"

As seen from Tables 3 − 6, all the gradient methods show comparable results in terms
of image quality. It is worth mentioning that the DVM method shows the lowest number of
iterations in achieving the optimal solution compared to the other methods. Hence, we can
conclude that the DVM method outperforms the state-of-art methods. The images restored
using the DVM method are shown in Figure 2.
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Gradient Method RMSE PSNR SSIM No. Iteration
SD 10.662 5 27.505 3 0.879 8 150
CG-FR 10.025 9 28.039 9 0.831 5 150
CG-PRP 10.696 1 27.477 9 0.879 7 150
CG-LS 10.697 5 27.476 7 0.879 7 150
CG-DY 10.394 8 27.726 1 0.809 7 150
CG-HZ 10.661 5 27.506 0 0.879 8 150
MDG 10.628 0 27.533 4 0.880 9 150
DVM 10.005 7 28.057 5 0.832 6 129

Table 6. Image deblurring result of image "Horses"

Figure 2. Restored images by DVM method: a. Cat 1 b. Lenna c. Cat 2 d. Horses

5 Conclusion

In this paper, we have introduced a gradient method named as DVM method. In the DVM
method, we derived Hk as the approximation of the inverse Hessian matrix. The proposed
method is coupled with the backtracking Armijo line search, aimed at reducing the number
of iterations. From the theoretical perspective, this method does not require the inversion
of the approximated Hessian matrix. As compared to the state-of-art methods, the DVM
method shows comparable image quality results and requires the lowest number of iterations
in achieving the optimal solution. Hence, it is expected that the proposed method would
be capable of solving large-scale problems or recovering larger images in fewer iterations.
Lastly, our proposed approach could be generalized to work with other line search methods.
In the future, we may explore the application of our method in blind image deblurring and
additionally incorporate noise factors into the image deblurring process. In addition to image
deblurring, neural network systems, image denoising, and image segmentation are possible
uses of this method.
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